
Halting the Solana Blockchain with Epsilon Stake
Quentin Kniep

ETH Zurich
Switzerland

qkniep@ethz.ch

Fabian Schaich
ETH Zurich
Switzerland

schaicfa@ethz.ch

Jakub Sliwinski
ETH Zurich
Switzerland

jsliwinski@ethz.ch

Roger Wattenhofer
ETH Zurich
Switzerland

wattenhofer@ethz.ch

ABSTRACT
Solana is a blockchain protocol that has gained significant attention
in the cryptocurrency community. This work examines Solana’s
consensus protocol and its reference implementation.

In this paper we try to get an understanding of the Solana pro-
tocol. However, this is not so easy because the publicly available
resources are insufficient to specify the details of the protocol. More-
over, the implementation has deviated in undocumented ways from
the available protocol design description. Thus the consensus rules
and their implied security properties remain unclear.

We evaluate a number of experimental scenarios in a local Solana
testnet. These tests seem to confirm our basic understanding that
Solana does not fully achieve consensus. In this paper we show how
a single malicious validator, once elected as leader, might be able
to halt the Solana blockchain. We also observe some inconsistent
behavior, which is not readily explained by any of the consensus
rules we are aware of.

CCS CONCEPTS
• Security and privacy→ Distributed systems security.
ACM Reference Format:
Quentin Kniep, Fabian Schaich, Jakub Sliwinski, and Roger Wattenhofer.
2024. Halting the Solana Blockchain with Epsilon Stake. In 25th International
Conference on Distributed Computing and Networking (ICDCN ’24), January
4–7, 2024, Chennai, India. ACM, New York, NY, USA, 10 pages. https://doi.
org/10.1145/3631461.3631553

1 INTRODUCTION
Solana [19] is one of the largest blockchain systems by many met-
rics, including active addresses, daily transactions, and the multi-
billion dollar market capitalization of its native SOL token.1 Its
popularity and valuation certainly suggest widespread trust by
users, developers and investors alike.

1https://app.artemis.xyz/comparables

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ICDCN ’24, January 4–7, 2024, Chennai, India
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-1673-7/24/01. . . $15.00
https://doi.org/10.1145/3631461.3631553

So far there has however been virtually no academic research
analyzing the underlying consensus protocol. This is in contrast
to other popular blockchains, e.g., Bitcoin [11], Ethereum [16], or
Algorand [8], which have received a lot of scrutiny from academic
researchers. The protocol is based on a novel mechanism for Sybil
resistance, which the authors call proof-of-history (PoH). It can be
considered a hybrid between the widely-adopted proof-of-stake
and proof-of-work mechanisms. At its core is a hash chain that is
maintained by all validators in order to verifiably split time into
slots for leader election.

Interestingly, the project made news headlines multiple times
with long outages of the entire blockchain, most of which required
manual intervention to get the blockchain running again.2 Are these
events expected hiccups in the ongoing development process, or
do they suggest something more fundamental about the properties
of the underlying consensus protocol?

In a recent write-up, Victor Shoup [14] doubts the advantages
of proof-of-history. Here, however, we will focus on the consensus
rules in place to achieve consistency and agreement, such as the
fork choice rules for resolving temporary inconsistencies.

Our Contribution
Our main goal is to understand and analyze the Solana protocol
and its consensus rules. For understanding the architecture, in-
terpreting the experimental outcomes, and to inform the setup of
our experiments, we rely on sources including not only the official
whitepaper [19], but also the official documentation3 and reference
implementation4 of the project. Finally, we also relied on discus-
sions between project maintainers and validator administrators
from the project’s official communities on Reddit5 and Discord.6

We experimentally evaluate interesting scenarios based on our
understanding of Solana’s consensus rules in a local testnet setup,
which uses their official Rust SDK. The implementation of our
custom scenarios is constructed based on other tests written by
Solana core developers and uses an internal testing framework from
their open source codebase. Specifically, we explore scenarios where
a single malicious leader introduces multiple forks and analyze
whether the honest validators can recover and reach consensus.

2https://status.solana.com/history
3https://docs.solana.com
4https://github.com/solana-labs/solana
5https://www.reddit.com/r/solana
6https://discord.com/invite/kBbATFA7PW

https://doi.org/10.1145/3631461.3631553
https://doi.org/10.1145/3631461.3631553
https://doi.org/10.1145/3631461.3631553

ICDCN ’24, January 4–7, 2024, Chennai, India Kniep, et al.

Our results confirm our suspicions that there are scenarios where
a fork remains permanent. They also show some strong similarities
to real-world outages of the Solana mainnet, including one which
happened during our work on this project [15]. We thus identify
scenarios in which an adversary with almost no stake may be
able to, once elected as leader, cause the validators of the network
to diverge, creating a permanent chain fork. Further, we identify
scenarios where we cannot explain the behavior of the validators
based on our understanding of the consensus rules.

2 PRELIMINARIES
In this section, we take a look at the key components of the Solana
architecture.

2.1 Proof-of-History
The concept of proof-of-history uses a hash chain to introduce a
global time measurement. This hash chain is created by continually
using the output of the previous hash iteration as input to a cryp-
tographic hash function. Because the hash rate is limited by the
fastest available hardware, there is a global upper bound to the hash
rate. It is also possible for a node to include additional information,
such as another hash of data, to prove that this data was known
before the corresponding hash chain element. This hash chain can
be used by any validator locally as an approximation of a global
clock. Thus, every validator knows approximately when it is their
time to produce blocks according to the schedule, and they can
prove to other validators that at least the required amount of time
has passed by providing (part of) the hash chain.

Unfortunately, the local hashing is only an imprecise measure of
time since the hash rates will vary from validator to validator and
over time. This is due to differing hardware and software between
validators and general inaccuracies introduced by scheduling of
other processes and threads on the machine at the same time, es-
pecially during periods of high load. Furthermore, it introduces
additional power consumption as every validator needs to be hash-
ing all the time [14]. The latter is rather ironic if one thinks about
it as combining the proof-of-stake mechanism and its supposedly
low power consumption with a mechanism that forces all nodes to
be hashing constantly to keep their clock up to date, which almost
resembles a proof-of-work system.

2.2 Time Units in Solana
The time in a network is broken down into several units, starting
at the smallest time unit we have:
• Hash: Solana’s system parameters are set with the expecta-
tion that the hash rate of each network participant is around
2,000,000 hashes per second, which was measured to be the
hash rate of an “Intel Xeon e5-2520 v4”.7
• Tick/Slot: One tick is 12,500 hashes and serves as a times-
tamp entry in a ledger. At the assumed network hash rate
this happens every 400 ms. This also is the time window in
which a block should be produced, i.e., for which transac-
tions need to be considered and put in a block by the current
leader (according to the leader schedule).

7https://github.com/solana-labs/solana/blob/master/sdk/program/src/clock.rs

• Epoch: Based on the same assumption on hash rate, an
epoch takes about two days (it is defined as 432,000 slots).

2.3 Validators
A node actively participating in the network with voting power
proportional to its staked funds is called a validator. Validators are
responsible for forwarding any received user transactions to the
current leader, i.e., the block producer of the current slot, and for
voting on valid blocks submitted by this leader.

Voting power is proportional to the stake that is delegated to a
validator. A validator may also abstain from voting during a slot
if (a) no block was received, (b) a lockout timer is pending, or (c) it
disagrees with the current block as it is on another fork. While a
validator does not receive any information from the current leader,
it has to continue its hash chain as it needs to prove to other valida-
tors that in the time passed it spent time waiting for the information.
To incentivize honest behavior, every vote on a fork is connected
with a commitment which is represented by a lockout timer re-
garding votes on other forks. The timers are stored in a stack data
structure and prevent the validator from voting on another fork for
the specified duration. Initially, when a validator votes on a fork,
a lockout timer of duration 2 slots is pushed to the stack. Every
lockout timer already present in the stack with equal duration, i.e.,
duration 2, gets doubled. This step is considered after each dou-
bling, meaning that if a lockout timer gets doubled to a duration
of 4 slots and there is already a lockout timer with a duration of
4 slots the latter gets doubled as well, and so on. When a lockout
timer expires, a validator then, if compliant with other timers, can
vote on another fork starting from the block which was being voted
on. Thus, if a validator wishes to switch forks because they, e.g.,
observe a majority switching forks, it can abstain from voting to
decrease its timers and not introduce new ones. If a voted block lies
more than 32 votes back, i.e., the lockout timer on this block would
be 232 slots, the block is considered finalized by the validator, i.e., is
never being rolled back. This and the vote of a supermajority (> 2

3
stake) on a specific slot are the only two ways to finalize a block.
In addition to forwarding transactions, validating and voting, val-
idators should also pass messages of events in the network such as
new nodes joining.

2.4 Leader
A Leader is a validator whose task is to produce blocks for certain
slots. The slots are assigned at every epoch start in a so-called leader
schedule. When defining a new leader schedule validators get placed
in a weighted index according to their stake. The individual stake
placed in the index represents the probability of being sampled
with respect to the sum of the stakes. So, for each slot in the leader
schedule the probability that validator 𝑖 ∈ {1, 2, . . . , 𝑛} with stake𝑖
will be selected as leader is:

Pr[𝑖] = stake𝑖∑𝑛
𝑗=1 stake𝑗

where 𝑛 is the total number of validators in the active set and
𝑠𝑡𝑎𝑘𝑒1, . . . , 𝑠𝑡𝑎𝑘𝑒𝑛 are their respective stake amounts.

Simply being a validator with non-zero stake is not sufficient to
have a probability of being picked in the schedule as only validators
are considered which are in the active set. Only validators who have

Halting the Solana Blockchain with Epsilon Stake ICDCN ’24, January 4–7, 2024, Chennai, India

voted at least once in a cluster-defined time window are placed in
the active set.

When selected as a leader in the schedule, a validator is in charge
to produce blocks for a cluster-defined number of consecutive slots
(mainnet: 4 slots). An entry of a block built by a leader contains the
following information:

• A unique ID which is the hash of the Entry before it.
• The hash of the transactions within it.
• The number of hashes performed since the previous entry.

3 CONSENSUS RULES
In this section we explain Solana’s consensus protocol: First as it is
explained in the original whitepaper and then how we understand
it based on the other resources and our experiments in Section 4.

3.1 Claims from Solana Whitepaper
In 2018, Yakovenko released the Solana whitepaper [19]. It intro-
duces a new consensus mechanism called Proof-of-History, which
is a variant of Proof-of-Stake and describes Solana, a blockchain
architecture based on this mechanism. The most important claims
are summarized below with additional comments if needed due to
more recent adaptations of the real implementation:

• Proof-of-History combined with Proof-of-Stake can reduce
messaging overhead to “[...] sub-second finality times”.
• Proof-of-History provides a verifiable passage of time, i.e.,
serves as a verifiable delay function (VDF) [2]. This allows for
every node in the network to rely on the recorded passage
of time without trust.
– Although Proof-of-History provides a rough measurement
for the passage of time, it is technically not a VDF because
verification requires the same amount of computation as it
took to create the proof and is only faster when performed
in parallel [14].

• “In terms of CAP theorem, Consistency is almost always
picked over Availability in an event of a Partition”.
• Proof-of-History outputs can be re-computed and efficiently
verified by the other validators in parallel.
• Proof-of-History sequences can be extended with additional
inputs, e.g., hashes of other data, to serve as a timestamp.
• When using a collision resistant hash function with ap-
pended data it should be computationally impossible to pre-
compute any future values of the hash chain even with prior
knowledge of the events (but without their exact time of
insertion).
• Sent messages are signed by the individual validator or
leader.
• Proof-of-History “[...] provides some protection” against
long-range attacks by making it hard to produce a historical
record signed by an old private key. In the end, this would
require an attacker to have “[...] access to a faster processor
than the network is currently using”.
• New Proof-of-History generators, i.e., leaders, get voted and
selected on special occasions such as forks, runtime excep-
tions, and network timeouts.

– The concept of Proof-of-History generator got replaced
by leaders and their leader schedule which gets created
every epoch as described in Section 2.4.

• Nothing-at-stake problem is solved by slashing validators,
i.e., taking (part of) their staked tokens. However, to this
date, slashing has not been implemented, and the current
implementation ensures that “[...] after a safety violation,
the network will halt” [7].
• To detect inattentive validators, invalid hashes should be
randomly injected to slash voting validators. Since slashing
itself has not been introduced yet, this feature has also not
yet been implemented.

3.2 Our Interpretation
The most important rules for consensus, which followed from our
experiment scenarios in Section 4 are:
• A block is finalized when (a) it has received votes on at least
32 slots later on the same fork, or (b) any following slot on
the same fork receives a supermajority (> 2

3) of votes.
• A competing fork is only considered for voting if it has > 38%
stake (this is called switch fork threshold).
• A duplicate version of a block (created by a rogue validator)
needs > 52% stake to be considered for voting (this is called
duplicate threshold).
• There seems to be an additional threshold at 61% (as men-
tioned in Section 4.2) for which three validators decide on a
middle validator’s fork if it has >61% stake. However, we did
not find a constant with this value in the implementation.

The switch fork and duplicate threshold follow from an accepted
proposal on Leader Duplicate Block Slashing which does not actually
implement slashing but lists several rules on when slashing should
be applied.8 (Note: Although in the proposal it says that the dupli-
cate threshold is the “[...] minimum percentage of stake that needs
to vote on a fork with version X of a duplicate slot, in order for that
fork to become votable.” the implementation uses the threshold as
an upper threshold for the case to ignore the fork, i.e., ≤ 52% stake
results in ignoring the fork. This already raises a problem, since
this threshold of 52% stake probably works if only two duplicates
occur but lacks functionality for more duplicates. With the risk of
Byzantine nodes, no liveness can be guaranteed which leads to a vi-
olation regarding consensus. Even worse is that sharing duplicates
can be done by a single leader in its leader schedule making it even
easier to act maliciously.

Possibly, a leader could share multiple blocks in the same slot. If
we now divide the honest validator set into groups of ≤ 38% stake
each and let the group see pairwise different versions of the block
for the same slot before letting them see the others, the network
would stall since none of the forks reaches a switch fork threshold,
meaning none of them gets considered as a valid fork once the
duplicate blocks are being observed.

An adversary could force such a scenario to happen by just
having their validator selected as leader for a single slot. Since
Solana does not seem to have a minimum stake requirement for
validators, this would allow denial-of-service attacks on the whole
network by an adversary with just epsilon stake.
8https://github.com/solana-labs/solana/pull/16127

ICDCN ’24, January 4–7, 2024, Chennai, India Kniep, et al.

4 EXPERIMENTS
For testing and simulating the implementation behavior, the module
LocalCluster was used, which is part of the Solana Rust SDK.9 It
allows setting up a local test network with different validators and
is mainly used by existing test cases in the Solana codebase for
benchmarking and observing voting behavior. To set up a local
cluster, a ClusterConfig struct is needed, which is defined in the
same module. In the tests, the cluster configuration was mostly
set up identically to internal integration tests, with the following
properties explicitly being set:
• validator_configs: The individual configuration per val-
idator. This mostly remained the default implementation,
except for a modified leader schedule, which we explicitly
set for all validators according to each scenario.
• validator_keys: A list of tuples containing the key pair
of a validator and a boolean indicating its inclusion in the
genesis block. The latter of which is always set to true.
• node_stakes: The stake of all validators in the network. This
is calculated by: test case stake · 1010 Lamports, i.e., 10 SOL.
• ticks_per_slot: The number of ticks per slot. Implicitly de-
fines the number of hashes per slot. This value was changed
according to the tested scenario and varied between 512–
2048 slots (default is 64 slots).
• skip_warmup_slots: Whether to skip the usually required
“warm up” period before allocated stakes of validators be-
come active. This was always set to true (the default behavior
for integration tests).

All the other attributes of the struct were left to their default
values. To set up a common state before observing behavior, the
tests relied on copying entire ledgers to other validators and re-
setting their votes to let them build their state with a given block
store. Hence, after running individual validators first to a specific
slot number and copying their state according to a scenario, all
the tests then continued by restarting all relevant validators in the
local cluster and observing their behavior. In order to keep track
of the states, each block store of each validator is saved to a text
document every time a new vote is observed or after a pre-defined
time interval has passed. There is a limit after which a test case got
aborted if no new votes were seen (default: 30 s). These documents
then allow to analyze the different states of the validators after a
specified number of slots while running the test cases.

All experiments were conducted on a commit that was released
on the 19th of September 2022.10 The test cases were run on a
personal computer with an Intel Core i7-8700 and 25 GB of RAM.

4.1 Duplicate Slot
In this scenario the behavior of a cluster of three validators receiving
three different versions of a block for the same slot, i.e., introducing
three duplicates was observed.

A validator with epsilon stake, hereinafter referred to as dummy
validator, was used, which was in charge of producing blocks for
the first four slots. In addition, three more validators were used on
which the resulting voting behavior was observed, by copying an
individual state from the dummy. To reduce the number of moving
9https://github.com/solana-labs/solana/tree/master/sdk
10https://github.com/solana-labs/solana/commit/9f097301df4395557e9d84212d8ddf2d4c703619

Figure 1: Initial state of the Duplicate Slot scenario. The
blocks in slot 3 are three conflicting versions of the same
block, all produced by correct leader (the dummy validator).

Slots 0–3 4–7 8–11 12–15 16–19 · · · 48-51
Leader D 1 2 3 1 · · · 3

Table 1: Leader schedule for the Duplicate Slot scenario,
where D indicates the dummy validator.

parts in our experiments the leader schedule was fixed beforehand,
as shown in Table 1.

The dummy validator was started and left running until its block
for slot 3 was observed. Afterward, all blocks in slots > 3 were
purged before copying the complete ledger to the first validator
without the votes of the Dummy. Then this step was repeated for
the second and third validators by removing the block in slot 3
and all votes of the Dummy and letting it vote and produce a new
block with a different block hash for slot 3 again. After the Dummy
produced all three duplicates for slot 3, it is terminated and no
longer participates in voting. This leaves us with an initial state for
the validators as shown in Figure 1.

We divide the results of this analysis into the different experi-
ments from Table 2 with their varying stake distributions.
• Test 1 (33.3%, 33.3%, 33.3%):
Although a case with exactly equal stakes is unrealistic, it can
answer the question whether there are additional consensus
rules involved when the mechanism cannot rely on stake
majorities. Furthermore, in this case, all forks are under the
duplicate threshold, meaning voting on another fork should
not be possible once the duplicate is noticed. Running this
experiment, we always make the same observation: Valida-
tor 1 votes up to slot 7 while validators 2 and 3 stop voting
at slot 3.
This outcome can be interpreted in the following way:
– Validator 1: Since validator 1 is the first to be restarted, it
does not immediately see the duplicate block version in
slot 3 and continues on its schedule range from slot 4 to 7
by directly appending blocks on its version of the block
in slot 3.

Halting the Solana Blockchain with Epsilon Stake ICDCN ’24, January 4–7, 2024, Chennai, India

– Validators 2 and 3: cannot verify the blocks of validator
1 as they contain and voted on their own version of the
block in slot 3.

To find an explanation for the time, i.e., slot, for which the
validators stop voting the test was run again with the option
to print in a time interval rather than after a new observed
maximum vote which gives us the state of the block stores
shown in Figure 2. (Note: A block store of a validator can
only store one block per slot). The behavior of validators 2
and 3 follows from the duplicate observation rule mentioned
in Section 3.2. However, the validators might fork and keep
creating blocks, but be unable to switch back their votes.
Regarding the question of why validators 2 and 3 do not join
each other, a possible explanation is that neither of them
can vote on their own block, and hence they only see blocks
without votes and decide to create their own fork.
• Tests 2–4 ((90%, 5%, 5%) and rotations):
This case should show how the cluster behaves in a trivial
case. In all the cases, we get the result that the validators
decide on a single version of the block in slot 3, i.e., the
version of the highest-staked validator. The time when the
decision is made depends on the highest staked validator and
its restart time. Only after the highest staked validator has
been restarted, its vote on its version of the block in slot 3 is
visible to others and results in a change of the block in slot 3,
respectively.
A possible explanation for the behavior in test 2, is that
validator 1’s vote is immediately visible to the others since
they are being restarted after validator 1. Hence, in these
cases, the outcome is always the same: All validators adopt
the block version of validator 1 and join its fork right away.
In test 3, it seems as if the first validator often already pro-
duced blocks for its version, as it has not noticed a duplicate
yet. Although in all cases the validators decide on the block
version of validator 2 and join its fork, we have the following
different minor forks which are explained with the following
reasoning:
1) (Tests 3.1, 3.5) Fork [3] ← [4, 5]: Here the first validator

forks itself while producing the slots in its schedule range
from slot 4 to 8 and places a placeholder as block hash in
for slot 4. This occurs since the validators decide on the
block version of validator 2 while validator 1 was creating
block 4 forcing them to discard its progress and continue
on block 5 by directly appending it to the decided version
of the block in slot 3.

2) (Tests 3.2, 3.3) Fork [3] ← [4, 8]: If however validator 1
already produced its block in slot 4 based on its version of
the block in slot 3, validator 2 may see this initial version
of the block in slot 4 but obviously cannot verify it. In this
case, validator 2 will replace all blocks from validator 1
with a placeholder hash, even after validator 1 replaced its
block version in slot 3. Then, when it is validator 2’s turn
to produce blocks (slots 8–11), it will fork from slot 3 to
append its blocks, with validators 1 and 3 joining at slot 13
(lockout timer on the vote of block 4 for 8 slots) and slot 8,
respectively.

3) (Tests 3.2, 3.3, 3.4) Fork [4] ← [5, 6]: Here the same hap-
pens as in 1) but validator 1 places a placeholder in slot 5
rather than slot 4.

Here it is also worth mentioning that the behavior of valida-
tor 1 of changing the block hash of a block after the decision
of a unique block version of slot 3 is dangerous as it can
introduce confusion for validators if multiple block hashes
of the same slot get shared by the same validator.
In test 4, validator 3 is restarted last. It is in these cases
where the behavior differs the most although in all runs the
validators decide on the block version of validator 3. Here
possible explanations for the forks are as follows:
1) (Tests 4.1, 4.2, 4.5) Fork [3] ← [4, 8]: See 2) of test 3.
2) (Tests 4.1, 4.2, 4.4, 4.5) Fork [4] ← [5, 6]: See 3) of test 3.
3) (Tests 4.3, 4.4) Fork [3] ← [4, 12]: Here we have validators

1 and 2 joining each other while validator 3 creates a fork
in the first slot of its schedule from slot 12 to 15. A possible
explanation for the behavior of validator 3 is, that it could
not verify the block hash of slot 4 and hence all following
block hashes of the fork of validator 1 and 2, although
validator 1 changed its block hashes later to match the
chosen block version of slot 3 of validator 3.

4) (Run 4.3) Fork [4] ← [5, 9]: Here validator 2 actually
skipped the block in slot 8 and continued with block 9
directly.

5) (Run 4.3) Fork [5] ← [6, 7]: This fork appears probably
due to the decision on the block version occurring while
validator 1 is producing the block in slot 6, forcing it to
discard its progress and to continue on slot 7.

In run 4 we see the second validator stop voting at slot 11
while validators 1 and 3 join on the fork of the latter as shown
in Figure 3. This could be because validator 2 reduces its
lockout timers which got introduced by joining validator 1’s
fork and voting on the blocks in slots 3, 4, 6, 7, 8, 9, 10, and
11. Validator 2 possibly stops voting after its last leader slot
to already reduce its lockout timers to join validator 3 earlier.
It is however not entirely clear why validator 2 stops voting
while validator 3 continues if they have the same state of the
block store.
• Tests 5–10 ((67%, 16%, 17%), (66%, 17%, 17%) and rotations):
When comparing the outcomes of tests 5–7 with those of
tests 8–10 we see no different behavior which leads to the
conclusion that in this scenario a supermajority has no effect.
We also have the same forks occurring as in the previous
tests, these being:
1) (Tests 6.2, 6.4, 9.1) Fork [3] ← [4, 5]: See 1) of test 3.
2) (Tests 6.2, 6.5, 9.3, 10.1) Fork [3] ← [4, 8]: See 2) of test 3.
3) (Tests 6.2, 6.3, 6.5, 7.1, 7.5, 9.2-9.5, 10.1, 10.2) Fork [4] ←
[5, 6]: See 3) of test 3.

4) (Tests 7.1-7.5, 10.2-10.5) Fork [3] ← [4, 12]: See 3) of test
4.

5) (Tests 7.2-7.4, 10.3, 10.4) Fork [4] ← [5, 9]: See 4) of test 4.
6) (Tests 7.2-7.4, 10.3, 10.4) Fork [5] ← [6, 7]: See 5) of test 5.
As in test 4.4, we reach the same block stores in tests 7.1
and 7.5 with validator 2 again abstaining from voting after
slot 11. In tests 10.2 and 10.5, however, we have the same
block store but now with two abstaining validators 1 and 2.

ICDCN ’24, January 4–7, 2024, Chennai, India Kniep, et al.

Figure 2: Visualization of the validators’ state in the equal case. Colors indicate the block producer.

Figure 3: Visualization of test 4.4. Colors indicate the block producer.

A possible explanation for this behavior could be that now
both validators voted up to slot 11 and hence introduced
big lockout timers for both of them rather than one of them
stop voting earlier. Here it is unclear how this behavior was
influenced by this stake distribution change.
• Tests 11–16 ((39%, 30%, 31%), (38%, 31%, 31%) and rotations):
Examining the outcomes of these stake distributions, we see
that consensus was never reached. Possible explanations for
the occurring forks are the following:
1) (Tests 11.1, 13.4, 13.5) Fork [2] ← [3, 8]: Here only valida-

tor 2 rolls back to slot 2 to create a fork while validator 1
continues producing and voting on its fork. Validator 2,
however, is unable to roll back its vote to slot 2 due to an
implementation bug, which is examined further in Sec-
tion 5.

2) (Tests 11.1, 13.4, 13.5) Fork [3] ← [4, 12]: See 3) of test 4.
3) (Tests 11.2, 11.4, 11.5, 14.3-14.5) Fork [2] ← [3, 8, 12]: Val-

idator 1 continues on its fork, unaware of the duplicate in
its slot 3 while both validators 2 and 3 manage to roll back
to slot 2 and create a fork.

4) (Tests 11.3, 14.1) Fork [2] ← [3, 12]: Similar to 3) but only
validator 3 manages to roll back and fork at slot 3.

5) (Tests 11.3, 14.1, 16.5) Fork [3] ← [4, 8]: See 2) of test 3.
6) (Tests 13.1, 13.2, 14.2, 15.3, 16.1) Fork [3] ← [4, 8, 12]:

None of the validators is aware of the duplicate hence
everyone forks at slot 3 because none of them can verify
other blocks received.

In addition to forks, we also have completely different voting
behavior. Possible explanations for these behaviors are the
following:
– (Tests 11.1, 13.4, 13.5) The highest staked validator contin-
ues to vote on its fork while the second validator abstains
from voting right after its own slot 3 and the other remain-
ing validator voting up to the last slot of its schedule:
∗ Validator 1 is unaware of the duplicate and simply con-
tinues.
∗ Validator 2 started a fork at slot 2 because it rolled back
but is unable to switch its vote.
∗ Validator 3 forks at slot 3 because it is unable to validate
any blocks of validator 1. Then after slot 15, it wants
to switch forks but is unable due to not reaching the
duplicate threshold.

– (Tests 11.2, 11.4, 11.5, 14.3-14.5) The first, i.e., highest
staked validator continues to vote on its fork while the
other two validators stop voting right after slot 3:
∗ Validator 1 continues on its fork, unaware of its dupli-
cate.
∗ Validators 2 and 3 manage to roll back to slot 2 and
create a fork but are unable to vote.

– (Tests 11.3, 14.1) The first, i.e., highest staked validator
continues to vote on its fork while the second validator
stops voting at slot 11 and the third right after its slot 3:
Similar to 1) but with changed roles of validators 2 and 3.

– (Tests 13.1, 13.2, 14.2, 15.3, 16.1) The highest staked valida-
tor continues to vote on its fork while the other validators
vote up to the last slot of their own schedule:

Halting the Solana Blockchain with Epsilon Stake ICDCN ’24, January 4–7, 2024, Chennai, India

∗ Validator 1 continues on its fork, unaware of its dupli-
cate.
∗ Validators 2 and 3 fork at slot 3 but abstain after their
first schedule, respectively, unable to switch to valida-
tor 1’s fork due to missing duplicate threshold.

In the remaining cases where all validators abstain, we can
again inspect the block stores with the timed method instead
of the method of the vote. We see that every validator that
did not already fork at slot 3 will fork at slot 2. A possible
explanation is that only the first validator, which is unaware
of the duplicate at restart time, continues. The other valida-
tors roll back to slot 2, if possible, and get their own votes
stuck due to the bug. It is also possible that validator 2 sees
the duplicate late and already produced its blocks before
abstaining.
• Tests 17–22 ((52%, 24%, 24%), (53%, 24%, 23%), and rota-
tions):
In these outcomes, we clearly see the impact of the duplicate
threshold. For tests 17-19, consensus was achieved rarely,
and the same forks can appear as mentioned before. For
tests 20-22 nearly every run ended in a consensus with some
minor forks appearing since the validators have simply the
ability to vote on the highest staked fork and join it straight
away. The forks appearing are explained as follows:
1) (Tests 17.5) Fork [2] ← [3, 8, 12]: See 3) of tests 11-16.
2) (Tests 18.1) Fork [2] ← [3, 12]: See 4) of tests 11-16.
3) (Tests 18.1, 21.1, 21.2, 21.4, 22.2, 22.3) Fork [3] ← [4, 8]:

See 2) of test 3.
4) (Tests 18.3, 18.5) Fork [3] ← [4, 8, 12]: See 6) of tests 11-16.
5) (Tests 19.3, 22.1, 22.4, 22.5) Fork [3] ← [4, 12]: See 3) of

test 4.
6) (Tests 21.5) Fork [3] ← [4, 5]: Here the same happens as

in 1) of test 3 but one block earlier.
In addition to forks, we also have different voting behavior.
Possible explanations for these behaviors are the following:
– (Test 17.5): Same as voting behavior explained for tests
14.3-14.5.

– (Test 18.1): Same as voting behavior explained for test 14.1
but with highest staked validator 2 instead of 1.

– (Tests 18.3, 18.5): Same as voting behavior explained for
test 15.3

– (Tests 19.3, 22.5) Validators 1 and 2 stop voting after the last
block of validator 2’s schedule while validator 3 continues
on its fork: In both tests, the validators want to reduce
their own lockout timers in order to join validator 1, which
will only be possible in test 22 due to the missing duplicate
threshold in test 21. It is however unclear why validators 1
and 2 see the fork of validator 3 in test 19 since it should not
be possible to vote due to the missing duplicate threshold.

All the results were obtained with the same test implementation
and were run five times. Still, by only changing the stake distribu-
tion, the outcomes vary greatly, sometimes even between runs with
the same parameters. For all cases where no validator reaches the
duplicate threshold, the outcome is unclear. Since no fork based on
a duplicate is votable under this threshold, the nodes would rely on
rolling back to the block before, which rarely works. All in all, it

Stake 1 Stake 2 Stake 3 Outcome

1 333,333 333,333 333,333 Fork (Stuck)

2 900,000 50,000 49,999 Resolved
3 49,999 900,000 50,000 Resolved
4 50,000 49,999 900,000 Mixed

5 670,000 160,000 169,999 Resolved
6 169,999 670,000 160,000 Resolved
7 160,000 169,999 670,000 Mixed

8 660,000 170,000 169,999 Resolved
9 169,999 660,000 170,000 Resolved
10 170,000 169,999 660,000 Mixed

11 390,000 300,000 309,999 Fork (2 & 3 Stuck)
12 309,999 390,000 300,000 Fork (Stuck)
13 300,000 309,999 390,000 Fork (Mixed)

14 380,000 310,000 309,999 Fork (2 & 3 Stuck)
15 309,999 380,000 310,000 Fork (Mixed)
16 310,000 309,999 380,000 Fork (Mixed)

17 520,000 239,999 240,000 Mixed
18 240,000 520,000 239,999 Fork (Mixed)
19 239,999 240,000 520,000 Mixed

20 530,000 239,999 230,000 Fork (Mixed)
21 230,000 530,000 239,999 Fork (Mixed)
22 239,999 230,999 530,000 Fork (Mixed)

Table 2: Experiments in the Duplicate Slot scenario. Note
that total stake is 1 million units in all tests as the malicious
dummy validator holds one unit.

Slots 0 1 2 3 4 5 6 7 · · · 20
Leader D1 D1 D2 D3 1 2 3 1 · · · 3

Table 3: Leader schedule for the Shifted Blocks scenario,
where D1, D2, D3, denote the three dummy validators.

seems as if the mechanism is unreliable for stake distributions under
the duplicate threshold, ending up in non-deterministic behavior.

4.2 Shifted Blocks
In this experiment, a similar case to the one in Section 4.1 was
analyzed, but instead of creating three blocks for the same slot,
three different forks were created, each containing one of the blocks
in the slots between 1 and 3.

Note that this scenario could arise purely from bad synchroniza-
tion, without any adversarial behavior by any validator.

At the beginning, three validators with epsilon stake produce an
initial state. The first dummy validator is in charge of producing
the first block, which every other validator agrees on. Then the
dummy 𝑖 produces the block for slot 𝑖 , meaning that we have three
forks with only one block starting at slot 0. These individual forks
then get copied to the three validators whose behavior we want to
observe. An example initial state is shown in Figure 4. The three

ICDCN ’24, January 4–7, 2024, Chennai, India Kniep, et al.

Figure 4: Initial state of the Shifted Blocks scenario. The three
blocks in slots 1, 2, and 3 were all created by the correct
leaders (dummies 1, 2, and 3 respectively). The three non-
dummy validators start with the same blocks as the dummy
validator of their respective number.

validators are then restarted, left to vote on their own fork, and run
for 20 slots. This test was run multiple times with changing stakes
of the three validators.

• Test 1 (33.3%, 33.3%, 33.3%):
In contrast to test 1 in Section 4.1, the validators here al-
ways reach consensus on the fork of validator 3. Although
a specific rule regarding the scenario could not be found, a
possible explanation for the decision, is the age of the block
which is the lowest for the one of validator 3. In these cases,
validator 2 cannot finish its first block in slot 5 as it simply
puts a placeholder in there, possibly seeing the newest vote
of validator 3 at this moment.
• Tests 2–10 ((90%, 5%, 5%), (67%, 16%, 17%), (66%, 17%, 17%)
and rotations):
In all these cases and their rotations, we always achieve
consensus in the same way and always as expected, i.e.,
agreeing on the fork of the highest staked validator.
• Tests 11–16 ((39%, 30%, 31%), (38%, 31%, 31%) and rotations):
Only considering the problematic cases, i.e., where the sec-
ond validator has the highest stake in tests 12 and 15, we
observe that although consensus is being achieved, the val-
idators decide on the fork of validator 1. Here validator 2
always produces a placeholder in slot 5 before directly join-
ing validator 1’s fork. Since this outcome has been observed
in every run without the slightest changes, additional adap-
tions were created. These adaptions are explained below.
• Tests 17 and 18 ((19%, 62%, 19%), (20%, 61%, 19%)):
Here the difference is clearly visible because in test 17 all the
runs end with all validators joining validator 2’s fork, while
in test 18 they also achieve consensus but on the fork of
validator 1. But as mentioned in Section 3.2, such a threshold
of 61% could not be found in the implementation.

4.3 Adaptions
We tried two adaptions of the most interesting experiments in the
Shifted Blocks scenario. The first adaption sees validator 2 vote on
its initial block, i.e., in slot 2 before disabling its ability to vote.
This needs to be done rather than terminating as validator 2 can
still produce blocks and requires propagating its information to the
other validators. But without its vote, validator 2 will not interfere
with the outcome of the two other validators. This case should
answer the question if the behavior of always joining the first
validator is connected directly to validator 2 or not.

• Test 11–13 ((39%, 30%, 31%) and rotations):
For the runs where the second validator has the majority of
the stake, i.e., test 12, we observe two different outcomes,
both resulting in validator 3 abstaining from voting. In the
first outcome observed in run 3, validator 2 forks slot 3 twice,
the second time being on slot 5 where it also continues to
produce blocks. Validator 1, however, continues voting on
its own fork with voting for each of its appended blocks.
Validator 3 produces and appends its blocks on its fork but
does not vote for them. It seems as though validator 2 is mas-
sively behind with block production that neither validator 1
nor validator 2 could vote on their own fork, respectively.
Hence, validators 1 and 2 continue on their own fork, with
validator 3 unable to join as the required switch threshold
is not reached by the stake of validator 1. In the second out-
come observed in all other runs, validator 2 directly produces
blocks for the fork of validator 1 while validator 3 abstains
from voting at slot 3 but still produces blocks for its fork. A
possible explanation for the behavior of validator 3 could
again be connected with the missing switch threshold of the
fork of validator 1. But the behavior of validator 2 is not
explainable to us.
• Tests 14–16 ((38%, 31%, 31%) and rotations):
In these cases, the behavior even changed for the case where
the first validator has the most stake, i.e., test 14, as its out-
come is identical to run 4 where the second validator has the
most stake as explained above.
• Tests 17 and 18 ((19%, 62%, 19%) and (20%, 61%, 19%)):
Although the first run of test 18 results in consensus on the
fork of validator 2, we otherwise see a clear distinction. For
test 17, we always see the validators joining validator 2’s
fork like in the unmodified scenario. In all but the first runs
of test 18, we see validator 3 abstaining from voting after
slot 3 while still producing blocks for its fork, while val-
idators 1 and 2 stay on the fork of validator 1. A possible
explanation for the behavior of validator 3 unable to switch
forks, is the missing switch fork threshold of 38% and hence
validator 3 waits for the first fork to gain additional stake.
Compared to the unmodified scenario, the third validator
also only switched forks right after validator 2 voted for it.
In the first run, validator 2 continued to produce blocks on
its fork allowing validator 1 to join on slot 7. The reason why
validator 2 does not join validator 1 as in the other cases is
not entirely clear to us. A possible explanation is that in this
single run validator 2 saw the vote of validator 1 on slot 4
too late.

Halting the Solana Blockchain with Epsilon Stake ICDCN ’24, January 4–7, 2024, Chennai, India

Stake 1 Stake 2 Stake 3 Outcome

1 333,332 333,332 333,332 Resolved

2 899,999 49,999 49,999 Resolved
3 49,999 899,999 49,999 Resolved
4 49,999 49,999 899,999 Resolved

5 670,000 160,998 168,999 Resolved
6 168,999 670,000 160,998 Resolved
7 160,998 168,999 670,000 Resolved

8 660,000 169,998 169,999 Resolved
9 169,999 660,000 169,998 Resolved
10 169,998 169,999 660,000 Resolved

11 390,000 299,998 309,999 Resolved (Unexplained)
12 309,999 390,000 299,998 Resolved (Unexplained)
13 299,998 309,999 390,000 Resolved (Unexplained)

14 380,000 309,998 309,999 Resolved (Unexplained)
15 309,999 380,000 309,998 Resolved (Unexplained)
16 309,998 309,999 380,000 Resolved (Unexplained)

17 189,999 620,000 189,998 Resolved (Unexplained)

18 199,999 610,000 189,998 Resolved (Unexplained)
Table 4: Experiments in the Shifted Blocks scenario. Note that
total stake is 1 million units in all tests as there are three
malicious dummy validator with one unit stake each.

From these results, we see that without validator 2 voting on
additional blocks, validator 3 can get stuck as it cannot produce a
switch proof due to lack of stake on validator 1’s fork. But in the
62% case, the vote of validator 2 on its slot was enough for both
other validators to join the fork of validator 2, even if validator 2
stopped voting.

The second adaptation is based on the first one but restores
the voting behavior of validator 2 after ten slots. This should also
explain whether the votes of validator 2 have an impact at all on a
validator possibly waiting for enough stake to gather on a fork.
• Tests 11–13 ((39%, 30%, 31%) and rotations):
Compared to test 12 in the first adaption, we see that the
third validator joins validator 1 after it observed the vote of
validator 2 on the fork of validator 1. This is probably due
to the fork of validator 1 reaching the switch threshold as
soon as validator 2 votes on it. We also have one outlier in
the third run of test 13 as validator 2 never leaves its own
fork, although validator 1 joined validator 3’s fork already
earlier.
• Tests 14–16 ((38%, 31%, 31%) and rotations):
Here we observe the same behavior as above but now with
run 1 actually agreeing on the fork of the highest staked
validator 2. This outcome is the expected behavior of the
scenario, but it is unclear why it was only achieved once.
• Tests 17 and 18 ((19%, 62%, 19%) and (20%, 61%, 19%)):
Here we have the same clear distinction as in the adaption
before. Furthermore, in test 18 we now see validator 3 re-
turning to vote on validator 1’s fork as soon as validator 2’s

vote functionality is restored after slot 10, which underlines
that validator 3 is waiting for more stake to gather on the
fork of validator 1.

The question of the origin of the 61% threshold still remains.
Further it seems as if there are additional rules making validators
abstain from voting to await more stake to gather on one of the
forks. The answer to this behavior and the threshold could not be
found at the time of this work and is hence left as potential future
work.

5 REAL-WORLD EXAMPLE
On the 30th of September 2022, the Solana mainnet experienced an
outage. According to the post-mortem,11 the outage lasted around
eight hours and required centralized manual intervention to fix.
They also confirmed that on slots 153,139,220 and 153,139,221 du-
plicates were observed, due to a configuration error on the single
validator, which was the leader responsible for these slots. At first,
some validators voted on one duplicate while not seeing the other.
Other validators who observed both versions abstained from voting,
rolled back to the block before, and started a new fork. Unfortu-
nately, the majority voted on the same version of the duplicate
forcing the validators on the newly created fork to switch. How-
ever, due to an implementation error in the Heaviest Subtree Fork
Choice module, the validators were unable to do so.

This outage is related to ourDuplicate Slot scenario in Section 4.1.
We reevaluated the scenario on a newer commit12 including the pro-
posed fix mentioned on the Solana news page.13 The suggested fix,
however, did not solve the strange behavior observed in Section 4.1.
In our test with logging enabled we observe the logs mentioned by
the involved validator.14

6 RELATEDWORK
Many works exist performing in-depth theoretical analysis of the
security and liveness properties of popular blockchains, most no-
tably regarding Bitcoin [3, 9, 10] and Ethereum [5, 13, 18]. Also,
various comparative studies of consensus protocols employed by
blockchain systems exist [1, 4, 6, 17].

However, as previously mentioned, there has been almost no
academic research on the Solana blockchain so far. Specifically, to
the best of our knowledge there exists not a single work critically
examining the consistency and correctness of consensus rules in
play in Solana. We are not aware of any work that provides formal
proofs of correctness, security, or liveness for the protocol; this
includes the Solana whitepaper itself. One prior work analyzing
the blockchain protocol, focuses solely on its scalability [12].

The most important related works are the ones that build the
foundation of understanding the core principles of the Solana im-
plementation such as the “Proof-of-History” whitepaper [19]. This
whitepaper is somewhat outdated, but explains the essentials of
the blockchain protocol and system architecture.

One critical analysis of Solana’s inner workings is the write-up
by Shoup [14], which focuses on the Proof-of-History mechanism

11https://solana.com/de/news/09-30-22-solana-mainnet-beta-outage-report
12https://github.com/solana-labs/solana/commit/4cbf59a5ddd31e4cbcd545e128b9e459cf56b036
13https://github.com/solana-labs/solana/pull/28172
14https://youtu.be/7tGYT8j7AbE?t=1002

ICDCN ’24, January 4–7, 2024, Chennai, India Kniep, et al.

in detail. The key findings include that Solana’s Proof-of-History
does not constitute a VDF [2] as claimed by the original authors,
since it lacks a “[. . .] verification algorithm [that] takes much less
computation than that of the prover, without relying on paralleliza-
tion” [14]. Further, it calls additional claims of the whitepaper into
question and calls out the inherent waste of energy of this approach,
as it undermines one of the main advantages of consensus protocols
based on Proof-of-Stake over those using Proof-of-Work.

7 CONCLUSION
In the results of the experiments in Sections 4.1 and 4.2, we came
across some to us not explainable behavior of the validators. Espe-
cially the Duplicate Slot scenario for stake distributions ≤ 52% in
Section 4.1 has raised more questions than it has answered.

In many places it was hard for us to bring differences between
the whitepaper, documentation, and code together into a coherent
picture. Luckily, the implementation features many test cases, espe-
cially edge case related. The actual code thus proved invaluable for
reverse engineering the protocols rules.

From a standpoint of a reliable decentralized network, the re-
peated outages requiring centralized manual intervention are con-
cerning. Even though Solana is officially in a Beta state, it has a
market capitalization of over $US 20 billion and is therefore ranked
7th (as of November 2023) out of all cryptocurrencies.15

Solana takes a non-standard approach to achieving state repli-
cation in view of possible (adversarial) failures, making strong
assumptions about the failure cases that can arise in practice, that
seem to go far beyond the normal theoretical bounds for these
problems. Based on the tests in Figure 2, we suggest that duplicate
handling, especially with the largest fork at ≤ 52% stake is not
fully handled by the consensus protocol. In view of the November
2022 outage, the likelihood of this problem arising in practice even
without malicious intent should be reevaluated.

In the absence of such a concrete implementation, it is accepted
that centralized manual intervention will be required in the event
of a malfunction. Underlying this assumption is the fact that the
presented duplicate handling was only first addressed in March
2021, around one year after the mainnet ledger started.16

Future Work
The same setup as ours, using the LocalCluster module, can be
employed to explore a variety of scenarios. Hence, future works
could analyze other edge cases and try to more fully understand
the protocol behaviors. Continuing on the experiments conducted
in this work, an extension of the Shifted Blocks experiment to bet-
ter understand and also explain some outcomes would be useful,
especially regarding the found threshold of 61% and the abstaining
behavior of validator 3 in the adaptations.

It would also be interesting, to better quantify the risks of denial-
of-service attacks based on the protocol behaviors laid out in this
work. To this end, one should probably also take a closer look at
Turbine, Solana’s block propagation mechanism.

15https://coinmarketcap.com
16https://github.com/solana-labs/solana/pull/16127

We hope that our findings will be helpful in informing design
decisions for the Solana project as well as other blockchain systems
going forward.

Apart from the direct results of this work regarding the correct-
ness and liveness of the consensus protocol in the Solana blockchain,
we hope that our findings regarding the consensus rules may serve
as an additional resource for future researchers trying to under-
stand the protocol. Specifically, they may lead to a more complete
understanding than it seems possible from the whitepaper alone.

Acknowledgements
We would like to thank Thomas Locher for his continued guidance
and valuable suggestions during the project, as well as his feedback,
which helped improve the presentation of this work.

REFERENCES
[1] Shehar Bano, Alberto Sonnino, Mustafa Al-Bassam, Sarah Azouvi, Patrick Mc-

Corry, Sarah Meiklejohn, and George Danezis. 2019. SoK: Consensus in the age
of blockchains. In Proceedings of the 1st ACM Conference on Advances in Financial
Technologies. 183–198.

[2] Dan Boneh, Joseph Bonneau, Benedikt Bünz, and Ben Fisch. 2018. Verifiable
delay functions. In Annual international cryptology conference. Springer, 757–788.

[3] Joseph Bonneau. 2016. Why buy when you can rent? Bribery attacks on bitcoin-
style consensus. In International Conference on Financial Cryptography and Data
Security. Springer, 19–26.

[4] Christian Cachin and Marko Vukolić. 2017. Blockchain consensus protocols in
the wild. arXiv preprint arXiv:1707.01873 (2017).

[5] Francesco D’Amato, Joachim Neu, Ertem Nusret Tas, and David Tse. 2022. Gold-
fish: No More Attacks on Proof-of-Stake Ethereum. Cryptology ePrint Archive
(2022).

[6] Md Sadek Ferdous, Mohammad Jabed Morshed Chowdhury, and Mohammad A
Hoque. 2021. A survey of consensus algorithms in public blockchain systems
for crypto-currencies. Journal of Network and Computer Applications 182 (2021),
103035.

[7] Solana Foundation. 2023. Optimistic Confirmation and Slashing. https://docs.
solana.com/de/proposals/optimistic-confirmation-and-slashing. Official Solana
Documentation.

[8] Yossi Gilad, Rotem Hemo, Silvio Micali, Georgios Vlachos, and Nickolai Zel-
dovich. 2017. Algorand: Scaling byzantine agreements for cryptocurrencies. In
Proceedings of the 26th symposium on operating systems principles. 51–68.

[9] Eleftherios Kokoris Kogias, Philipp Jovanovic, Nicolas Gailly, Ismail Khoffi, Linus
Gasser, and Bryan Ford. 2016. Enhancing bitcoin security and performance
with strong consistency via collective signing. In 25th usenix security symposium
(usenix security 16). 279–296.

[10] Michael Mirkin, Yan Ji, Jonathan Pang, Ariah Klages-Mundt, Ittay Eyal, and Ari
Juels. 2020. BDoS: Blockchain denial-of-service. In Proceedings of the 2020 ACM
SIGSAC conference on Computer and Communications Security. 601–619.

[11] Satoshi Nakamoto. 2008. Bitcoin: A peer-to-peer electronic cash system. Decen-
tralized business review (2008).

[12] Giuseppe Antonio Pierro and Roberto Tonelli. 2022. Can solana be the solution
to the blockchain scalability problem?. In 2022 IEEE International Conference on
Software Analysis, Evolution and Reengineering (SANER). IEEE, 1219–1226.

[13] Caspar Schwarz-Schilling, Joachim Neu, Barnabé Monnot, Aditya Asgaonkar,
Ertem Nusret Tas, and David Tse. 2022. Three attacks on proof-of-stake ethereum.
In International Conference on Financial Cryptography and Data Security. Springer,
560–576.

[14] Victor Shoup. 2022. Proof of history: What is it good for? (May 2022).
[15] Solana Foundation. 2022. 09-30-22 Solana Mainnet Beta Outage Report. https:

//solana.com/news/09-30-22-solana-mainnet-beta-outage-report. Official Solana
Blog.

[16] GavinWood et al. 2014. Ethereum: A secure decentralised generalised transaction
ledger. Ethereum project yellow paper 151, 2014 (2014), 1–32.

[17] Yang Xiao, Ning Zhang, Wenjing Lou, and Y Thomas Hou. 2020. A survey of
distributed consensus protocols for blockchain networks. IEEE Communications
Surveys & Tutorials 22, 2 (2020), 1432–1465.

[18] Aviv Yaish, Kaihua Qin, Liyi Zhou, Aviv Zohar, and Arthur Gervais. 2023. Specu-
lative Denial-of-Service Attacks in Ethereum. Cryptology ePrint Archive (2023).

[19] Anatoly Yakovenko. 2018. Solana: A new architecture for a high performance
blockchain v0. 8.13. Whitepaper (October 2018).

https://docs.solana.com/de/proposals/optimistic-confirmation-and-slashing
https://docs.solana.com/de/proposals/optimistic-confirmation-and-slashing
https://solana.com/news/09-30-22-solana-mainnet-beta-outage-report
https://solana.com/news/09-30-22-solana-mainnet-beta-outage-report

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Proof-of-History
	2.2 Time Units in Solana
	2.3 Validators
	2.4 Leader

	3 Consensus Rules
	3.1 Claims from Solana Whitepaper
	3.2 Our Interpretation

	4 Experiments
	4.1 Duplicate Slot
	4.2 Shifted Blocks
	4.3 Adaptions

	5 Real-World Example
	6 Related Work
	7 Conclusion
	References

