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Abstract

Combinatorial auctions (CAs) offer the flexibility for bidders to articulate complex pref-
erences when competing for multiple assets. However, the behavior of bidders under
different payment rules is often unclear. Our research explores the relationship between
core constraints and several core-selecting payment rules. Specifically, we examine the
natural and desirable property of payment rules of being non-decreasing, which ensures
that bidding higher does not lead to lower payments. Earlier studies revealed that the
VCG-nearest payment method – a commonly employed payment rule – fails to adhere to
this principle even for single-minded CAs. We establish that when a single effective core
constraint exists, the payment maintains the non-decreasing property in single-minded
CAs. To identify auctions where such a constraint is present, we introduce a novel
framework using conflict graphs to represent single-minded CAs and establish sufficient
conditions for the existence of single effective core constraints. We proceed with an
analysis of the implications on bidder behavior, demonstrating that there is no overbid-
ding in any Nash equilibrium when considering non-decreasing core-selecting payment
rules. Our study concludes by establishing the non-decreasing nature of two additional
payment rules, namely the proxy and proportional payment rules, for single-minded
CAs.

Keywords: Combinatorial auctions, core-selecting payment rules, non-decreasing
payment rules

1. Introduction

Combinatorial auctions (CAs) serve as a vital tool in allocating multiple, individually-
valued assets at market-driven prices, as established in foundational literature [1]. These
auctions allow bidders to place bids on sets, or bundles of items, as opposed to restrict-
ing them to single-item bids. This enables participants to express complex preferences
for multiple items including interactions between them.

The auction mechanism aims to find the most efficient allocation of items to bidders
while maximizing overall value. The mechanism of a CA is built upon two primary
components: an algorithm responsible for designating the winning bids and a payment
scheme that defines the financial obligations of the winning bidders.

CAs have seen widespread adoption, with applications ranging from spectrum al-
location to energy markets, and transactions at times exceeding billions of dollars in
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volume [2, 3]. A critical objective auction designers is to foster truthfulness, ensuring
that bidders are motivated to disclose their genuine valuation of the assets in question.
The Vickrey-Clarke-Groves (VCG) scheme [4, 5, 6] stands out as the only mechanism
capable of ensuring truthful bidding when optimal welfare allocation is in place. How-
ever, the real-world applicability of VCG is often limited due to its tendency to result
in payments that are unreasonably low [7].

Local
bidder 1

Local
bidder 2

Global
bidder

Bundle {A} {B} {A,B}
Bid 6 7 9

Allocation {A} {B} {}
First-price
payment

6 7 0

VCG payment 2 3 0
VN payment 4 5 0

Table 1: An example of an auction with 3 bidders and 2 items. The two local bidders win the auction
because they bid 6 + 7 = 13, whereas the global bidder only bids 9.

To illustrate, refer to Table 1, which showcases an example of a combinatorial auction,
namely a Local-Local-Global (LLG) auction setup. In this scenario, two bidders have
localized interests, each targeting just a single item, while a third ”global” bidder seeks
to acquire all items. Since the two local bidders combined bid more than the global
bidder, the local bidders win the auction. Utilizing a first-price payment mechanism in
this instance would result in the local bidders collectively paying 6 + 7 = 13. Such an
outcome makes it advantageous for them to misrepresent their true intentions, perhaps
by jointly bidding merely 10.

Furthermore, the example illustrates how comparatively low VCG payments would
be. In fact, in our example scenario, the VCG payments of 2+3 = 5 fall short of the value
put forth by the global bidder. This mismatch suggests that the global bidder and the
seller might prefer to sidestep the VCG mechanism and negotiate a direct transaction.

In response to these challenges, core-selecting payment rules have emerged, notably
the VCG-nearest (VN) payment rule [8] which is frequently used in spectrum auc-
tions [3]. These approaches aim to ensure that the auctioneer secures a fair return on
the auctioned items [9]. Specifically, the VN rule identifies the point closest to the VCG
payments within the core. Here, the core refers to the spectrum of payment amounts
where no group of bidders is willing to exceed what the winners are paying [10] (refer
to Figure 1).

Nonetheless, even core-selecting payment methods like the VN payment are not
without flaws. Previous research has demonstrated instances where bidders could reduce
their payments by submitting inflated bids above their true valuation under the VN
payment rule [11]. We refer to such behavior as overbidding.

In this paper, we study the mechanics of payment rules within the scope of single-
minded CAs, where each participant targets a single known set of items. While over-
bidding occurs in the single-minded setting, such occurrences are so far only known for
complex arrangements of multiple goods and participants [11]. We set out to assess this
complexity threshold of single-minded CAs: At what point of auction complexity do VN
payments cease to incentivize bidders to make artificially higher bids? This question
takes on increased importance in light of evidence that bidders can sometimes benefit
from overbidding.

Additionally, we investigate the relationship between core constraints and core-
selecting payments mechanisms. Additionally, we delve into the intricate relationship
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Figure 1: Left: payment space of winning bidders in Table 1. The green point pV is the VCG payment
point, the red point PV N is the VN payment point, the orange line is the core constraint on payments
of local bidders 1 and 2, and the gray triangle is the core given by core constraints. Right: If bidder 1
increases their bid from 6 to 7, their payment increases as well, from 4 to 4.5.

between core constraints – those linear limitations that define the core – and core-
selecting payment mechanisms. The core constraints are a set of linear constraints
generated by the bidders’ bids on their desired bundles, which collectively form a geo-
metric polytope (the core). By doing so, we aim to offer a nuanced understanding of
how these elements interact, and whether specific types of core constraints are more
conducive to the effective functioning of core-selecting payment rules. Our results can
be summarized as follows.

Firstly, we examine the non-decreasing property, a highly sought-after characteristic
in the context of payment rules. This attribute stipulates that elevating a bid should
not result in a lowered payment obligation for the bidder. Our exploration focuses on
identifying the types of core constraints under which VN payments adhere to this non-
decreasing principle. We establish that whenever a single effective core constraint is
present, the VN payments are inherently non-decreasing.

Secondly, we make progress in pinpointing which auction configurations inherently
follow the non-decreasing property. To facilitate this, we apply a graph-centric model to
represent the complexities of CAs. Our model – termed the conflict graph – illuminates
overlaps in the bidders’ preferred bundles. We identify certain conditions in these conflict
graphs that guarantee the presence of a single effective core constraint. Specifically, our
findings reveal that a complete multipartite graph or a maximal independent set with no
more than two nodes in the conflict graph ensures this criterion. Moreover, in auctions
with a maximum of three winners, VN payments maintain their non-decreasing nature,
irrespective of the presence of a single effective core constraint. While we do not provide
a proof, we conjecture this fact to be true for up to five winners. This would imply
that the known example of overbidding with 6 winners [11] is minimal in terms of the
number of winners.

Thirdly, we examine how these payment rules influence bidders’ strategic choices.
Our analysis confirms that in single-minded CAs, a non-decreasing payment rule inher-
ently discourages overbidding strategies, rendering them weakly dominated by truthful
bidding in any Nash equilibrium. This establishes the validity of a conjecture previously
put forth by Bosshard et al. [11].

Lastly, our inquiry extends to evaluating the non-decreasing attributes of two other
prevalent payment rules: the proxy payment and the proportional payment. Though
these payment rules fail to maintain the non-decreasing property in multi-minded bid-
ding scenarios, we demonstrate that they do satisfy this condition when applied to

3



single-minded CAs.
In summary, this paper adds several key contributions to the ongoing research sur-

rounding CAs. These include the proof that VN payments maintain the non-decreasing
property under specific core constraints, identification of conditions within conflict graphs
that dictate the presence of a single effective core constraint, and evidence dispelling
the viability of overbidding strategies under non-decreasing payment rules in any Nash
equilibrium.

2. Related Work

The complexities tied to the motivations of participants in combinatorial auctions
featuring core-selecting payment rules are not yet fully understood [12]. Earlier works,
such as those by Day and Milgrom [10], argue that core-selecting payment minimize
incentives to false report. However, particular conditions under which specific incentives,
such as the non-decreasing trait, prevail remain unclear.

In earlier analyses, the VN payment rule has been noted for its non-decreasing be-
havior, specifically in LLG auctions [13]. However, the property is not universal across
all types of single-minded CAs [11]. Investigations by Markakis and Tsikirdis on alter-
native payment rules – specifically, 0-nearest and b-nearest – also show that these rules
maintain a non-decreasing characteristic in single-minded CAs [14]. Our research aug-
ments this understanding by identifying conditions for which the prevalent VCG-nearest
payment rule maintains non-decreasing behavior in these auctions.

Regarding the computational aspects of core-selecting payment rules, Day and Ragha-
van propose a constraint generation to express the pricing problem concisely [9]. A faster
algorithmic approach to core constraint generation, based on the conflict graph among
auction participants, was later proposed by Bünz et al. [15].

The influence of payment attributes on participants’ strategic maneuvers in CAs
cannot be overstated. Earlier work has explored game-theoretical analyses [9] and has
highlighted both under-bidding and over-bidding strategies. Sano’s research indicates
that sincerity is not the dominant strategy in particular types of core-selecting auctions
[16], while the question of whether over-bidding strategies consistently appear in Nash
equilibria remains open.

Existing literature has shown that under-bidding strategies are invariably present in
both pure Nash equilibria (PNE) and Bayesian Nash equilibria (BNE) in core-selecting
CAs. Further studies by Beck and Ott on full-information settings confirmed that each
minimum-revenue core-selecting CA contains a PNE that consists only of over-bids [17].
Yet, the motivations for over-bidding in the context of privately held valuations are not
adequately explored.

3. Mathematical Framework

We examine auction settings wherein all participating bidders and the auctioneer
operate independently, and guided by rational and self-centered objectives. In particular,
bidder focus on maximizing their individual utility.

3.1. Structure of Combinatorial Auctions

This work deals with combinatorial auctions (CAs), where goods in a set M =
{1, . . . ,m} are allocated among bidders represented by a set N = {1, . . . , n}. Specif-
ically, we are concerned with single-minded combinatorial auctions (SMCAs), where
each bidder targets a unique bundle of goods. The bundle that the ith bidder is tar-
geting is denoted by ki ⊂ M , and the collection of all such bundles is given by the
tuple k = (k1, . . . , kn). This tuple, known as the auction’s interest profile, is assumed
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to be both known and unchanging. In addition, each bidder i has a private valuation
vi ∈ R≥ 0 of the bundle they are bidding for, and submits a corresponding bid bi ∈ R≥ 0.
The collective bids constitute the bid profile b = (b1, . . . , bn), with b−i representing all
bids other than bidder i’s. Moreover, bL denotes the bids of a subset L ⊂M of bidders.

A CA mechanism, denoted (X,P ), is composed of an algorithm X for selecting
winners and a payment scheme P that sets the amount due by each winning bidder.

3.2. Winner Selection

The allocation function X(b) yields an optimal set x that contains bidders receiving
their preferred bundles, while the rest end up empty-handed. The efficiency criterion
is that the allocation maximizes the sum of all successful bids, formally defined as the
reported social welfare W (b, x) =

∑
i∈x bi. This optimization is subject to the constraint

that each good is part of at most one winning bundle.
In this setup, bidders aim to optimize their utility, defined as the value they assign

to the acquired bundle minus the associated payment. Due to the private nature of the
valuations, the auctioneer aims to maximize reported social welfare rather than actual
social utility.

3.3. Types of Payment Rules

We posit that the payment function adheres to a voluntary participation constraint;
that is, no bidder will be charged more than their bid, formalized as pi ≤ bi for every
i ∈ N .

Remember that in CAs, Vickrey-Clarke-Groves (VCG) payments ensure truthful
bidding, i.e. bidding their true valuation is a weakly dominant strategy for bidders. For
an efficient allocation x = X(b), the VCG payment for bidder i, denoted pVi , is given
by:

pVi (b, x) = W (b,X(b−i))−W (b, x−i)

Here, x−i represents all winners except bidder i and X(b−i) is the set of winners in
the auction excluding bidder i.

All payment rules we consider are core-selecting, i.e. return a payment within the
core. The core is demarcated by lower-bound constraints (core restrictions), preventing
any coalition from mutually beneficial renegotiation.

Definition 3.1 (Core-selecting payment method). For an optimal set x = X(b), the
core comprises all payment vectors p(b, x) that satisfy the subsequent core constraints
for any subset L ⊆ N : ∑

i∈N\L

pi(b, x) ≥W (b,X(bL))−W (b, xL)

with xL = x∩L being the set of winning bidders in L under the allocation x, and X(bL)
being the set of winners in the auction with only the bids of bidders in L.

A payment rule is called core-selecting if it selects a point within the core. Lastly,
the minimum-revenue core, a subset of the core, contains all points with the smallest
total payment among points within the core.

In particular, VN payments locate a point in the minimum-revenue core nearest to
the VCG point, following the definition in previous work [11, 14] 1.

1Other work [8] does not explicitly require the VN payment to be in the minimum-revenue core,
but instead only mandates it to be part of the core. Note here that for simple auctions, such as LLG,
the VN payments already necessarily falls into the minimum-revenue core without needing to explicitly
specify this.
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Definition 3.2 (VCG-nearest payment). The VCG-nearest payment rule (VN payment,
quadratic payment, closest-to-VCG payment) selects the point within the minimum-
revenue core closest to the VCG point based on Euclidean distance.

We also investigate the equal-share proxy payment and proportional payment, both
of which are core-compliant.

Definition 3.3 (Equal-share proxy payment). The equal-share proxy payment selects
a core-compliant point where winners divide the total payment roughly equally. The
payment can be represented as pi(b, x) = min[α, bi] for the smallest α ≥ 0 satisfying the
core constraints.

Definition 3.4 (Proportional payment). The proportional payment assigns payments
proportional to the winning bids within the core. The payment is of the form pi(b, x) =
α · bi with α ∈ [0, 1] for the smallest α ≥ 0 satisfying the core constraints.

Finally, recall the definition of the non-decreasing property of a payment rule.

Definition 3.5 (Non-decreasing payment rule). For an allocation x, we write Bx for
the set of bid profiles for which x is efficient. A payment function p is non-decreasing
if, for any given allocation x and for any bidder i, for any pair of bid profiles b, b′ ∈ Bx
such that b′i ≥ bi and b−i = b′−i, we have:

pi(b
′, x) ≥ pi(b, x)

4. Single Effective Core Constraints

We begin by establishing a sufficient condition on core constraints that ensures that
the VN payment rule consistently exhibits non-decreasing behavior.

Core-selecting payment rules operate within boundaries defined by core constraints,
which set a lower limit on payments to prevent any coalition from achieving a higher
reported welfare than the actual winners. However, not all constraints exert an equal
impact – some become irrelevant as they are automatically satisfied by other, more
stringent, constraints. For instance, in an LLG auction as depicted in Figure 1, where
local bidders emerge victorious, we have:

p1 + p2 ≥ bG (1)

p1 ≥ bG − b2 (2)

p2 ≥ bG − b1 (3)

Here, bG represents the global bidder’s bid. Constraints (2) and (3) are effectively
subsumed by (1), thereby rendering them redundant. For constraint (2), this follows
from p2 ≤ b2, and equivalently for (3). This leads us to conceptualize the notion of a
single effective core constraint, which we formally define below.

We also note that core constraints of the form pi ≥ pVi – which we term VCG-
constraints – such as constraints (2) and (3) can be neglected when computing VN
payments. Minimizing the distance from pV to p already averts pi < pVi .

Definition 4.1. In the context of an SMCA with a predetermined interest profiles and
a fixed winner allocations, a single effective core constraint (SECC) is said to be present
if satisfying one specific core constraint automatically fulfills all others. Formally, an
SECC exists if, for all bid profiles, the polygon shaped by this unique core constraint
and the voluntary participation constraints exactly matches the core, as specified by the
full set of core constraints.

6



Theorem 4.2. The VN payment rule is non-decreasing for SMCAs with a single effec-
tive core constraint.

Proof. To prove this theorem we will first compute an explicit formula for the VN
payments. The payments of all losing bidders are 0. For all winning bidders whose
payment is not bound from below by the SECC, the VN payment simply equals the
VCG payment. Let S be the set of winners whose payment is bound from below by the
SECC. Then we have the following constraints on the VN payments to S, where (4) is
the SECC with some lower bound B.∑

i∈S
pV N
i ≥ B (4)

pV N
i ≤ bi for i ∈ S (5)

The quadratic optimization problem to be solved is minimizing the Euclidean distance
between pV N and pV under the constraints above. For the solution of this optimization
problem, the voluntary participation constraint (5) will be active for some i. Let A be
the set of indices for which (5) is active, i.e. pV N

i = bi for i ∈ A.
For the remaining i ∈ S \ A, we write pV N

i = pVi + δi. The single effective core
constraint (4) can now be rewritten as∑

i∈S\A

δi ≥ B −
∑

i∈S\A

pVi −
∑
i∈A

bi.

Minimizing the Euclidean distance between pV N and pV is equivalent to minimizing∑
i∈S\A δ

2
i . Since we have a lower bound on the sum of the δi, the minimum possible

value of
∑

i∈S\A δ
2
i is achieved when all δi are equal, i.e.

δi = δ =
1

|S \A|

B − ∑
j∈S\A

pVj −
∑
j∈A

bj

 (6)

for i ∈ S \A. With that we conclude

pV N
i =

{
bi for i ∈ A
pVi + δ for i ∈ S \A. (7)

Finally, we verify that VN is non-decreasing. Assume bidder i increases their bid and
this does not change the allocation x. If i is a losing bidder in x, their VN payment is 0
and can obviously not decrease. Furthermore, if i is a winning bidder, but i’s payment
is not part of the SECC, i’s VN payment will equal their VCG payment which does not
change as it only depends on the other bids. From now on, we assume that bidder i is
a winning bidder whose payment is part of the SECC, i.e. i ∈ S.

Consider how the quadratic optimization problem changes when increasing bidder
i’s bid. One constraint and the point pV move continuously with this change. So clearly
the solution, i.e. pV N , also moves continuously. During this move some of the constraints
(5) will become active or inactive. We call the moments when this happens switches
and examine the steps between two consecutive switches.

As pV N changes continuously around switches, equation (7) will yield the same result
at the switch, no matter if we consider the switching constraint to be active or not. So
for every single step we can assume that the set of active constraints is the same at the
beginning and the end of the step. If suffices to show that bidder i’s payment does not
decrease in every step between two switches. (In short, pV N is a continuous function
which is piecewise defined and we verify all of its pieces are non-decreasing.)
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Assume bidder i’s bid increases from bi to b′i in a certain step and let b = (bi, b−i)
and b′ = (b′i, b−i) denote the corresponding bid profiles. We distinguish two case based
on if i is in the set of active constraints in this step or not. If i’s constraint is active,
i.e. i ∈ A, we have pV N

i (b, x) = bi and pV N
i (b′, x) = b′i in (7). Then the voluntary

participation constraint implies

pV N
i (b, x) = bi ≤ b′i = pV N

i (b′, x).

Otherwise, for i /∈ A, we have pV N
i (b, x) = pVi + δ and pV N

i (b′, x) = pVi + δ′ where δ′

is the term in (6) for the bidding profile b′ with the increased bid. Then it remains to
argue that δ ≤ δ′. This is true since neither B nor |S \ A| in (6) change. The sum∑

j∈A bj also stays the same since i /∈ A. Furthermore,
∑

j∈S\A p
V
j decreases or stays

the same because the VCG payments of all other bidders decrease or stay the same when
a winning bidder increases their bid.

The above proves that the existence of an SECC is a sufficient condition for the VN
payment to be non-decreasing. It is however, not a necessary condition as the following
example in Table 2 shows (see Figure 2 for the example’s conflict graph).

Bidder 1 2 3 4 5
Bundle ki {A} {B} {C} {A,B} {A,C}

Table 2: An example of an SMCA with more than a single effective core constraint that is non-
decreasing.

If the bidders b1, b2 and b3 win the auction, the following two core constraints are
effective:

p1 + p2 ≥ b4
p1 + p3 ≥ b5

The remaining core constraints are already covered by these two constraints above.
However in general, none of the two fully covers the other, meaning there is more than
one effective core constraint. On the other hand, this example is in fact non-decreasing.
To prove this, we briefly discuss two necessary conditions for when overbidding can
occur. Firstly, increasing bid bi must decrease the VCG payment pVj of another winner.

This is clear since increasing bi will not change pVi and cannot increase another winner’s
VCG payment. Furthermore, if the VCG payment does not change, the VCG nearest
clearly will not either.

Secondly, the decrease of pVj must move the VCG nearest point, and not only decrease

pV N
j , but also pV N

i . The VCG nearest point will move along a number of faces of the
core. Each of the faces if defined by a subset of core constraints being tight. During the
movement along at least one of these faces, pV N

i must decrease.
In this example, there are only the two core constraints p1+p2 ≥ b4 and p1+p3 ≥ b5.

So the only face to consider is the line defined by both constraints being tight. This can
be parametrized as  0

b4
b5

+ x

 1
−1
−1


with x ∈ R. Note that only the second and third entry of the directional vector have
the same sign. Hence, 2 and 3 are the only potential indices j such that a decrease of
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Figure 2: The conflict graph of the auction in Table 2. The bidders 4, 5 are colored in black. The
bidders 2, 3 are colored in blue. The bidder 1 is colored in red.

pVj could cause pV N
j and pV N

i decrease. However, the VCG payments are

pV1 = max(b4 − b2, b5 − b3)

pV2 = max(b4 − b1, 0)

pV3 = max(b5 − b1, 0).

In particular, increasing b2 or b3 will not decrease pV3 and pV2 , respectively. So no bidder
can decrease their payment by increasing their bid.

5. Graph Representation of Auction Classes

In what follows, we focus on identifying auction categories for which an SECC is
assured to exist. For this purpose, we employ graph-based models to depict these auction
classes. Specifically, we construct what we term as a conflict graph, which captures the
overlapping interests in the auction bundles.

Consider an interest profile k = (k1, . . . , kn) for a given SMCA. We define a graph
G = (V,E), where the vertex set V consists of the elements of k, that is, V =
{k1, . . . , kn}. Each vertex in this graph symbolizes a particular bidder. An edge be-
tween two vertices is formed if only if the corresponding bundles have at least one
shared item. Figure 3 showcases two straightforward examples of such conflict graphs.

Figure 3: Two examples of conflict graphs. The left one corresponds to the interest profile
({A}, {B}, {C}, {D}, {A,B,C,D}), the right one to ({A,B}, {B,C}, {C,D}, {D,A}).

In the conflict graph, every set of winners in the auction corresponds to a maximal
independent set (MIS).

It is noteworthy that any graph having n vertices can occur as the conflict graph for
an SMCA with n participating bidders. In other words, this relationship is surjective.
To illustrate, given a specific graph, link each edge to a distinct auction item. Then, for
each vertex, choose the associated bundle that comprises the linked items of all adjacent
edges.

Even though various interest profiles could yield an identical conflict graph, auctions
sharing the same conflict graph inherently produce equivalent core constraints.

Lemma 5.1. Interest profiles with the same conflict graph have equivalent core con-
straints (up to renaming the bidders) for all possible bid profiles.

Proof. Consider two interest profiles that yield conflict graphs which are isomorphic.
We can re-label the bidders in one of the profiles so that the isomorphism maps the i-th
bidder of one graph to the i-th bidder in the other graph, for all i in {1, . . . , n}.
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Recall Definition 3.1 of core constraints:∑
i∈N\L

pi(b, x) ≥W (b,X(bL))−W (b, xL)

Note that for any set L, both xL and X(bL) are solely functions of the conflict graphs
and the associated bid profile. Consequently, this extends to the entire right-hand side
of the inequality, establishing that the core constraints are indeed equivalent.

By examining the conflict graph alone, we can determine whether an SECC exists
based on the following sufficient conditions.

Lemma 5.2. An auction with a conflict graph that is a complete multipartite graph has
a SECC.

Proof. Assume the conflict graph is a complete multipartite graph. In this case, bidders
can be partitioned into k distinct groups, B1, . . . , Bk, such that no two bidders within
the same group are connected by an edge, but all bidders from different groups are
connected.

We assert that a winning set must be a single bidder group. Indeed, bidders from
multiple groups cannot be in a winning set due to overlapping bundles. Additionally, if
the winning set contains only a subset of a bidder group, the allocation is suboptimal:
the remaining bidders in the group could be included to enhance social welfare.

Let Bw be the winning bidder group. We now argue that there exists only one
effective core constraint. For any subset L ⊆ N , the core constraint is given by:∑

i∈N\L

pi(b, x) ≥W (b,X(bL))−W (b, xL). (8)

First, observe that ifN\L includes a losing bidder, the constraint is ineffective. Including
this losing bidder in L does not alter the left-hand side of 8 since the losing bidder’s
payment is zero. but makes the right-hand side no worse, hence the new constraint
subsumes the old one.

Thus, we only need to consider the core constraints with N \ L ⊂ Bw. Choose L′

such that Bw \ L′ = N \ L. Furthermore, let Bo be the winning bidder group in the
auction with only the bidders N \ Bw. The term W (b,X(bL)) on the right-hand side
equals either

∑
i∈L′ bi or

∑
i∈Bo

bi.
If it is the former, the right-hand side is zero, rendering the constraint ineffective.

In the latter case, we get a constraint of the form:∑
i∈Bw\L′

pi(b, x) ≥
∑
i∈Bo

bi −
∑
i∈L′

bi.

As pi(b, x) ≤ bi, all such constraints are subsumed by∑
i∈Bw

pi(b, x) ≥
∑
i∈Bo

bi

which proves that this is the sole effective core constraint.

Note that both graphs in Figure 3 are complete bipartite, signifying that an SECC
exists for any auctions represented by such conflict graphs. We present another sufficient
condition for the existence of an SECC below.

Lemma 5.3. If every MIS in the conflict graph contains at most two nodes, then the
auction is guaranteed to have an SECC.
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Proof. Recall from the proof of Lemma 5.2 that it is sufficient to focus on core con-
straints, where N \ L contains only winning bidders. In such a case, we arrive at
constraints of the form pi + pj ≥ B, along with individual constraints for pi and pj .
These individual constraints can be either pi ≥ 0 or pi ≥ B − bj (and similarly for pj).

Given that pi ≤ bi and pj ≤ bj , it follows that pi + pj ≥ B is the only effective core
constraint, thereby affirming the lemma.

The Lemmas 5.2 and 5.3 provide two sufficient conditions under which an SECC
is guaranteed to exist. It is crucial to note, however, that these conditions are not
necessary for the existence of an SECC. This is demonstrated by the example detailed
in Table 3 and its associated conflict graph depicted in Figure 4. Despite the fact that
the conflict graph has a MIS larger than two and is not a complete multipartite graph,
it still exhibits an SECC.

Lemma 5.4. There exists an SMCA that is not a complete multipartite graph which
has an SECC and has an MIS of size larger than 2.

Proof. Consider the SMCA with the interest profile shown in Table 3.

Bidder 1 2 3 4 5
Bundle ki {A,B} {B,C} {C,D} {D,A,E} {E}

Table 3: An example of an SMCA that has an SECC, where the conflict graph has a MIS of size larger
than 2 and is not a complete multipartite graph.

Figure 4: The conflict graph of the auction in Table 3. The MIS with three nodes (bidders 1, 3, 5) is
colored in red.

We start by addressing the case where two or fewer bidders win. Here, Lemma 5.3
already guarantees the existence of an SECC.

The only situation where at least three bidders win is when bidders 1, 3, and 5 are
the winners. For this scenario, the core constraints on the payments of the winners are
as follows:

p1 + p3 + p5 ≥ b2 + b4 (CC1)

p1 + p5 ≥ max((b2 + b4), b3)− b3 (CC2)

p3 + p5 ≥ max((b2 + b4), b1)− b1 (CC3)

p1 + p3 ≥ max((b2 + b4), (b2 + b5))− b5 (CC4)

In the following, we argue that (CC1) is the only effective core constraint since it
covers all other constraints.

We first demonstrate that (CC2) and (CC3) are never effective core constraints. If
(CC2) is non-trivial, then we have p1 + p5 ≥ b2 + b4 − b3. Since p3 ≤ b3, (CC2) is
satisfied as soon as the payments of winners satisfies (CC1). Therefore, (CC2) is never
an effective core constraint. A similar argument applies to (CC3) due to symmetry.
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We now show that the (CC1) is always a tight core constraint of any VCG-nearest
payment, i.e., p1 + p3 + p5 = b2 + b4. We prove this statement by showing that the
following three scenarios are impossible.

The first scenario is that neither (CC1) nor (CC4) is tight for the VCG-nearest point.
In such a scenario, the payment must be equal to the VCG payment, as those are the
remaining constraints on every individual winning bidders payments. Since (CC1) is
not tight, we have pV1 + pV3 + pV5 > b2 + b4 which implies

max
(
(b2 + b4), (b1 + b3), (b2 + b5)

)
+ max

(
(b1 + b5), (b2 + b4), (b2 + b5)

)
+ max

(
(b2 + b4), (b1 + b3)

)
> b2 + b4 + 2(b1 + b3 + b5).

If (b2 + b4) is maximal in any of the three items, we see that the above inequality
cannot hold, due to the fact that bidders 1, 3, 5 winning which means max(b2 + b4, b2 +
b5) ≤ b1 + b3 + b5. Therefore, we obtain the following expression,

max
(
(b3 + b5), (b2 + b5)

)
+ max

(
(b1 + b5), (b2 + b5)

)
+ (b1 + b3)

> b2 + b4 + 2(b1 + b3 + b5)

However, all possible outcomes of the left side are strictly inferior to the right side.
Therefore, pV1 + pV3 + pV5 ≤ b2 + b4, which contradicts to our assumption for the first
scenario that (CC1) is not tight.

The second scenario is that (CC4) is tight and (CC1) is not tight. Then we have
either p1 + p3 = b2 + b4 − b5, or p1 + p3 = b2.

If p1 + p3 = b2 + b4 − b5, then p1 + p3 + p5 ≤ b2 + b4 because p5 ≤ b5. This implies
that (CC1) is tight, which contradicts to our assumption of the second scenario.

If p1 + p3 = b2, we have p5 > b4 because (CC1) is not tight. Then we know that
p5 equals the VCG payment pV5 , as it is the remaining constraint on bidder 5’s winning
payment. However, pV5 > b4 implies that,

max((b2 + b4), (b1 + b3))− (b1 + b3) > b4

b2 + b5 > b1 + b3 + b5

This contradicts the assumption that bidders 1, 3, 5 are winning. Therefore, (CC1)
is a tight constraint for all VCG-nearest payment in the SMCA.

The next step of the proof is to show that (CC4) is always covered by (CC1). If
b2 + b4 > b2 + b5, because b5 ≥ p5, it is trivial that (CC4) always satisfies when (CC1)
satisfies. Otherwise, if b2 + b5 > b2 + b4, we subtract (CC4) p1 + p3 ≥ b2 from (CC1)
p1 +p3 +p5 = b2 + b4 (as (CC1) is always tight). Then we have p5 ≤ b4, which indicates
that if (CC1) holds, then (CC4) also holds.

Hence, (CC1) is the only effective core constraint in the SMCA.

The results so far show that examining the conflict graph provides insights into
the auction’s structure, particularly into whether an SECC exists. Consequently, we
are able to tell that certain payment rules are non-decreasing for a particular auction.
On the other hand, we are also able to identify scenarios in which the non-decreasing
property is violated: By examining induced subgraphs of the conflict graph, we are
able to determine that the non-decreasing property of a payments rule is violated for a
particular auction. This is formalized in the following lemma.
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Lemma 5.5. Consider two interest profiles k and k′ with corresponding conflict graphs
G and G′. If G′ is an induced subgraph of G and a payment rule is not non-decreasing
for k′, then the payment rule is also not non-decreasing for k.

Proof. According to Definition 3.5, a payment rule not being non-decreasing for k′ means
there exists an allocation x and bid profiles b and b′ with b′i ≥ bi and b−i = b′−i such that
pi(b

′, x) < pi(b, x). By simply choosing zero (or arbitrarily small) bids for all bidders in
G \G′, we also find two bid profiles with the same property for k.

Bosshard et al. demonstrated that VN payments can violate the non-decreasing
property by presenting a specific interest profile along with corresponding bids [11].
Consequently, VN payments can also be expected to fail the non-decreasing test in any
auction whose conflict graph contains the example graph from Bosshard et al. as an
induced subgraph. This realization underscores the importance of identifying minimal
examples where overbidding occurs, and it provides a strong impetus for the discovery of
additional sufficient conditions under which overbidding is precluded. In what follows,
we outline a novel sufficient condition that ensures the non-decreasing property of VN
payments, independent of the existence of an SECC.

Theorem 5.6. For SMCAs characterized by an interest profile in which each winning
allocation includes no more than three winning bidders, the VN payment mechanism
exhibits non-decreasing behavior.

Proof. The case that the auction is won by two bidders is already treated in Lemma 5.3.
Assume three bidders win the auction, and without loss of generality, let the winners be
bidders 1, 2 and 3. Then the core constraints are

pV N
1 + pV N

2 + pV N
3 ≥W (b,X(bN\{1,2,3})) (9)

pV N
1 + pV N

2 ≥W (b,X(bN\{1,2}))− b3 (10)

pV N
2 + pV N

3 ≥W (b,X(bN\{2,3}))− b1 (11)

pV N
1 + pV N

3 ≥W (b,X(bN\{1,3}))− b2. (12)

Remember, that we can ignore core constraints of the form pV N
i ≥ pVi (VCG-constraints).

Furthermore, assume without loss of generality that bidder 3 increases their bid.
Let M be the minimum revenue determined by the core constraints. There are

two possibilities for the minimum revenue core: First, if the plane described by (9) is
not fully covered by the constraints (10), (11) and (12), the minimum revenue is M =
W (b,X(bN\{1,2,3})). We further discuss this case in the next paragraph. The second
possibility is that the plane described by (9) is fully covered by the other constraints, and
M > (b,X(bN\{1,2,3})). Then the minimum revenue core is a single point determined by
equality holding in (10), (11) and (12). Since the right sides of (10), (11) and (12) are
not larger than the right side of (9), all three constraints are needed to fully cover the
plain. In particular, bidder 3 must be part of X(bN\{1,2}), otherwise (9) implies (10),
and the plane is not fully covered. But this means, that increasing b3 does not change
the right sides of (10). As the same is true for (11) and (12), increasing b3 does not
move the minimum revenue core and thereby the VN payment point.

In the following, we assume that constraint (9) is active, andM = W (b,X(bN\{1,2,3})).
We argue similarly to the proof of Theorem 4.2: All changes in the VN payments are
continuous in the change of the bid b3. At any time, a number of constraints are active,
and this set of active constraints changes at certain switches. To prove, the payment
does not decrease overall, it suffices to prove it does not decrease between two switches,
when the set of active constraints does not change. In the following, we distinguish three
possible cases.
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1st case. Only constraint (9) is active. Hence, the VN payments arepV1 +
M−(pV

1 +pV
2 +pV

3 )
3

pV2 +
M−(pV

1 +pV
2 +pV

3 )
3

pV3 +
M−(pV

1 +pV
2 +pV

3 )
3

 .

When b3 is increased, the minimum revenue M = W (b,X(bN\{1,2,3})) does not change.
Furthermore, pV1 and pV2 stay the same or decrease. So bidder 3’s payment does not
decrease according to the formula above.

2nd case. The constraints (9) and (10) are active. This implies

pV N
3 = b3 +M −W (b,X(bN\{1,2}))

pV N
1 + pV N

2 = W (b,X(bN\{1,2}))− b3.

As b3 increases, W (b,X(bN\{1,2})) can increase by at most as much as b3. Hence, the
payment pV N

3 will not decrease.

3rd case. Constraints (9) and (11) are active. (Note that the case when constraints (9)
and (12) are active is equivalent due to symmetry.) This implies

pV N
1 = b1 +M −W (b,X(bN\{2,3}))

pV N
2 + pV N

3 = W (b,X(bN\{2,3}))− b1.

These equations describe a line on which the VN payment points lies. Increasing b3 does
not change the right side of the equation. Furthermore, it may decrease pV2 , but does
not change pV3 . Since pV N is the closest point to pV on the line, this can, if it causes a
change, only lead to a decrease of pV N

2 and an increase of pV N
3 .

Corollary 5.7. For any SMCA involving no more than five participants, the VN pay-
ment mechanism maintains a non-decreasing property.

Proof. When the auction features up to three winners, we can directly apply Theorem
5.6 to demonstrate the non-decreasing nature of the VN payment scheme.

In scenarios with either four participants and four winners or five participants and five
winners, the corresponding conflict graphs stand disconnected. In such instances, these
auctions effectively break down into smaller, self-contained sub-auctions. Consequently,
the VN payment rule remains non-decreasing by virtue of the partitioned conflict graphs.

Lastly, we consider the case where an auction includes five bidders but only four
emerge as winners. In this situation, the only feasible connected conflict graph is K1,4,
a specific type of complete bipartite graph. This case has been adequately addressed by
Lemma 5.2, thereby confirming the non-decreasing character of the VN payment rule
here as well.

Concluding the section, we conjecture that the over bidding example with six bidders
given in [11] is actually minimal with respect to the number of winners.

Conjecture 5.8. The VN-payment rule is non-decreasing for all auctions that have an
interest profile for which every winner allocation contains five or fewer winners.

The remaining gap to Theorem 5.6 is ruling out cases of four and five winners.
In the following, we provide a starting point to prove the conjecture. For this purpose,

let us take a closer look at what leads to the overbidding in the example in [11] (see
Table 4). In the example, bidder 3 increasing their bid leads to a decreased payment for
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bidder 3. Before and after this increase, the following core constraints are active (i.e.
equality holds):

p1 + p2 + p4 = 5

p1 + p3 + p6 = 7

p2 + p3 + p4 = 5

p2 + p3 + p5 = 5

p4 + p5 + p6 = 2

The solutions of this system of equations can be parametrized in p1 as

p =


0

5/2
0
−5/2
−5/2

7

+ p1


1
−2
1
1
1
−2

 (13)

When bidder 3 increases their bid from 4 to 5, bidder 1’s VCG payment decreases from
2 to 1. Since the VN payment minimizes the distance to the VCG payment point, this
also leads to bidder 1’s VN payment decreasing. And since bidder 3’s payment has a
positive entry in the directional vector in (13), it decreases with bidder 1’s payment.

Hence, we can formulate the following necessary condition for the VN payment to
not be non-decreasing. There exist two bidders i and j, such that (1) increasing i’s bid
decreases j’s VCG payment, and (2) i’s and j’s payments have the same sign as in the
parametrized form of the VN payments.

Bidder Bundle ki Bid bi VCG VN Bid b′i VCG’ VN’
1 {A} 5 2 37/12 5 1 36/12
2 {B} 5 0 16/12 5 0 18/12
3 {C} 4 1 37/12 5 1 36/12
4 {D} 1 0 7/12 1 0 6/12
5 {E} 1 0 7/12 1 0 6/12
6 {F} 1 0 10/12 1 0 12/12
7 {A,B,D} 5 5
8 {B,C,E} 5 5
9 {A,C, F} 7 7
10 {D,E, F} 2 2
11 {B,C,D} 3 5

Table 4: Overbidding for 11 bidders and 6 winners, found by Bosshard et al. [11]. By increasing their
bid, bidder 3 decreases their payment.

6. Over-bidding for Non-decreasing Payment Rules

In this section, we show that no over-bidding is profitable for non-decreasing payment
rules, which proves a conjecture by Bosshard et al. [11].

6.1. Over-bidding on Winning Bids

As long as an over-bid does not change the winner allocation compared to the truthful
bid, it will not increase the bidders utility. This follows directly from the definition of the
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non-decreasing payment rules: Increasing a bid will not decrease the payment. However,
the allocated value stays the same since the allocation does not change.

Since any efficient allocation remains efficient when increasing a winning bid, over-
bidding when the truthful bid is already a winning bid is not profitable. This implies
the following lemma.

Lemma 6.1. Consider an SMCA with a core-selecting, non-decreasing payment rule.
If for a bidder i and fixed bids of the other bidders b−i, the truthful bid vi is a winning
bid, then overbidding does not increase bidder i’s utility.

6.2. Over-bidding on Losing Bids

A losing bid has zero utility due to voluntary participation, i.e., no bundle is acquired,
no value is gained, and the payment is zero. A losing over-bid equally results in zero
utility. Thus, a profitable over-bidding strategy that increases the utility must result in
winning the auction.

The following lemma shows that it is not possible to gain a positive utility by over-
bidding, where the truthful bid is losing.

Lemma 6.2. Consider an SMCA with a core-selecting, non-decreasing payment rule.
If for a bidder i and fixed bids of the other bidders b−i, the truthful bid vi is a losing
bid, then over-bidding is not profitable for bidder i.

Proof. Consider a bidder i who loses when bidding their truthful private value vi, but
wins with an overbid boi > vi. We write the truthful and the over-bidding bid profile as
bv = (vi, b−i) and bo = (boi , b−i), respectively. Furthermore, let xv and xo denote the
efficient allocations for the bidding profiles bv and bo, respectively. Note that i /∈ xv,
but i ∈ xo.

The fact that bidder i loses with bid vi implies that W (bv, xo) < W (bv, xv). Let
ε = W (bv, xv)−W (bv, xo). We choose boi = vi + ε as the smallest overbid, such that xo

is an efficient allocation. Then W (bo, xo) = W (bv, xv). Note that it suffices to consider
this overbid since any further increase of the bid beyond this value decreases bidder i’s
utility according to Lemma 6.1.

We calculate the VCG payment of bidder i for the bidding profile bo. The maximum
reported social welfare without bidder i equals W (bo, xv) = W (bv, xv) since bidder i
loses in xv. Furthermore, the total reported social welfare of xo excluding i equals
W (bo, xo)− boi . Therefore,

pVi (bo, xo) = W (bv, xv)− (W (bo, xo)− boi ) = boi .

As mentioned in Section 4, a core constraint of the form pi(b
o, xo) ≥ pVi (bo, xo) exists

for every bidder. But this means that bidder i’s payment is at least boi > vi resulting in
a negative utility for bidder i.

Together Lemmas 6.1 and 6.2 imply the desired result.

Theorem 6.3. In an SMCA with a core-selecting, non-decreasing payment rule, over-
bidding strategy is always weakly dominated by truthful bidding in any Nash equilibrium.

7. Non-decreasing Property of Other Core-Selecting Payment Rules

We showed in the previous section, that the non-decreasing property ensures that
bidders cannot profit from overbidding. However, until now, we have a limited under-
standing of which payment rules are non-decreasing. In this section, we investigate two
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common core-selecting payment rules, namely the proxy and the proportional payments,
and examine their non-decreasing properties.

Bosshard et al. argued that the proxy and the proportional payments are non-
decreasing for multi-minded CAs [11]. However, a counterexample with two bidders
and two items A and B exists: Assume b1(A) = 12, b1(AB) = 18 and b2(B) = 9. Under
the proportional rule we have that p1 = 8 and p2 = 6. However, if we increase b1(A) to
15, we get p1 = 5 and p2 = 3. This counterexample occurs because the core constraint
for bidder 2 has been lowered by the increase of b1(A). In this section, we correct the
proof of Proposition 2 in [11] for single-minded CAs.

Lemma 7.1. The proxy payment function and the proportional payment function are
non-decreasing for SMCA.

Proof. Consider a winning bidder i increasing their bid from bi to b′i. Because the
payment point and the all core constraints move continuously in Rn with an increasing
bid, we can always find a sequence of bids b0i , b

1
i , . . . , b

l
i, such that bi = b0i < b1i < . . . <

bli = b′i and for the corresponding payment points pk and pk+1 of any two consecutive
bids bki and bk+1

i the same core constraints are active.
Now consider two payment points pk and pk+1. Assume there exists an active core

constraint (CC) generated by the set of bidders L, such that i /∈ L. Then increasing i’s
bid from bki to bk+1

i does not change the right side of (CC) which is sufficient for the
non-decreasing proof in [11]:

Assume that pk+1
i < pki . Because bki < bk+1

i this means that the α in the proportional
payment’s definition must be smaller after the bid increase. In particular, since all other
bids are unchanged, this implies pk+1

j < pkj for all j 6= i. But this contradicts the fact
that the sum of payments in the active core constraint does not change. Hence, we must
have pk+1

i ≥ pki .
The argument above also holds for the proxy payment rule, since here too pk+1

i < pki
with bki < bk+1

i implies a strictly smaller α after the bid increase. For the proxy payment,
this implies pk+1

j ≤ pkj for all j 6= i which again yields a contradiction, since pi is part
of the left side of (CC).

It now remains to consider the case where i ∈ L for all core constraints being active
at pk and pk+1. For each such constraint (CC), consider the efficient allocation X(bL)
in the auction with only the bids of bidders in L, and i bidding bki . Similarly, let X(b′L)
be the efficient allocation when i bids bk+1

i . Since bki < bk+1
i , three scenarios can occur:

1st case. X(bL)i = 0 and X(b′L)i = 0. Then the right side of (CC) decreases by
bk+1
i − bki . However, there exists another core constraint (CC−i) which is generated by

the set L \ {i}, and is given by∑
j∈N\L

pj(b, x) + pki ≥W (b,X(bL))− (W (b, xL)− bki ).

The fact that pki ≤ bki , together with (CC) being active, i.e.∑
j∈N\L

pj(b, x) = W (b,X(bL))−W (b, xL),

imply that equality must hold in (CC−i). The same is true for pk+1
i . Therefore, (CC−i)

is active for both pk and pk+1. Furthermore, since i /∈ L \ {i} and (CC−i) includes pi in
its left side, the non-decreasing property follows as argued previously.
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2nd case. X(bL)i = 0 and X(b′L)i = 1. Then a switching point b∗i with bki ≤ b∗i ≤ bk+1
i

exists, such that i is part of one (but not all) efficient allocations of L with bid b∗i , but
i is not in any efficient allocation with bids smaller than b∗i . Then we can consider the
increases from bki to b∗i and b∗i to bk+1

i separately. For the bki to b∗i , the arguments from
the first case apply, while the third case (see below) covers the increase b∗i to bk+1

i .

3rd case. X(bL)i = 1 and X(b′L)i = 1. Then (CC) is not affected by increasing i’s bid
from bki to bk+1

i . (Note that this argument does not hold in the general multi-minded
setting, where the proportional payment has shown to not be non-decreasing.)

We only arrive at this point of the proof, if for all active core constraints, case three
applies, which means no active core constraints is changed by the bid increase. In
particular, this means that, for both the proportional and proxy payment, α does not
decrease with the bid increase. Together with bki < bk+1

i this implies that i’s payment
does not decrease.

Finally, since i’s payment does not decrease between any bki to bk+1
i , it also does not

decrease between bi and b′i.

8. Conclusion

Our research has shed light on the interconnections between core constraints and
payment mechanisms for CAs. In specific regard to single-minded CAs, we demonstrate
how the presence of a single effective core constraint fortifies the VN payment rule to
sustain its non-decreasing property. This, in turn, promotes fair competitive practices
among bidders.

In an effort to make these complex relationships more accessible, we have introduced
the conflict graph representation for SMCAs. This model serves as an analytical tool
from which we have been able to identify sufficient conditions for the existence of a
single effective core constraint in the auction. This has broader implications, especially
in auction designs that aim to balance efficiency and fairness. As future work in this
direction, proving or disproving the conjecture on the minimal overbidding examples
remains.

As a final point, we have established that over-bidding will not produce favorable
outcomes under any Nash equilibrium settings when the auction is governed by non-
decreasing payment rules.
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