
Thermally Optimal Stop-Go Scheduling
of Task Graphs with Real-Time Constraints

Pratyush Kumar Lothar Thiele

Computer Engineering and Networks Laboratory,
ETH Zürich, Switzerland

{pratyush.kumar,lothar.thiele}@tik.ee.ethz.ch

Abstract— Dynamic thermal management (DTM) techniques
to manage the load on a system to avoid thermal hazards are
soon becoming mainstream in today’s systems. With the increas-
ing percentage of leakage power, switching off the processors is
becoming a viable alternative technique to speed scaling. For
real-time applications, it is crucial that under such techniques
the system still meets the performance constraints. In this pa-
per we study stop-go scheduling to minimize peak temperature
when scheduling an application, modeled as a task-graph, within
a given makespan constraint. For a given static-ordering of exe-
cution of the tasks, we derive the optimal schedule referred to as
the JUST schedule. We prove that for periodic task-graphs, the
optimal temperature is independent of the chosen static-ordering
when following the proposed JUST schedule. Simulation experi-
ments validate the theoretical results.

I. INTRODUCTION

Power densities in today’s electronic systems continue to
rise due to (a) continued, though slower, feature size reduction,
and (b) increasing functional complexity. Higher power densi-
ties directly translate to higher on-chip temperatures which can
affect system reliability and even functional correctness [8].
Hardware cooling solutions, have not been able to keep pace
with the rising on-chip temperatures [10]. To supplement such
techniques, architectural-level software techniques, broadly re-
ferred to as Dynamic Thermal Management (DTM), have been
widely studied [4, 6].

Based on the classification presented in [6], dynamic voltage
scaling (DVS) and stop-go scheduling, also referred to as Dy-
namic Power Management (DPM) [2], are the two main classes
of DTM techniques. In DVS, thermal hazards are avoided by
adjusting, when necessary, the supply voltage and/or frequency
of the system. On the other hand, stop-go scheduling puts the
system in a low-power state to reduce on-chip temperature.

Naturally, either class of above DTM techniques directly im-
pacts the real-time performance of applications. This has led
to a large number of studies that aim to either maximize per-
formance under thermal constraints, or minimize temperature
under performance constraints. Bansal et al. [1] identify the
maximum workload available in a time window without violat-
ing given thermal constraints. In [11], a reactive speed control
scheme to minimize temperature and corresponding schedula-
bility tests were proposed. The on-line energy reduction algo-
rithm proposed by Yao et al. was adapted to reduce peak tem-

perature [1]. Approximation algorithms were proposed in [13]
to schedule a set of periodic tasks with each task running at
a constant frequency. Chantem et al. [5] study the maximiza-
tion of workload for DVS with discrete speeds and transition
overhead.

Most of these studies consider DVS as the chosen DTM tech-
nique. This choice is influenced by the CMOS property that
a linear reduction in the supply voltage results in a cubic re-
duction of the power consumption at the expense of a linear
slow down in the processor frequency. However, as the leakage
power becomes increasingly comparable to the dynamic power
of a system [3], this is less true. Leakage power can, how-
ever, be reduced by stop-go techniques: by putting the system
into a sleep state. Furthermore, for peripheral devices like I/O
systems, memories and interconnects and for low-end systems,
DVS features are not available, while temperature can still be
managed using stop-go techniques.

Further, the above studies consider individual tasks with in-
dependent real-time deadlines. However, in reality, most ap-
plications are based on dataflow models of computation, such
as task graphs, with a cumulative real-time performance con-
straint such as its makespan. The execution of a task depends
on the execution of other tasks through precedence constraints.
This broadens the scope of DTM techniques, as different orders
of execution of tasks can potentially be used to reduce tempera-
ture, while still meeting the cumulative performance constraint.

In this paper, we study stop-go scheduling of a given task-
graph under a makespan constraint while optimally minimizing
the peak temperature. For non-preemptive static-order schedul-
ing of the task-graph we derive the optimal stop-go schedule re-
ferred to as JUST schedule. When the static-ordering of tasks
is unknown, we present an approximate iterative algorithm to
determine the schedule that minimizes temperature by formu-
lating it as a binary integer program. For periodic task graphs,
we prove that the minimum peak temperature of the system is
obtained when following the JUST policy and crucially is in-
dependent of the chosen static-ordering of tasks. With quanti-
tative results on synthetic and real applications we substantiate
the derived theoretical results.

The rest of the paper is organized as follows. We detail the
system model and describe the problem in Section II. In Sec-
tion III, we derive the main results of this paper by designing
the thermally optimal scheduling of a task-graph. We extend
this result to periodic task graphs in Section IV. Finally, in
Section V, we present experimental results.

II. SYSTEM MODEL AND PROBLEM STATEMENT

A. Hardware and thermal model

We consider the model of heat generation in the system
based on the Fourier law of heating, which can be expressed
in the following equation:

C
dT

dt
= P −G(T − T 0) (1)

where T is the temperature of the system, C is the thermal
capacity of the system, G is the conductance to the ambient,
T 0 is the ambient temperature, and P is the generated power.

The leakage current on a VLSI system is a function of tem-
perature itself: at higher temperature the leakage current is
larger. Thus, the power consumption of the system is a function
of temperature. This can be expressed as a linear model [7]

P = αT + β (2)

Including this dependence, the original differential equation (1)
can be re-written as

C
dT

dt
= −(G− α)T + (β +GT 0) (3)

To simplify notation we shorten the above equation as

dT

dt
= −aT + b,with a =

G− α
C

, b =
β +GT 0

C
(4)

The closed form solution to this differential equation is

T (t) = T∞ + (T (t0)− T∞) · e−a(t−t0) (5)

where T∞ = b/a is the steady state temperature.
When the system is executing tasks it is said to be in the ac-

tive mode and when it is not executing tasks it is said to be in
idle mode. The power consumption in these modes is different.
We distinguish between the parameters of (2) corresponding to
the active and idle modes as αact, βact and αidl, βidl, respec-
tively. The corresponding a and b values (as shown in (4)) will
also be referred to with the superscripts to denote the mode of
the system. The steady state temperatures (T∞ in (5)) will be
denoted as T act and T idl for the active and idle modes, respec-
tively. We introduce the following functions

fact(t) = e−a
actt, f idl(t) = e−a

idlt (6)

The thermal properties of the system are completely speci-
fied by the tuple T = (C,G, aact, bact, aidl, bidl). Instead of
using the a and b parameters, we will use the derived values
T act, T idl and the derived functions fact, f idl, in the rest of
the paper.

B. Application model

The application is specified as a task graph G = (V,E),
where the vertices, V , denote tasks to be performed and di-
rected edges E, denote precedence constraints. To allow for a
deadlock-free execution, such a graph must be free of directed
cycles, and is thus commonly referred to as a Directed Acyclic
Graph (DAG). The function τ : V → <+, identifies for ev-
ery task v ∈ V , the time taken to execute it, on the considered
system. It is required that the task-graph be executed within ω
units of time, i.e. ω is the maximum allowed makespan. The
application is thus fully specified by A = (G, τ, ω).

C. Scheduling

We consider a system where a switch from active to idle state
cannot preempt a running task. Allowing for such preemption
would necessitate hardware and software features to restore the
context of the earlier running process. This is beyond the in-
tended scope of this work. Thus, in our model, the system can
move to idle state only after completing a task and before start-
ing the next task. Scheduling the task graph on such a system
involves a series of two choices: (a) the choice of task to be
executed next, and (b) the choice of the amount of time (if any)
the system must remain in idle state before the execution of that
task. We refer to such a schedule as a non-preemptive stop-and-
go schedule. Such a schedule, S, is specified by an ordered list
S =

(
(σ1, t

idl
1), . . . , (σ|V |, t

idl
|V |)
)

where σn ∈ V denotes the

nth task to be executed in the system and tidln (≥ 0) denotes the
time for which the system is in idle state before executing this
task. The values of σj must satisfy the precedence constraints.

D. Problem statement

The problem that this paper solves is the following:
Given the thermal properties of a system T, the ambient tem-
perature T 0, the initial temperature of the system T0, and the
properties of an application A. Determine a non-preemptive
stop-and-go schedule S such that (a) the finish-time of all tasks
are within a given makespan ω, and (b) the peak temperature
of the system is minimized.

III. OPTIMAL STOP-GO SCHEDULE

We divide the solution into two parts. In Section A, we as-
sume that an ordering of tasks σ is already given. Given such an
order σ, we find the idle times, tidln , which satisfy the makespan
constraint and minimize the peak temperature. In Section B,
we present a method to compute an ordering if none is given.

A. Choice of Optimal Idle Times for A Given Static-Ordering
of Tasks

Similar, to the notation tidln , let tactn be the execution time of the
nth task for given static order σ:

tactn = τ(σn), n = 1, . . . , |V | (7)

Let Tj denote the temperature of the system at the end of exe-
cution of the jth task.

Theorem 1 Suppose an arbitrary non-preemptive stop-go
schedule with given static-ordering of tasks, σ. Then, any
change of the idle times such that none of Tj , j ∈ {1, . . . , |V |}
decreases, and at least one increases, decreases the makespan.

Proof Writing (5) for the jth idle time and the execution of the
jth task, and eliminating the temperature at the end of the idle
time, we have

Tj =
(
Tj−1f

idl(tidlj) + T idl(1− f idl(tidlj))
)
fact(tactj)

+T act(1− fact(tactj)) (8)

⇒ f idl(tidlj) =
1

fact(tactj)
·

Tj − T ′j
Tj−1 − T idl

, where (9)

T ′j = T idlfact(tactj) + T act(1− fact(tactj)) (10)

Multiplying (9) for j ∈ {1, . . . , |V |}, define F as

F =

|V |∏
j=1

f idl(tidlj)

=
1∏|V |

j=1 f
act(tactj)

T|V | − T ′|V |
T0 − T idl

|V |−1∏
j=1

Tj − T ′j
Tj − T idl

(11)

From the definition of f idl in (6) define c1 as

c1 =

|V |∏
j=1

fact(tactj) = fact

(∑
v∈V

τ(v)

)
where c1 is a constant for the specified application. Further, T0
is a given quantity. Hence, we can define c2 as

c2 =

|V |∏
j=1

fact(tactj) ·
(
T0 − T idl

)
where c2 is a constant for the given problem specification.
Thus, (11) becomes,

F = c−12 ·
(
T|V | − T ′|V |

)
·
|V |−1∏
j=1

Tj − T ′j
Tj − T idl

From the above it is clear that

∂F

∂T|V |
> 0 (12)

Interpreting (10) using (5), we infer that that T ′j denotes the
final temperature of the system when run in active mode for
tactj amount of time starting from T idl as initial temperature.
Thus, we obtain

T ′j > T idl, ∀ j ∈ {1, . . . , |V |} (13)

A function h(x) defined as h(x) = (x − a)/(x − b) is mono-
tonically increasing iff a > b. Thus, we have

∂F

∂Tj
> 0, ∀ j ∈ {1, . . . , |V | − 1}. (14)

Given the definition of f idl in (6), we obtain

F =

|V |∏
j=1

f idl(tidlj) = f idl

 |V |∑
j=1

tidlj

 = f idl(ωS − τtot)

(15)
where ωS is the makespan when following the considered
schedule and τtot =

∑
v∈V τ(v). Since f idl is a monotoni-

cally decreasing function, we have,

∂F

∂ωS
< 0 (16)

From (12), (15) and (16), we have

∂ωS

∂Tj
< 0, ∀ j ∈ {1, . . . , |V |}. (17)

Changes in Tj can be brought about by changing the idle times.
Thus, from (17), any change in idle times, such that none of
Tj , j ∈ {1, . . . , |V |}, decreases and at least one increases,
would decrease the makespan.

We use Theorem 1, to present an intuition for designing the
optimal idle times. Let T opt denote the minimum peak tem-
perature under the given makespan constraint. Then, in the op-
timal schedule the temperature at the execution of some task
must be T opt. Let the (popt + 1)th task in the static order
σ, be the first such task. Theorem 1 tells us that in the opti-
mal schedule the temperature at the end of execution of tasks,
Tj , would be as close to T opt as possible. Indeed, it is pos-
sible to have the temperatures at the end of all tasks after the
(popt + 1)th task exactly equal to T opt by appropriately set-
ting the idle times inserted before the tasks. Hence, the opti-
mal schedule should have the temperatures Tj = T opt, for all
j ∈ {popt + 1, . . . |V |}, for some popt.

We now determine the value of popt. Clearly, the value of
popt depends on the initial temperature T0. For instance, if
T0 = T opt, we would have popt = 0, as the very first task
can end with temperature equal to T opt. On the other hand,
if we have a small value of a T0 in comparison to T opt, we
may have a larger popt. Again, Theorem 1 tells us that popt

must be as small as possible. The smallest popt is obtained
when the processor runs the first popt tasks without any idle
time inserted before these tasks. Define variable T cont

k as the
final temperature of the processor after running the first k tasks
continuously, i.e. without any idle time before the tasks, having
started from the given initial temperature T0. Then we have

T cont
k = T0f

act(δk) + T act(1− fact(δk)). (18)

The desired popt is now given by the following relation

T cont
popt ≤ T opt ≤ T cont

popt+1 (19)

We can now impose the constraint that the makespan of the
schedule is ω. Given that the first popt tasks run with no idle
times and all subsequent tasks end with temperatures T opt, we
can derive the following equation similar in form to (11)

T opt − T ′popt+1

fact(tactpopt+1)(T
cont
popt − T idl)

·
|V |∏

j=popt+2

T opt − T ′j
fact(tactj)(T opt − T idl)

= f idl(ω − τtot).
(20)

We are now ready to define the optimal schedule for given or-
dering of tasks.

Definition 1 A JUst Sufficient Throttling(σ) (JUST(σ)) is a
non-preemptive stop-go schedule, which follows the static-
order of tasks σ, and has

• tidlj = 0 ∀ j ≤ popt,

• Tj = T opt ∀ popt < j ≤ |V |.

where popt and T opt are related by (19) and (20).

As discussed, a JUST schedule consists of two distinct
phases. In the first phase the first popt tasks are run without
any idle time before the tasks, and in the second phase all re-
maining tasks are executed by inserting idle times before them
such that the temperatures at the end of executing tasks is T opt.
We now prove the optimality of the JUST schedule.

Theorem 2 Among all stop-go schedules following a given
static-ordering of tasks, σ, and satisfying a given makespan
constraint ω, JUST(σ) has the smallest peak temperature.

Proof We prove this by contradiction. Let there exist another
stop-go schedule, S′ with peak temperature less than T opt and
makespan not greater than ω.
Let T opt

j and TS′

j denote the temperature of the system at the
end of the jth task, while executing according to the JUST(σ)
and the S′ schedules, respectively. As the system is not put to
sleep at all for the first popt tasks in JUST(σ), we have

TS′

j ≤ T
opt
j , 1 ≤ j ≤ popt (21)

For the remaining tasks, the JUST(σ) policy reaches the peak
temperature. Thus,

TS′

j ≤ T
opt
j , popt + 1 ≤ j ≤ |V | (22)

Using (21) and (22), from Theorem 1, we have ωS′ > ω. This
contradicts the existence of schedule S′.

From Theorem 1, we know that increasing the maximum
temperature of a schedule under the JUST policy would de-
crease the makespan. Thus, there is a unique value of T opt

for which (20) is tight. This value of T opt can be found using
binary search. However, instead of searching of T opt we can
equivalently search over popt, since popt and T opt are mono-
tonically related as given in (19). Binary search over popt is
easier given the limited search space {0, . . . , |V |}. Using this,
for a given problem instance, we can numerically compute the
optimal values T opt and popt as shown in Algorithm 1.

Algorithm 1 Computing popt and T opt

popt ← poptinitial

2: while true do
Compute T opt according to (20) for current popt

4: if T opt < T cont
popt then

Decrease popt

6: else if T opt > T cont
popt+1 then

Increase popt

8: else
Return popt, T opt

10: end if
end while

B. Integrated choice of idle times and static-ordering

From (20), it is clear that, for any JUST(σ) schedule, a per-
mutation of the tasks {σ1, . . . , σpopt} does not change either
the makespan or the highest temperature. Similarly, a permuta-
tion of the tasks {σpopt+1, . . . , σ|V |} does not change either pa-
rameter. In particular, when popt is 0, all static-orders have the
same makespan and peak temperature. Thus, searching on the
space of orderings of tasks is equivalent to searching over pos-
sible ways of dividing the tasks, V , into two non-overlapping
sets: V1 and V2, where tasks in V1 are executed without any
idle time and tasks in V2 are executed with idle times based on
the JUST policy. The precedence constraints of the task graph
simplify to the following: no task in V2 must be a predecessor
of any task in V1.

Finding the optimal V1 and V2 requires us to minimize T opt

across all valid sets V1. However, the non-linear nature of (19)
and (20) make this a computationally difficult problem. We
start by solving a simpler problem: For a given target temper-
ature T t, determine an ordering σt, if it exists, that can satisfy
the makespan constraint with maximum temperature≤ T t. We
can then conservatively approximate (20) as∑

v∈V2

T t − T ′′v
fact(tactj)(T t − T idl)

≥ f idl(ω − τtot) (23)

where T ′′v = T idlfact(τ(v))+T act(1−fact(τ(v))). Similarly,
expressing (19), we have,∑

v∈V1

τ(v) ≥ (fact)−1
(
T act − T t

T act − T0

)
,

where (fact)−1(x) = − ln(x)/aact, is the inverse of fact. We
can equivalently express the above constraint for the set V2 as∑

v∈V2

τ(v) ≤ τtot − (fact)−1
(
T act − T t

T act − T0

)
. (24)

Consider a binary variable xv for each v ∈ V , such that xv = 0
denotes that v ∈ V1 and xv = 1 denotes that v ∈ V2. Then the
constraint that some v1 ∈ V executes before some v2 ∈ V
can be expressed as xv1 ≤ xv2. Note that this simplicity in
using only a binary program rather than an integer program is
because in the JUST schedule the orderings of tasks within the
sets V1 and V2 are not important. We can then cast (23) and
(24) along with the precedence constraints of the task graph as
an binary integer program (BIP) as shown below:

Maximise 1
subject to xv ∈ {0, 1} ∀ v ∈ V

xv1 ≤ xv2 ∀ (v1, v2) ∈ E
A1Tx ≥ b1
A2Tx ≤ b2

where A1v =
T t − T ′′v

fact(tactj)(T t − T idl)
, b1 = f idl(ω − τtot),

A2v = τ(v), b2 = τ tot − (fact)−1
(
T act − T t

T act − T0

)
.

From the solution to the above BIP, if it exists, we can ob-
tain the static-ordering of tasks, σt. We can then set the idle
times based on JUST(σt). The peak temperature of the resul-
tant schedule will be below the set target temperature T t. To
identify the smallest such T t that leads to a valid JUST policy,
we can perform a binary search on T t, based on feasibility of
the above BIP. We illustrate this in the experimental section.

IV. PERIODICALLY EXECUTED TASK GRAPHS

In several practical scenarios, applications execute periodi-
cally, with the period equal to the maximum allowed makespan.
Let us consider a task graph of such an application that is
executed periodically with a period equal to ω. In each pe-
riod we have an instance of the scheduling problem discussed
in the previous section, with the same makespan constraints
but with possibly different starting temperatures. Let (T0)n

denote the starting temperature of the system in the nth pe-
riod. For each period we can use the JUST schedule corre-
sponding to that initial temperature for some given or com-
puted static ordering. For such a schedule, let (T opt)n denote
the highest temperature of the system for the nth period. Let
limn→∞(T opt)n = (T opt)∞, if the limit exists.

Theorem 3 (T opt)∞ exists and it does not depend on the cho-
sen static-ordering of tasks σ.

Proof First we show that, (T0)n+1 > (T0)n implies that
(T opt)n+1 > (T opt)n. We show this by contradiction.
Let (T opt)n+1 ≤ (T opt)n. Then, from (19) it follows
that (popt)n+1 ≤ (popt)n. Then, with the above assump-
tions L.H.S. of (20) decreases, while it should be a constant.
Hence, we have a contradiction. Similarly, one can show that
(T0)n+1 < (T0)n implies that (T opt)n+1 < (T opt)n.
Since, according to the JUST policy, the makespan equals ω,
we have (T0)n+1 = (T opt)n. Thus, (T opt)n is a mono-
tonic function of n. A fixed point is reached when (T 0)n∗ =
(T opt)n∗. Such a fixed point can be computed by substituting
popt = 0 in (20). The corresponding equation defines (T opt)∞∏

v∈V

(T opt)∞ − T ′j
((T opt)∞ − T idl)

= f idl(ω − τtot)× fact(τtot) (25)

As is clear from the equation above and given the fact that it is
obtained for popt = 0, the value of (T opt)∞ is independent of
the static-ordering of tasks σ.

The above theorem implies that, if we use JUST policy in
each period, the value of (T opt)n would monotonically ei-
ther decrease or increase to the defined (T opt)∞. Indeed, if
(T opt)∞ ≤ T0, the highest temperature over all time would be
T0 and if (T opt)∞ > T0, the highest temperature over all time
would be (T opt)∞. We have the following interesting result.

Corollary 4 Under a JUST policy the highest temperature of
a system running a periodic task graph is minimal and inde-
pendent of the ordering of tasks.

Thus, for a periodic task graph, as long as a JUST policy is
used, the choice of the static-ordering of tasks is insignificant
with respect to the peak temperature. The static ordering may
be designed with consideration to other factors like required
buffer capacity.

V. EXPERIMENTAL RESULTS

A. Thermal data

We source our thermal data from [12] for an ARM like
processor. Typical numbers for such a processor are C =
0.03J/K and G = 0.3W/K. Typical parameters of the power
consumption in both modes are αact = αidl = 0.1W/K,
βact = −11W,βidl = −25W . The ambient temperature, T 0

is assumed to be at room temperature of 300K. In all experi-
ments, we assume that the initial temperature of the system is
T0 = 330K.

5 6

3 4

1 2

7

Task ID Execution Time
(in msec)

1 30
2 140
3 20
4 50
5 50
6 50
7 50

Fig. 1. Task graph and execution times of tasks of an example application

(a) T t = 375 K (b) T t = 370 K

Fig. 2. Temperature variation with time for JUST schedules obtained with
different values of T t. Asterisks denote completion of tasks.

B. Integrated Choice of Static-Ordering and Idle Times for
Synthetic Application

Consider the task graph shown in Fig. 1 with given execu-
tion time of tasks. The value of the makespan, ω = 1.5τtot =
0.585s. We demonstrate finding the optimal schedule for this
application. For a target temperature of T t = 375K, we at-
tempt to find the defined sets V1 and V2. The corresponding x
vector obtained from the BIP is [0 1 0 1 0 1 1]T , where these
values are ordered based on the node numberings. The only
ordering of tasks for this x and satisfying the precedence con-
straints is σ = (1, 3, 5, 2, 4, 6, 7). The temperature variation
with time for JUST(σ) is shown in Fig. 2. Note the two said
phases of the JUST policy: in the first phase popt = 3 tasks are
executed with no idle times, and in the next phase, 4 tasks have
temperatures at the end of their execution Tj = T opt = 374K,
which is indeed smaller than T t = 375K.

We now perform a binary search on T t based on the in-
feasibility of the BIP. For T t = 370K, the BIP is feasible and
the solution is x = [1 0 1 1 1 1 1]T . One of the different order-
ings satisfying this x is σ = (2, 1, 3, 5, 4, 6, 7). The tempera-
ture variation with time for JUST(σ) is shown in Fig. 2. Indeed,
the peak temperature is less than 370K. Reducing T t to 365K,
we obtain an infeasible BIP formulation. Hence, we terminate
the process. Note that, in all above BIP formulations, the error
due to the approximation of (23) is less than 1K.

We execute the task graph periodically with a period of ω =
0.585s, for either choice of σ discussed above. For the two
cases, the series of values of (T opt)n are (374 K, 377 K, 378
K, 378.3 K, . . .) and (369 K, 377 K, 378 K, 378.3 K, . . .).

HM

RQ0 RQ1

RO0 RO1

STR

AR0 AR1

IM0 IM1

FI0 FI1

SY0 SY1

Execution
Task ID Time

(×10−7s)
HM 236070
RQ0 139325
RQ1 139325
RO0 69385
RO1 69385
STR 73618
AR0 13088
AR1 13088
IM0 711744
IM1 711744
FI0 157184
FI1 157184
SY0 1866138
SY1 1866138

Fig. 3. Task graph representation of a MP3 decoder application and execution
times of the tasks on an ARM7TDMI processor

(a) (b) (c)

Fig. 4. Temperature variation with time for the MP3 decoder application for a
given static-ordering of tasks with scheduling using (a) JUST policy, (b)
work-conserving scheduler, and (c) equally distributed idle times.

This experimentally demonstrates Corollary 4. Moreover, it
shows that the constant value of peak temperature, (T opt)∞, is
reached within a small number of periods.

C. Comparison with naive techniques for a practical applica-
tion

Consider an MP3 decoder application shown in Fig. 3. The
execution times of the tasks on an ARM7TDMI processor are
obtained from [9]. Let the maximum allowed makespan ω =
1.5× τtot = 0.874s.

Let σ be given by the ordering of the tasks in the table in
Fig. 3. For this static-ordering of tasks, we compare JUST(σ)
with two other naive policies: (a) work conserving schedul-
ing, where idle times before all tasks are 0, (b) equal idle
times scheduling, where idle time before each task is equal and
makespan equals the bound. The temperature variation with
time for each of the naive policies is shown in Fig. 4. Clearly
the optimal JUST policy outperforms the others.

VI. CONCLUSIONS

Dynamic Thermal Management (DTM) techniques are in-
creasingly becoming necessary in today’s electronic systems
to reduce on-chip temperatures. One such technique, dynamic
voltage scaling (DVS) has been widely studied to manage
on-chip temperatures while meeting performance constraints.
However, with ever increasing leakage current, it is essential
to reduce leakage power using alternate DTM techniques like
stop-go scheduling. In this paper, we proposed the use of stop-
go scheduling to schedule applications modeled as task-graphs,
while satisfying a given makespan constraint minimizing the
peak temperature of the system.

Given a static-ordering of the tasks, we proposed the JUst
Sufficient Throttling (JUST) schedule, which we proved to be
the stop-go schedule with the smallest peak temperature. When
the static-ordering is unknown, we proposed a BIP-based ap-
proximate formulation to find one. We proved that for peri-
odic task-graphs, where the period equals the maximum al-
lowed makespan, the minimum peak temperature is obtained
under a JUST policy. Interestingly, the peak temperature is in-
dependent of the chosen static-ordering of tasks, and is thus,
free to be chosen based on other constraints. We experimen-
tally validated the presented theoretical results on two sample
applications executing on an ARM processor.

ACKNOWLEDGMENTS

This work was supported by the PRO3D project financed by the
European Community FP7 programme (ref. FP7-ICT-248776).

REFERENCES

[1] N. Bansal, T. Kimbrel, and K. Pruhs. Dynamic speed scaling to manage
energy and temperature. In FOCS, 2004.

[2] L. Benini, A. Bogliolo, and G. D. Micheli. Dynamic power management
of electronic systems. In ICCAD, 1998.

[3] S. Borkar, T. Karnik, S. Narendra, J. Tschanz, A. Keshavarzi, and V. De.
Parameter variations and impact on circuits and microarchitecture. In
DAC, 2003.

[4] D. Brooks and M. Martonosi. Dynamic thermal management for high-
performance microprocessors. In HPCA, 2001.

[5] T. Chantem, X. S. Hu, and R. P. Dick. Online work maximization under
a peak temperature constraint. In ISLPED, 2009.

[6] J. Donald and M. Martonosi. Techniques for multicore thermal manage-
ment: Classification and new exploration. In ISCA, 2006.

[7] Y. Liu, R. P. Dick, L. Shang, and H. Yang. Accurate temperature-
dependent integrated circuit leakage power estimation is easy. In DATE,
2007.

[8] K. Skadron, M. R. Stan, K. Sankaranarayanan, W. Huang, S. Velusamy,
and D. Tarjan. Temperature-aware microarchitecture: Modeling and im-
plementation. TACO, 1(1), 2004.

[9] S. Stuijk, M. Geilen, and T. Basten. Sdf3: Sdf for free.
http://www.es.ele.tue.nl/sdf3/.

[10] V. Tiwari, D. Singh, S. Rajgopal, G. Mehta, R. Patel, and F. Baez. Re-
ducing power in high-performance microprocessors. In DAC, 1998.

[11] S. Wang and R. Bettati. Reactive speed control in temperature-
constrained real-time systems. Real-Time Systems, 39(1-3), 2008.

[12] C.-Y. Yang, J.-J. Chen, L. Thiele, and T.-W. Kuo. Energy-efficient real-
time task scheduling with temperature-dependent leakage. In DATE,
2010.

[13] S. Zhang and K. S. Chatha. Approximation algorithm for the
temperature-aware scheduling problem. In ICCAD, 2007.

