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Abstract—Human mobility and resulting contacts are driven
by intention, co-location, and social relations between people.
Based on wireless contact traces (Bluetooth, Wifi), we aim
at characterizing the structure in human contacts. Instead of
investigating the microscopic properties of contacts (e.g., duration
and occurrence distributions), we are more interested in a macro-
scopic view of mobility that can more easily capture the range of
human inter-relations. We hence turn to community detection.
However, since these algorithms require one-dimensional tie
strength metrics, we present a method to map contacts features
(evolving with time) to a scalar feature value. We then analyze
the outcome of the community detection by looking at inter- and
intra-community ties. This provides interesting insights on the
diversity of human inter-relations, which have applications to
diffusion processes, for example.

I. INTRODUCTION

The rapid proliferation of smartphones with wireless net-
working capabilities (Bluetooth, Wifi) creates ample oppor-
tunity for opportunistic networks where devices connect to
other devices in proximity (when within radio range), “on
the fly”, to exchange or spread information. This is a novel
networking paradigm that is envisioned to co-exist with (and
often complement) existing broadband wireless technologies
(e.g. cellular, WiFi, etc.). Since actions of interest can only
occur during a wireless contact, contacts and their statistical
properties become of key importance in the design and per-
formance evaluation of such opportunistic networks. To this
end, a number of efforts have been made recently to collect
relevant mobility data and analyze contact patterns; this is
done either implicitly, by looking at the access points and
base stations users are associated with over time in WiFi or
cellular networks [1], or explicitly with experiments designed
to log peer contacts (e.g. via Bluetooth) [2], [3], [4]. The
majority of these traces reveal a considerable heterogeneity in
contact patterns, but also significant structure and (statistical)
predictability of these patterns e.g. due to time-of-day period-
icity, location preference, etc. Nevertheless, the vast majority
of trace analysis research in networking has focused on the
inter-contact and contact duration statistics [5], [6], which are
important for network performance analysis but limits mobility
analysis to a microscopic view.

Recently, researchers have been looking at mobility at
large-scale [1], its predictability [7], and spatial connectivity
properties [8]. Human mobility and resulting contacts are
actually driven by intention, co-location, and social relations
between nodes (e.g. friends, colleagues). The latter influ-
ences someone to decide the destination (and often time)
of a mobility trip; location on the other hand dictates the
path, as well as (unknown) nodes encountered regularly at
preferred/home locations (“familiar strangers”) or occasionally
(“random encounters”). This creates a rather intricate contact

structure that is not readily observable or usable at contact
and inter-contact pattern levels. To this end, a more abstract,
macroscopic view of mobility is needed that can more easily
capture the range of node inter-relations.

In this abstract, we present a detailed study and comparison
of the community structure of 3 mobility traces, namely the
Haggle trace [2], the MIT Reality Mining trace [3], and the
ETH trace [4]. We apply a state of the art community detection
algorithm [9] to study the nature of inter-community links
(e.g. bridging links vs. bridging nodes vs. community overlap,
etc.), and the inter- and intra-community weight distributions
in order to highlight the diversity of human relations. To our
best knowledge, this is the first in depth comparative study of
these properties.

In our context, nodes and contacts can be represented on
a contact graph, where a link between two nodes indicates a
measured “strong” relationship between nodes (e.g. frequent
meetings, or a recent meeting [10]) through its existence
(binary graph) or an edge weight (weighted graph). A variety
of metrics and algorithms could then be used to characterize
node importance on this graph, such as degree centrality,
PageRank, etc., as well as to identify similar nodes through
(implicit or explicit) community detection. Yet, the actual “so-
cial properties” of mobility traces, such as the modularity of
communities and the distribution of inter- and intra-community
weights, have not received the same amount of attention. These
properties are particularly important for two reasons: First,
they allow us to better understand the underlying structure gov-
erning human mobility and facilitate the design of improved
mobility models. Second, they give hints on the impact of the
social structure on the dynamics of diffusion processes e.g., in
terms of delays but also in terms of capacity (or conductance).

The outline of this abstract is the following. In Section II,
we describe the contact data used for our analysis and how
we pre-process them by mapping and aggregating pair-wise
contacts (i.e., different characteristics evolving over time) to a
scalar value suited for community detection algorithms with
weighted edges. In Section III, we analyze the outcome of the
community detection algorithm. Eventually, we conclude by
discussing ongoing work in Section IV.

II. DATA DESCRIPTION

We start by describing the data used for our analysis in
Section II-A. We then describe a metric of tie strength based
on the principal component of contact frequency and duration
(Section II-B).

A. Contact Traces
We define a contact as the period of time during which

two devices are within radio transmission range of each other.



MIT INFO ETH
Scale and 97 campus stud- 41 conference 20 lab stud-
context ents and staff participants ents and staff
Period 9 months 3 days 5 days
Periodicity 300s (Bluetooth) 120s (Bluetooth) 0.5s (WiFi)
# Contacts

Total 100′000 22′459 23′000
Per dev. 1′030 547 1′150

TABLE I
CONTACT TRACES CHARACTERISTICS.

A contact contains of the information about the two nodes
involved, a starting time and a duration. In a opportunistic
network, such a contact is an opportunity to exchange or
spread information.

In order to cover a broad range of mobility scenarios with
our analysis, we use different measured contact data: the
MIT Reality Mining [3] (MIT), the iMotes Infocom 2005
(INFO) [2] and the ETH [4] (ETH). Their characteristics are
summarized in Table I. Note that in the MIT trace, despite
its long duration, a lot of short contacts were supposedly
not logged due to its time granularity of 5 minutes. For our
evaluation we cut the trace at both ends and used 100′000
contacts reported between September 2004 and March 2005.
Note that this time period contains holidays and semester
breaks and thus still captures varying user behavior. The ETH
trace contains more than 23′000 reported contacts and is
unique in terms of time granularity and reliability. Although
its measurement period spans a considerably shorter time than
MIT, we have on average more than 1000 reported contacts
per device. This is roughly the number of contacts per device
we also have for the MIT trace.

B. Tie Strength
To assess the strength of the tie between two nodes in a con-

tact graph different metrics such as the age of last contact [11],
contact frequency [12], [13] or aggregate contact duration [13]
have been used (i.e., in DTN routing protocols). Here we con-
sider two features: contact frequency1 and aggregate contact
duration. In a first step, we assign each pair of nodes {i, j}
a two-dimensional feature vector zi,j = (fi,j , di,j), where fi,j
is the number of contacts in the trace between nodes i and j,
and di,j is the sum of the durations of all contacts between the
two nodes – both dimensions centered (zero empirical mean)
and normalized to their respective standard deviation.

Figure 1 shows the scatter plots of the number of contacts
vs. the total contact duration (pair-wise) for the MIT and INFO
traces. They clearly show a high correlation between both
features.

Since state-of-the-art community detection requires one-
dimensional tie strength metrics, we transform the two-
dimensional feature vector to a scalar feature value: We use the
principal component (e.g., [14]), i.e., the direction in which
the data vector Z has the largest variance the direction of the
Eigenvector e1 with the largest corresponding Eigenvalue. We
define the tie strength between i and j as the projection of
zi,j on the principal component, wi,j = e1

T zi,j+wmin, where
we add wmin – the smallest tie strength of all node pairs – in

1Note that contact age – assuming a stationary contact process – can be
considered an approximation of contact frequency, therefor we do not consider
it here explicitly.
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Fig. 1. Scatter-plots of number of contacts vs. total contact duration over the whole duration of the trace.
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Fig. 1. Scatter-plots of number of contacts vs. total contact duration over the whole duration of the trace.

(b) INFO

Fig. 1. Scatter-plots of number of contacts vs. total contact duration over
the whole duration of the traces.

order to have positive tie strengths. With this metric we are
able to combine the frequency and duration in a scalar value
that naturally represents the heterogeneity of node pairs. We
can now define the weight matrix W with the respective wi,j .

Note that with this aggregation of the contact data, we loose
the timing information about contacts. We are not so much
interested in the actual timing of the contacts, but rather try
to capture the underlying structures that govern mobility.

The number of communities and the resulting modularity is
given for each contact trace in Table II.

III. COMMUNITY STRUCTURE ANALYSIS

We will now focus on the community structure of human
contacts contacts. Using the Louvain as well as Spectral
community detection algorithm and the Newman modularity
metric, we will first (Section III-A) assess how strongly modu-
lar contacts are. In a second step (Section III-B), we will focus
on the the conductance between the communities, and assess
how strongly communities are connected to other communities
and how the conductance between them is distributed (i.e.,
bridging links, bridging nodes or hierarchical overlap).

A. Intra-Community Ties
In order to assess the modularity of a given partition of

nodes to communities we compute the widely used Q function
as introduced by Newman [15]. The Q function

Q =
1

2m

∑
ij

(
wi,j −

kikj
2m

)
δ(ci, cj),

where ki =
∑

j wi,j is the strength of node i and m =
1
2

∑
j kj is the total weight in the network. ci denotes the

community of node i thus, the Kronecker delta function
δ(ci, cj) is one if nodes i and j share the community and
zero otherwise. Q = 0 is the expected quality of a random
community assignment and [15] reports modularities of above
Q = 0.3 for different networks (social, biological, technical,
etc.) for state-of-the-art community detection algorithms2.

In Table II we present some statistics of the trace networks’
community structure as found by Louvain. A first thing to note
is that the two clustering algorithms find different communities
but with similar modularity. In general the modularity of the
Louvain communities is slightly higher communities than the
Spectral. In the rest of the paper, we will present all results
for the Louvain algorithm, though, the results hold also for

2Note that the quality of a community assignment is a function of (i) the
network, since it can be more structured or less, and (ii), the community
detection algorithm, since it can find a good community assignment or not.
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Trace/Model # Comm. Q
MIT 5 0.49
ETH 2 0.23
INFO 6 0.12

TABLE II
NUMBER OF COMMUNITIES AND MODULARITY (Q) OF CONTACT TRACES

USING THE LOUVAIN ALGORITHM.
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Fig. 2. Ranked Community Internal Weights (per Community and per Node).

the Spectral clustering. Second, the modularity varies broadly
among the traces. We observe a strongly modular MIT trace,
lower modularity in the ETH case and very low modularity in
the INFO case. Similar values for other community detection
algorithms (K-Clique and Newman), different traces and other
strength metric (total contact duration) have already been
reported in [13], thus we confirm these findings as a first result.

To find out more about the insides of communities we
look at the distribution of intra-community weight. Figure 2
shows some typical representatives of community-internal tie
strengths, ranked over all node pairs of a community, as well
as per node. We observe that the weights are strongly skewed.
A community can thus not be thought of as a homogeneous
group of strongly connected nodes (like a mesh). Instead, there
is strong heterogeneity even within a community. This obser-
vation is consistent throughout all traces and all communities
(only few are shown in Figure 2 due to space limitations).

B. Inter-Community Ties

Comm.
Index

1 2 3 4 5

1 20.5% 1.0% 0.5% 0.1% 0.01%
2 1.0% 31.8% 4.2% 2.9% 0.2%
3 0.5% 4.2% 13.4% 2.7% 0.2%
4 0.1% 2.9% 2.7% 8.9% 0.1%
5 0.01% 0.2% 0.2% 0.1% 2.1%

TABLE III
PERCENTAGES OF TOTAL WEIGHT WITHIN AND BETWEEN COMMUNITIES

(MIT TRACE). ALL WEIGHTS SUM TO 100% AND INTER-COMMUNITY
WEIGHTS ARE HALVES BETWEEN TIED COMMUNITIES.

We now change our focus on the interface between the
communities. Table III shows an example matrix for the MIT
trace of how the total weight in the network is distributed
within the communities and between the communities. In
the matrix we see that the inter-connections of communities
are weak in many cases. For instance, communities 1 and 2
together contain more than 50% of the weights and 50% of
the nodes. However, between them there is only 1% of the
weight.

IV. DISCUSSION AND CONCLUSIONS

The results presented herein are preliminary investigations
of using community detection algorithms to highlight the
community structure of contact traces. Actually, it does not
only matter how much of the weight falls between two
communities, but also how this weight is distributed. Thus,
we are currently aiming at identifying the type of interface as
either (i) bridging links (people linked to one specific person
in another community), (ii) bridging nodes (people part of two
communities i.e., overlap), or (iii) hierarchical communities.
We characterize these three types in the following.

Note that certain community detection algorithms inherently
identify some of these interfaces. For instance the K-Clique
algorithm [16] allows nodes to be in more than one community
and thus identifies bridging nodes. Similarly, a class of algo-
rithms such as Newman Girvan [17] is based on a hierarchical
tree (dendrogram) and thus inherently identifies hierarchies.
However, neither of them provides a distinction between all
the three types of inter-connection. We are hence currently
combining the peculiar features of existing algorithms at once.
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