

 Institut für Technische Informatik und Kommunikationsnetze
Computer Engineering and Networks Laboratory

 Eidgenössische Technische Hochschule Zürich
Swiss Federal Institute of Technology Zurich

TIK-SCHRIFTENREIHE NR. 33

Martin Gerber

Parallelising Molecular Dynamics
for Message Passing Systems

Diss. ETH Nr. 13437

Parallelising Molecular Dynamics for
Message Passing Systems

A dissertation submitted to the
SWISS FEDERAL INSTITUTE OF TECHNOLOGY ZURICH

for the degree of
Doctor of Technical Sciences

presented by
Martin Gerber

Dipl. El.-Ing. ETH

born 15th December 1969
citizen of Langnau i.E. BE

accepted by recommendation of
Prof. Dr. Lothar Thiele, examiner

Prof. Dr. Wilfred F. van Gunsteren, co–examiner

Examination date: November 26, 1999

Contents

Kurzfassung

v

Abstract

vii

C

HAPTER

 1

Introduction

1

1.1 Thesis Overview 1
1.2 Physics of Atomic Many–Body Systems 2
1.3 Molecular Systems: Models and Algorithms 3

1.3.1 Classical Equations of Motion 3
1.3.2 Potential Function 4
1.3.3 Long–Range Interaction 6
1.3.4 Periodic Boundary Conditions 7
1.3.5 QMD Methods 8

1.4 The G

ROMOS

96 Implementation 8
1.4.1 Treating Boundaries 9
1.4.2 The MD Algorithm 9
1.4.3 The Force Field 12

1.5 Parallel G

ROMOS

: Motivation and Main Goals 13
1.5.1 Related Tools 13
1.5.2 G

ROMOS

96P Design Goal 14

C

HAPTER

 2

Methodology

17

2.1 System–Synthesis 17
2.1.1 Levels of Abstraction 17
2.1.2 System Synthesis: Definition and Motivation 19
2.1.3 The Basic Synthesis Algorithm 20
2.1.4 System Synthesis and Design Space Exploration 20

2.2 Specification and Modelling 21
2.2.1 Overview 22
2.2.2 Parallel Performance Metrics 23

ii

2.2.3 Modelling Parallel Architectures 25
2.2.4 Communication Model 26
2.2.5 Modelling Local Performance 29
2.2.6 Algorithm Specification 30
2.2.7 Modelling of Functions 33
2.2.8 Modelling the Algorithm–Architecture Relation 34

2.3 Design Space Exploration 37
2.3.1 Modelling for System Synthesis 38
2.3.2 An Evolutionary Algorithm for System Synthesis 39
2.3.3 Design Decision 41

2.4 Software Synthesis 42
2.4.1 Overview 42
2.4.2 Sequential Programming Environment 43
2.4.3 Proposed Parallel Programming Environment 45
2.4.4 Code Generation from Control/Data Flow Graphs 46

C

HAPTER

 3

Design Space Exploration

49

3.1 Existing Approaches 49
3.1.1 Specialised Hardware for Molecular Dynamics 50
3.1.2 Parallel Software Implementations 51

3.2 G

ROMOS

96 Analysis 52
3.2.1 Benchmark Specification 53
3.2.2 Profiling 53
3.2.3 Reachable Speed-ups 55
3.2.4 Function Models 56

3.3 Modelling G

ROMOS

 for Design Space Exploration 61
3.3.1 Parallel Model Extension 61
3.3.2 Scaling the G

ROMOS

 Models 63
3.3.3 Models of the MD Algorithm 66
3.3.4 Architecture Models 67

3.4 Exploring the Design Space 71
3.4.1 System Synthesis 71
3.4.2 Performance Estimations 75
3.4.3 Assessment and Design Decision 81

3.5 Conclusions 83

C

HAPTER

 4

The Parallel G

ROMOS

 Algorithm

85

4.1 Neighbour searching 85
4.1.1 The Link Cell Method 86
4.1.2 Grid Cell vs. Link Cell 88
4.1.3 G

ROMOS

96P Pairlist Algorithm 90
4.2 Decomposition Methods 95
4.3 G

ROMOS

96P Spatial Decomposition 97
4.3.1 Spatial Decomposition with a Rectangular Box 97
4.3.2 Domain Decomposition Algorithm 98

iii

4.3.3 Replicated Data 101
4.3.4 Load Balancing 102

4.4 Parallel Twin–Range 104
4.5 Summary 105

4.5.1 Key Results 105
4.5.2 Decomposition Parameter Glossary 106

C

HAPTER

 5

Specification Model and Code Generation

107

5.1 Motivation 107
5.2 Parallel Software Concept 109

5.2.1 Architecture and Function Mapping 109
5.2.2 Parameterized Functions 111
5.2.3 Control/Data Flow Graph 112
5.2.4 Memory Management 113

5.3 Language Specification 114
5.3.1 G

ROMOS

96P Specification 116
5.4 Automated Processing 117

5.4.1 Specification Parser 117
5.4.2 Checking the Static Semantics 117
5.4.3 Processing the Interface Declaration of Functional Nodes 118
5.4.4 Code Generation 119

5.5 Summary 119

C

HAPTER

 6

Performance Comparison

121

6.1 G

ROMOS

 Implementations 121
6.1.1 Hand–Coded Asynchronous MPI Implementation 121
6.1.2 Generated Synchronous MPI Implementation 122
6.1.3 Sequential Versions 122

6.2 Performance Metrics 122
6.3 Results 124

6.3.1 Test Environment 124
6.3.2 Comparison of the Execution Time 124
6.3.3 Exploring the Scalability on the SP-2 125
6.3.4 Workstation Cluster 128

C

HAPTER

 7

Conclusions

129

7.1 Fundamental Results 129
7.2 Future Perspectives 130

Appendices

131

A Benchmark Description 131
B Platforms and Compilation 133

B.1 Reference machines 133
B.2 Compiling Parallel G

ROMOS

134

iv

C EBNF of the Specification Language 135
D G

ROMOS

96P Specification 137
D.1 Control Flow Graph 137
D.2 Control/Data Flow Specification 138

Bibliography

143

Curriculum Vitae

149

Kurzfassung

Computersimulationen molekularer Systeme haben sich seit ihrer Einführung in den frühen Sieb-
zigerjahren stürmisch entwickelt und wurden vielfältig verwendet. Noch heute ist die Simulation
von molekularen Systemen ein Gebiet von wachsender Bedeutung nicht zuletzt deshalb, weil
immer leistungsfähigere Computer verfügbar werden. Die Computersimulationen geben detail-
lierte Einblicke ins molekulare Geschehen und spielen eine Doppelrolle insofern, als sie durch
numerische Berechnungen physikalischer Modelle einerseits zur Ergänzung und Ueberprüfung
der analytischen Theorie dienen und andererseits durch die Möglichkeit der Variation von
Systemeigenschaften den Bereich der Experimente zu erweitern helfen.

Die Methode der Molekulardynamik (

Molecular Dynamics, MD

) beschreibt die Bewegung
der betrachteten Systeme durch Lösung mechanischer Bewegungsgleichungen und Berechnung
der gewünschten strukturellen und thermodynamischen Eigenschaften durch Auswertung geeig-
neter Mittelwerte.

Die Aufteilung eines mit hohem Berechnungsaufwand verbundenen Problems auf mehrere
Prozessoren ist ein Ansatz es zu lösen. Auf dem durch die Fliesskommaleistung beschränkten
Gebiet der Molekulardynamik erlaubt die gleichzeitige Benutzung von mehreren Prozessoren die
Grenze der möglichen Systemgrösse und/oder Simulationsdauer nach oben zu verschieben. Die
effiziente Ausnutzung von Parallelarchitekturen ist jedoch mit Problemen behaftet.

Die vorliegende Arbeit hat zum Gegenstand, bestehende parallele MD Simulatoren zu verglei-
chen, die angewendeten grundlegenden Verfahren auf ihre allgemeine Anwendbarkeit zu untersu-
chen, gegebenenfalls anzupassen und neue Verfahren zu entwickeln. Für eine bestehende
Simulationssoftware (G

ROMOS

™) wird mit neuesten Methoden systematisch die optimale paral-
lele Zielplattform und Parallelisierung bestimmt und realisiert. Im einzelnen werden folgende
Themen behandelt:

1. Eine umfangreiche Vergleichsstudie der meistbekannten klassischen—das heisst nicht-
quantenmechanischen—MD Simulatoren wird vorgestellt. Anhand dieser Studie wird
untersucht:

•

Welche Parallelisierungsarten gibt es, und wie steht die Wahl einer spezifischen Paralle-
lisierungsstrategie im Zusammenhang mit dem eingesetzten Algorithmus.

•

Die Effizienz potentieller Zielarchitekturen wird beurteilt bezüglich der rechnerischen
Leistung und den Entwicklungskosten von Hardware und Software.

vi Kurzfassung

•

Die spezifischen Vor- und Nachteile einzelner Verfahren bezüglich G

ROMOS

 werden
detailliert ausgearbeitet.

2. Zur Bestimmung der optimalen Zielarchitektur kommen folgende Methoden zum Einsatz:

•

Ein Systemsynthese-Werkzeug basierend auf einem Evolutionären Algorithmus wird
vorgestellt und zur Exploration des Entwurfsraumes eingesetzt. Es wird sich herausstel-
len, dass diese Synthesemethode nicht geeignet ist, um für die Klasse der datenparalle-
len Algorithmen geeignete Implementationen zu finden.

•

Kosten und Performanz von möglichen parallelen Architekturen werden abgeschätzt
anhand analytischer Modelle von Algorithmus und Architekturen. Dabei wird sich zei-
gen, dass gegenwärtige Modellierungstechniken paralleler Architekturen nicht geeignet
sind, um beispielsweise

message-passing-basierte

Systeme zu beschreiben; im folgen-
den wird deshalb ein Modell zur formalen Beschreibung paralleler Architekturen auf
höheren Abstraktionsebenen entwickelt.

3. Mit dem Ziel, die Programmierung datenparalleler Algorithmen signifikant zu vereinfa-
chen, wird eine Spezifikationssprache basierend auf einem neuartigen Graphenmodell defi-
niert. Dieser Graph repräsentiert typischerweise den datenparallelen Teil eines Algorithmus
als dedizierten Kontroll-/Datenflussgraph. Der kritischste Teil eines parallelen Algorithmus
ist erfahrungsgemäss die Implementierung der Kommunikation zwischen einzelnen
Rechenknoten, im vorliegenden Fall anhand standardisierten

message-passing

 Bibliothe-
ken. Ein Codegenerator erlaubt es, diese Teile automatisch aus dem Kontroll-/Daten-
flusssgraph zu erzeugen.

Abstract

Computer simulations of molecular systems have shown a tempestuous development since they
began in the early seventies and were put to widespread use. Today computer simulation of
molecular systems is still an area of growing importance, due in part to significant computer per-
formance improvements. Computer simulations allow thorough investigation of molecular proc-
esses and play a dual role in helping to improve and verify the analytical theory through
numerical calculation of physical models on the one hand and helping to widen the scope of
experiments by enabling the variation of system properties on the other hand.

Molecular Dynamics (MD) methods describe the dynamic behaviour of a system by solving
mechanical equations of motion and calculating desired structural and thermodynamical proper-
ties through evaluation of appropriate averages.

Bringing the power of multiple processors to bear on a computationally difficult problem is
one approach to solving an otherwise intractable task. In the field of Molecular Dynamics, where
applications are limited by the floating point performance of computers, the computing power of
multiple processors can be harnessed to increase the size of a molecular system and/or timescale
available to the simulation. However, the efficient use of multiple processors poses some chal-
lenging problems.

The present thesis is apt to compare the various commonly applied parallel MD simulation
tools, to investigate, and, where necessary, to adjust the presently available basic methods in
regards to their general usefulness, and to develop new techniques. For one such MD simulator
(G

ROMOS

™) the optimum parallel target architecture and parallel implementation is to be found
using modern methods systematically. In particular, the major contributions are:

1. A comparative study incorporating the most common classical, i.e. not quantum mechani-
cal, Molecular Dynamics tools is presented. Based on this study, the following topics are
investigated:

•

A survey of decomposition methods is provided and the choice of such a method is
related to the employed algorithm.

•

The efficiency of possible target architectures is assessed taking into consideration per-
formance as well as the development cost of hardware and software.

•

The specific advantages and drawbacks of certain methods are discussed with respect to
G

ROMOS

.

viii Abstract

2. The following methods are used in order to determine the optimal target architecture:

•

A system synthesis tool based on an Evolutionary Algorithm is presented and employed
to explore the design space in order to find suitable implementations. It will be shown
that the presented synthesis method is inadequate in finding implementations for data
parallel algorithms.

•

Based on analytical models of both algorithms and architectures, the cost and perform-
ance of possible architectures are estimated. It will be shown that existing parallel com-
puting models are not suited to describe, for example, message passing systems.
Therefore, a customised formal model is introduced with which parallel architectures
are easily described on a higher level of abstraction.

3. Significant simplification of programming data parallel algorithms was the main goal in
developing a domain specific language in order to specify the algorithm using a new graph
model. A model-compliant specification represents only the data parallel part of the algo-
rithm as a dedicated control/data flow graph. The most critical part of a parallel algorithm is
the handling of message passing based interprocessor communication. With the appropriate
code generator it is possible to generate these parts automatically from the control/data flow
graph.

C

HAPTER

 1

Introduction

The simplicity of Molecular Dynamics simulation lies in its ability to evaluate the development
of multi-particle systems by numerical integration of Newton’s equation of motion. But, as with
most simple principles, additional refinement is needed to correct relevant errors and introduce
concepts and techniques to impart more practical value to an otherwise sluggish software.

Therefore, since the inception of the first computer simulation of molecules in the fifties, much
work has been done resulting in the creation of different Molecular Dynamics simulation tools,
and over the years parallel versions of most simulation programs have been made available.

This thesis deals with the parallelisation of the G

ROMOS

™ (GROningen MOlecular Simula-
tion Software) program package. Novel algorithms are designed to realise the best possible target
system for our application. As an example, a specification language as well as a code generator
has been developed allowing parts of the parallel code to be generated automatically.

1.1 Thesis Overview

In this chapter, an overview of the theory of atomic physics is given to help the reader compre-
hend the main principles of the different Molecular Dynamics simulation techniques. The fea-
tures of some typical Molecular Dynamics software packages are compared with those of
G

ROMOS

, which point out several drawbacks and weaknesses of the current G

ROMOS

 distribution.
This leads us directly to the formulation of a list of requirements for the parallel G

ROMOS

 version.
Including some technical details in regard to the algorithms and force field used in G

ROMOS

turned out to be essential for understanding the parallelisation strategy, which is developed in
subsequent chapters.

Chapter two would serve as a reference to guide throughout the thesis. The employed method-
ology is introduced and explains all development stages from the list of requirements to the final
parallel application. Finer details about the various steps are presented in the subsequent chapters.
In particular, chapter three describes how the best suitable target architecture is found, chapter
four illustrates the applied parallelisation method and chapter five introduces the specification
language and the corresponding code generator. Moreover, the performance of the new parallel
G

ROMOS

 versions—hand-coded and generated—is evaluated and compared with the initial
sequential program in chapter six. Finally, the thesis ends with a conclusion and outlook. Details
regarding the implementation are described in the appendix.

2 Chapter 1: Introduction

1.2 Physics of Atomic Many–Body Systems

A many-body system consisting of N indistinguishable particles, also called an N-body system,
has degrees of freedom in the three dimensional space, where the number of carte-
sian coordinates is kept constant. The number r is derived from the number and kind of con-
straints applied to a molecular system. Constraints usually concern covalent bonds, bond angles,
and even velocities or forces. The remaining f degrees of freedom are treated explicitly by the
simulation tool, or implicitly by adding correction terms to the interaction function of explicitly
treated degrees of freedom.

Some degrees of freedom or interactions in molecular systems are of type . This
means that at a certain absolute temperature T the vibrational frequency of these bonds is so
high that exact results may only be obtained by solving the quantum mechanical equation of
motion, the time dependent Schrödinger equation

(1.1)

with the wave function, the Hamiltonian operator, h the Planck’s constant, and the
Boltzmann constant. Equation (1.1) applies to all particles with position vectors

 in a system containing N particles (vectors: bold). The Hamilton function (classi-
cal) or the Hamiltonian operator (quantum mechanical) represents the total energy of the system.
The usage of

operators

 is typical of quantum mechanics. In contrast to classical physics where
physical quantities are expressed with scalars and vectors, operators apply in quantum mechan-
ics. As an example, the classical momentum of a point mass m moving with the velocity

v

is
. The corresponding quantum momentum is given by

(1.2)

The sign ‘^’ is used to avoid confusion between classical and quantum representatives. The defi-
nition of a quantity in classical mechanics is always also valid in quantum mechanics if it does
not contain derivations (correspondence principle [20]). Therefore, is exactly the same as .

If the system contains only one particle at position

r

, the solution to the Schrödinger equation
is a wave function of the form

(1.3)

with

k

 the wave vector and ,

p

 the momentum and the angular frequency with
. Note that in many-body systems equation (1.3) is not a suitable solution.

In quantum theory, it is not possible to calculate the exact position of a particle, but only a
probability density. The probability w that a particle resides in a certain volume

dV

 is

. (1.4)

In the following passage, the vectors and will be
understood as an abbreviation for the position and momentum vectors of all particles in a many-
body system. Then, the general wave function contains all information about the behav-
iour of a multi-atomic system. The Hamiltonian operator may be separated into a kinetic
energy term and a potential energy term as follows:

f 3N r–=

hυ kBT»
υ

Ĥ Ψ ri t,()⋅ i–
h

2π
------ ∂

∂t
----Ψ ri t,()⋅ ⋅=

Ψ Ĥ kB
i 1 … N, ,()=

r x y z, ,()=

p mv=

p̂
ih
2π
------ r()∇⋅ ih

2π

x∂
∂

y∂
∂

z∂
∂, ,

 ⋅= =

r̂ r

Ψ r t,() ae ikr iωt–()=

hk 2πp= ω
ω 2πυ=

w Ψ r t(,)
2
dV=

r r1 r2 … rN, ,(,)= p p1 p2 … pN, ,(,)=

Ψ r t,()
Ĥ

K̂ V̂

1.3 Molecular Systems: Models and Algorithms 3

(1.5)

For all particles i with mass and position vectors the kinetic energy reads

(1.6)

Partial derivations are often described with operators, e.g. the Laplace operator is
applied on position vectors. Due to the fact that the potential depends only on the position vec-
tors, is not necessarily an operator; thus . The potential energy V determines the
interaction between particles.

Alternatively to the wave function , each point in the phase-space defines one possible
state of the molecular system. The phase-space is the 2N–dimensional space which is spanned by
r and p. If in the three dimensional space, the phase-space would not be orthogonal. To
retain orthogonality, the coordinates and momenta may be transformed to so-called generalized
quantities.

Numerical approximation or analytical solution of (1.1) is called Quantum Molecular Dynam-
ics (QMD). Unfortunately, it is not possible to find analytical solutions for systems of practical
interest but only for the most simple systems with very few particles. Even numerical approxima-
tion of will be too computation intensive for most molecular simulations. Usually it is
not required to solve the Schrödinger equation since simplifying techniques allow accurate simu-
lations of most molecular systems: depending on the desired accuracy, the types of the involved
particles, and the simulation goal (energy minimisation, simulated annealing, etc.), a number of
methods and algorithms may be applied to reduce calculation cost.

1.3 Molecular Systems: Models and Algorithms

1.3.1 Classical Equations of Motion

The particles in question may be separated into two groups, the protons in the atomic nucleus and
the electrons orbiting the nucleus. The nuclei are treated like single particles which must not be
modelled with quantum physics due to their relatively large weight and slow motion. In contrast,
the light electrons move very fast and may not be modelled with classical mechanics in a first
approach. Within the Born-Oppenheimer approximation [12] it is possible to express the Hamil-
tonian of a system as a function of the nuclear variables, the motion of the electrons having been
averaged out. The result is a classical (which means not quantum mechanical) atomic model with
moving point masses. Under these assumptions, the potential energy may be given in closed form
(section 1.4.3, [26]). Resulting classical equations of motion can be formulated in different ways,
according to Newton, Langevin [1] or Lagrange [11]. Newton’s equations of motion have the
form

(1.7)

Ĥ r p̂(,) V̂ r() K̂ p̂()+=

mi ri

K̂ h
2

8π2
mi

i

N

∑–
ri

2

2

∂
∂⋅ h

2

8π2
mi

--------------- ri()∆
i

N

∑–
p̂i

2

2mi

i

N

∑= = =

r()∆ r()∇ 2
=

V̂
V̂ V̂ r() V r()=

Ψ r t,()

f 3N<

Ψ r t,()

f i t()
ri∂
∂

V r()– mi
t
2

2

d

d
ri t()()⋅= =

4 Chapter 1: Introduction

Newton’s equations of motion are valid only with cartesian coordinates, where denotes the
sum of all partial forces exerted on a particle i at time t. To ensure an unified terminology, numer-
ical integration of (1.7) is called Molecular Dynamics (MD). If constraints are applied, the system
simplifies because of the reduction of the number of degrees of freedom. The average effect of
this simplification is expressed with an additional external force per particle. If the external force
is modelled in the same way like the explicitly simulated particles, it is possible to include it in
(1.7) by changing some parameters. Considering time fluctuations of the external force or friction
effects of electrons at atomic level, a higher-order approximation is required: an additional force
is explicitly added to (1.7), leading to the stochastic Langevin equation of motion [1]. Its numeri-
cal integration is called Stochastic Dynamics (SD). A major application of SD is to approximate
the effect of explicit solvent molecules on the dynamics of macromolecules: the macromolecule
is simulated in vacuum with SD without periodic boundary conditions (section 1.3.4), thereby
resulting in a considerable gain in speed at the expense of detail solvent effects.

Two major methods have been developed in recent years: The Monte Carlo method (MC) [12],
so called because of the role that random numbers play in the method, and Molecular Dynamics
(MD).

In an MC calculation a Markov chain of particle configurations representing the micro-state of
the observed system is constructed as follows: From a given initial state a transition to the next
state is performed by a randomly chosen particle which is moved along an also randomly chosen
vector. On the basis of the total energy of the system the Metropolis algorithm [12] is used to
decide whether the new state is added to the chain or the old state counts again. This Markov
chain is to converge to the thermodynamic equilibrium for some million states. Structural and
thermodynamic properties of the investigated substance can easily be obtained. With a dynamic
interpretation of the random movement of the particles (random walk) it is also possible to simu-
late non-equilibrium processes.

The MD method is based on numerical integration of Newton’s equation of motion. During
each time step, the interaction forces between the involved particles in a simulation box must be
determined. After integration, the velocity of each particle is known and new atomic positions can
be calculated for the next step. The result is a spatial trajectory for each particle. With this data
and using statistical physics laws, all interesting structural, dynamic and thermodynamic proper-
ties can be evaluated.

1.3.2 Potential Function

The key issue in modelling a molecular system is the choice of the potential function, also called
the force field. Generally, the potential V of a system containing N particles consists of N additive
partial potentials, each of them representing an interaction of a certain order. The first order inter-
action V1 models the external field which is exerted on all particles. The most important second
order potential V2 is the pair potential standing for the interaction of all distinct particle pairs. The
pair potential depends only on the distance between two particles and typically represents about
90% of the total energy in a many-body system. The third order term, involving triplets of parti-
cles, may not be neglected in simulations of liquids because its average energy contribution is
around 10%. All higher order terms are expected to be small and usually are not taken into
account. The triple-body interaction as a non-additive term in the potential function normally is
not simulated explicitly (because the calculation of sums over triplets of particles is very expen-

f i

1.3 Molecular Systems: Models and Algorithms 5

sive in the sense of computational cost). Instead, the pair potential is replaced with the so-called
effective pair potential , representing all multi-particle effects. Then, the overall potential
reads

(1.8)

with rij denoting the distance (not the connecting vector) of the connecting vector of a particle
pair (i,j). The notation of the effective pair potential summation should indicate that only distinct
particle pairs (i,j) are considered.

To illustrate the contribution of multi-particle effects, fig. 1.1 shows the effective pair potential
as well as the measured pair potential if only two particles are considered. The pair potential of
two argon atoms is drawn as a solid line, whereas the dashed line is the effective pair potential as
it would be used in a computer simulation of liquid argon ().

The potential as shown in fig. 1.1 is characteristic for intermolecular interactions: at very short
distances (0.3 - 0.35nm), the steeply rising part indicates a strong repulsion or resistance to com-
pression due to the nonbonded overlap between electron clouds. The negative sharp bend is the
cohesian attraction in condensed phases (van der Waals force). The attractive tail consists of two
parts, the fast declining (~) van der Waals force, and a long-range Coulomb contribution
(~), which appears only for charged species and affects the potential even at longer distances
(up to 2nm and more). Liquid argon is uncharged, charged species are for example ions or polar-
ised molecules.

Figure 1.1 Normalised Argon pair potential: measured pair potential of two argon atoms (solid
line), and effective pair potential approximated with the Lennard-Jones potential (dashed line) as
it would be used to simulate liquid argon (picture source: [1]).

V2
eff

V r() V1

i

N

∑ ri() V2
eff

rij()
j i>

N 1–

∑
i

N

∑+=

N 2»

r
6–

r
1–

6 Chapter 1: Introduction

Staying at the simple level with only nonbonded interactions or one-atomic liquids, the most
widely used effective pair potential approximation is the Lennard-Jones (LJ) potential (1.9). The
LJ-potential energy depends only on the magnitude of the pair separation rij of an atom pair (i,j):

(1.9)

The parameters are determined by experimenting (measurement).

If a system contains multi-atomic molecules another problem arises: in addition to nonbonded
(intermolecular) interactions covalent bonds (intermolecular) must be treated. Molecules typi-
cally are represented by atoms with orientation-dependent forces, or as structures containing sev-
eral interaction sites. If the molecules are rigid, flexible, or somewhat between, and if there are
internal degrees of freedom, there will be internal forces. Although (1.8) is applicable to multi-
atomic molecules, in most cases a separated potential as in (1.10) is preferred. The potential is
composed of nonbonded interactions (van der Waals and Coulomb interaction) and inter-
actions between covalently bonded atoms (exchange of valence electrons). may
represent the already mentioned external force or friction effects at atomic level.

(1.10)

The Lennard-Jones potential is mostly used as nonbonded interaction model. Models for cova-
lent bonds may be rather complicated depending on the complexity of the molecule and the
desired accuracy of the simulation. Good models take into account bond angles, bond stretching,
dihedral angles, etc. Because the number of bonds in molecular systems is small (~N) compared
with the number of nonbonded interactions (~N2), much effort has been spent to keep nonbonded
models as simple as possible, whereas the computation time of bonded forces is really negligible
even with very accurate models.

Modelling the potential with a generalized pair potential—equation (1.10) combined with
Lennard-Jones potential—is also known as the central-force model. This generalized pair poten-
tial includes both intra- and intermolecular interactions. The central-force method requires to
solve as many differential equations as there are atoms in the system. The major drawback of this
model is as follows: the intramolecular oscillation of most molecules is faster by about one order
of magnitude compared with intermolecular motion. Assuming the same time steps of equal dura-
tion for all interactions, most time is spent by calculating unnecessary nonbonded interactions,
only to keep track of the fast intramolecular motions.

1.3.3 Long–Range Interaction

To reduce the nonbonded computational demand, most Molecular Dynamics programs employ a
pairlist paradigm [1]: the pairlist contains all nonbonded particle pairs whose connecting vector
is shorter than a certain cutoff radius rc. According to Newton’s law of pairwise forces, only dis-
tinct pairs have to be taken into account. The interaction is then calculated only for those pairs in
the pairlist. Due to the inertia of liquids it is not necessary to re-construct the pairlist each time
step. Depending on the cutoff radius, a new pairlist is reconstructed every five to ten time steps.

A system with ionic charges introduces enough electrostatic potential that the cutoff radius rc
must be at least 2.0nm for moderate accuracy, which is often far away of maximum computation
time constraints. Fast methods for ion simulation with relatively small cutoff radii are the Ewald

V2
eff

rij() V
LJ

rij()≈ 4ε σ
rij

 12 σ
rij

 6
–=

ε σ,

V
nonb

V
bon

V
special

V r() V
bon r() V

nonb r() V
special r()+ +=

1.3 Molecular Systems: Models and Algorithms 7

Sum ([11], [51]) and the PPPM method (particle-particle–particle-mesh, [13] and [51]). Both
methods split the Coulomb function into a short-range term which is best handled with pairlist
concepts, and a smooth periodic long-range function which is well suited for solution by Fourier
methods. The Ewald Sum performs an analytical Fourier transformation, while the PPPM method
relies on the very efficient numerical Fast Fourier Transform (FFT).

If only partial atomic charges contribute to Coulomb forces, the electrostatic interaction may
be transformed to be –distance dependent. Here the trick is that a group of atoms whose
atomic charges adds up to zero is treated as a charge group. Then, the interaction between charge
groups is of bipolar type (~) and the radius for which electrostatic interaction really contrib-
utes can be reduced significantly. However, the contribution of far-away atoms is relatively small
and, more important, does not change very much from time step to time step. To take full advan-
tage of this effect, some MD simulators offer a twin-range pairlist method (section 4.4, [26]):
every five to ten steps the pairlist is constructed using the (short-range) cutoff radius rc. Non-
bonded interactions are evaluated every simulation step using this pairlist. An additional long-
range cutoff radius rcl defines the twin-range, an additional space between the two spheres
(). Nonbonded interactions affecting particle pairs with a distance longer than the short-
range cutoff and smaller than the long-range cutoff are evaluated only if the pairlist is updated.
These long-range interactions are kept constant between two pairlist updates. Nevertheless the
long-range cutoff lies between 2.0nm and 3.0nm if ions are in the system and between 1.0nm and
1.6nm without ions. To minimise distortion effects at the cutoff boundary, the interactions beyond
the cutoff may be approximated using the Poisson-Boltzmann reaction field method [1].

1.3.4 Periodic Boundary Conditions

Most simulations are done with periodic boundary conditions to reduce surface and edge effects.
With periodicity, the simulation box is replicated throughout space to form an infinite space fill-
ing lattice. Fig. 1.2 sketches a two dimensional example of a solute molecule consisting of two
charge groups dissolved in water.

Figure 1.2 Periodic boundary conditions and charge groups: central computational box with
eight periodic images of itself in the two dimensional space.

r
3–

r
3–

rcl rc≥

8 Chapter 1: Introduction

If a particle moves in the central computational box, its periodic image moves exactly in the
same way in the neighbouring boxes. Consequently, if a particle leaves the central box, its image
will enter through the opposite face.

It is proven in [5] that in three dimensional space there are five convex box types that can be
stacked in a space filling way, i.e. that there are five possible types of boxes which may serve as a
computational box. We refer to [5] for a complete discussion of all these geometries.

1.3.5 QMD Methods

The classical equations of motion are replaced (or supplemented) with quantum mechanical or
quantum statistical methods to describe the quantum mechanical influences. Several QMD meth-
ods are currently used: the path-integral method [26], the density-functional method (Car-Par-
rinello [35]), the usage of the Wigner function [11], and semi-classical Molecular Dynamics with
Gaussian wave packets [1].

With the path integral simulation technique quantum statistical mechanics is taken into
account through a modification of the standard MD interaction potential. The method is based on
an isomorphism between a classical system of rings, consisting of particles connected by har-
monic oscillators, and the path-integral quantum mechanical description of the quantum system.

For almost classical systems the use of the Wigner function is appropriate. The function is
defined as the Fourier transform of the density matrix containing the generalized coordinates and
momenta. One approach is to model the quantum deviations as a supplementary term within the
Hamilton function. These quantum corrections have been derived analytically up to the third
order. Other methods allow the simulation of the quantum corrections.

Most recently approaches try to model quantum systems with one or a few quantum particles
within a classical environment. Such systems may be simulated by solving the Schrödinger equa-
tion directly for the quantum particles, while performing regular MD simulation for the rest of the
system ([31], [32]). Concrete implementations apply additional pairlists for the quantum parti-
cles.

1.4 The GROMOS96 Implementation
GROMOS is a general-purpose Molecular Dynamics computer simulation package for the study of
biomolecular systems. Its purpose is threefold: 1) Simulation of arbitrary molecules in solution or
crystalline state by the method of Molecular Dynamics (MD), stochastic dynamics (SD) or the
path-integral method; 2) energy minimisation of arbitrary molecules; 3) analysis of conforma-
tions obtained by experiment or by computer simulation.The GROMOS suite includes the program
promd, used to run a MD or SD simulation for one or more solute (protein) molecules plus sol-
vent molecules. promd accepts as input simulation control parameters, molecular topology infor-
mation, initial coordinates and (optionally) restraint and perturbation information. On
completion, promd provides final atom coordinates and (optionally) MD trajectory coordinates,
velocities, and energies.

1.4 The GROMOS96 Implementation 9

1.4.1 Treating Boundaries

Simulations may be run in vacuum without periodicity, or with periodic boundaries using a rec-
tangular, truncated octahedron, or monoclinic simulation box. The truncated octahedron is an
octahedron fitted in a cube with edge length a such that the resulting volume is . The moti-
vation to implement this complicated shape in a simulation environment is to reduce the system
size for spherical solutes. A monoclinic simulation box is a rectangular box with oblique angles.
Monoclinic boxes are best suited for crystalline simulations. Within the thesis, rectangular and
truncated octahedron boxes are further investigated in section 4.1 (neighbour searching).

GROMOS applies a charge group pairlist and supports the twin-range method. Nonbonded
interactions are calculated either for all atoms of a charge group or for none. While a charge
group moves outside the simulation box and periodic boundary corrections apply, the charge
group as a whole is moved to the opposite side. Though it is possible that some atoms still reside
outside the simulation box after the boundary correction took place (fig. 1.2). For example, this is
the case for one atom of the five-atomic solute charge group in fig. 1.2. To ensure that one charge
group does not have the same neighbour twice (once in the central computational box, and once
as a mirrored particle), the nearest image convention restricts the cutoff radius to a certain size. In
case of a rectangular box, the maximum cutoff is the half of the smallest side length.

Within GROMOS, nonbonded and bonded interaction types are separated. The Lennard Jones
interaction potential model and a correction term contribute to the nonbonded part (1.26),
whereas another model for covalent bond forces specifies the bonded part. For solvent, all intra-
molecular atomic interactions are excluded from nonbonded summation. Thus, the solvent non-
bonded atomic interactions are calculated only between charge groups according to the pairlist.

1.4.2 The MD Algorithm

Both MD and SD simulation algorithms use the Leapfrog integration scheme. Additional con-
straints e.g. for bond lengths are handled with the SHAKE method. The algorithm which is pre-
sented here refers to the GROMOS96 time stepping MD simulation algorithm, however, not all
formulae are given and the perturbed case is not treated at all. Formulae are given on the one hand
to explain the force field which is of central interest, on the other hand to provide the basis from
which computational models are derived in section 3.2.4. For a complete description of the algo-
rithm, the Leapfrog and SHAKE techniques refer to [22], [26] and [60].

To avoid a naming confusion, small variable names, e.g. r and v refer to atom position and
velocity vectors, whereas capital names like R and V refer to position and velocity vectors of
groups of atoms or molecules. The same naming convention applies for the masses (M, m). If V is
not bold, it is the potential V(r). Now, time dependences are included in the formulae.

Preconditions

1. Read molecular topology, initial coordinates and the simulation specification file. Read in
optional data as specified: constraints, velocities, simulation box type and size, etc.

2. Calculate the solute and solvent kinetic energies (1.11) according to point two of the algo-
rithm (below) and the corresponding temperatures. The initial time step is zero.

(1.11)

a
3

2⁄

K Ekin
Solute

t t∆
2
-----–

 Ekin
Solvent

t t∆
2
-----–

 +=

10 Chapter 1: Introduction

3. Check the positions r(t) satisfying the constraints, and that the velocities are zero
along the constraints.

Algorithm

1. Put solvent molecules and solute charge groups back into the simulation box if necessary.

2. Calculate the kinetic energy of the solute:

Preparation: calculate the centre of mass velocity and the mass of all solute mole-
cules , with npm the total number of solute molecules:

(1.12)

(1.13)

The double index denotes atom i of solute molecule which consists of atoms.
Equation (1.14) delivers the atomic velocities relative to the molecular centre of mass ,
where ‘int’ indicates that this velocity is relative to the centre of mass.

(1.14)

Now the energies: using (1.12)–(1.14), calculate the solute molecular centre of mass trans-
lational (‘tr’) kinetic energy and the solute internal (‘int’) and rotational (‘rot’) kinetic
energy:

(1.15)

(1.16)

with NSolute the total number of solute atoms.

3. If the Virial (1.20) is to be calculated, calculate the centre of mass positions of solute mole-
cules:

(1.17)

For solvent molecules, the centre of mass is the position of the first atom of the molecule.

Calculate the atomic positions relative to the centre of mass for solute molecules
according to (1.18) and for solvent molecules respectively.

(1.18)

v t t∆
2
-----–

Vα Mα
α 1 … npm, ,=

Vα t t∆
2
-----–

 1
Mα
-------- miα viα t t∆

2
-----–

 ⋅
i 1=

Nα

∑=

Mα miα
i 1=

Nα

∑=

iα α Nα
viα

int

viα
int

t t∆
2
-----–

 viα t t∆
2
-----–

 Vα–=

Ekin
tr,Solute

t t∆
2
-----–

 1
2
--- MαVα

2
t t∆

2
-----–

α 1=

npm

∑⋅=

Ekin
int rot,Solute,

t t∆
2
-----–

 1
2
--- mivi

int
2

t t∆
2
-----–

i 1=

NSolute

∑ Ekin
Solute

t t∆
2
-----–

 Ekin
tr,Solute

t t∆
2
-----–

 –= =

Rα
1

Mα
-------- riα miα⋅

i 1=

Nα

∑=

riα
int

riα
int

t() riα t() Rα t()–=

1.4 The GROMOS96 Implementation 11

4. Calculate a pairlist if required. The pairlist contains all charge group pairs in consideration
of a cutoff criterion.

5. Calculate the unconstrained forces from the potential energy function V(r(t)) according to
(1.7) for all atoms in the system:

(1.19)

The potential is defined in equations (1.25) and (1.26). At the same time, calculate the
molecular Virial if required. The summation in (1.20) runs over all pairs of atoms that
are selected by the cutoff criterion used, and for which atoms i and j are in different mole-
cules ; this is symbolised in the relation . The connecting vector of such
an atom pair is the nearest neighbour image vector, if periodic boundaries are applied. The
subscript ‘ ’ indicates “different atoms in different molecules”.

(1.20)

6. If required: Calculate the volume Vb(t) and the pressure P(t) of the box; write the positions

r(t), the velocities and box dimensions to trajectory files.

The rule that the average of the kinetic energy in a system equals the molecular Virial is
used to calculate the pressure of the system:

(1.21)

7. Determine the new unconstrained velocities (integration using SD or MD Leapfrog algo-
rithm) for all atoms i in the system:

(1.22)

8. Determine the new translational centre of mass velocities of solute molecules

and the atomic velocities relative to the centres of mass by using equations

(1.12) and (1.14) again.

9. Scale the new velocities according to a optional temperature bath.

10. Calculate the new unconstrained positions

(1.23)

11. Make the positions satisfy the constraints using the SHAKE algorithm.

12. Calculate the constrained velocities by replacing the unconstrained ones:

(1.24)

i 1 … N, ,=

f i t() ∂V r t()()
∂ri

----------------------–=

Ξ t()

α β, iα jβ< riα jβ

iα jβ

Ξ t() 1
2
---– riα jβ riα

int
t()– r jβ

int
t()+[] f iα jβ t()⋅

iα jβ<

N

∑=

v t t∆
2
-----–

P t() 2 K Ξ t()–[]
3Vb t()

-----------------------------=

vi t t∆
2
-----+

 vi t t∆
2
-----–

 1
mi
------f i t() t∆+=

Vα t t∆
2
-----+

viα
int

t t∆
2
-----+

vi t t∆
2
-----+

ri t t∆+() ri t() vi t t∆
2
-----+

 t∆+=

ri t t∆+()

vi t t∆
2
-----+

 ri t t∆+() ri t()–

t∆
---------------------------------------=

12 Chapter 1: Introduction

13. Calculate the new solute kinetic energy and the new solvent kinetic energy

 by using equations (1.15) and (1.16) again. Determine the new kinetic

energy K of the system (1.11).

14. Write additional data to trajectory files and/or standard output/error if required.

15. Scale atomic positions and the box lengths with the pressure coupling scaling factor if
required. Scale reference positions of positionally restrained or constrained atoms.

16. Increase the time and the step number by one and continue with step one of
the algorithm.

1.4.3 The Force Field

The calculation of the unconstrained forces as in step five of the algorithm is the major task in a
MD simulation. In principle, the interaction potential describes the whole dynamical model of the
atomic system where the choice of a certain force field is coincident to the fixing of the potential.
Like the majority of all MD simulators GROMOS96 implements the concept of potential separa-
tion distinguishing the standard physical atomic interaction separated into bonded and nonbonded
terms and a non-physical special term, see (1.10). The special potential is for particular purpose,
e.g. restraining functions. According to the molecular model [26], the bonded potential is further
separated:

(1.25)

Thus, GROMOS applies the central-force model to determine the potential. Bonded contribu-
tions come from the covalent bonds itself, the bond-angles, harmonic or improper dihedral
angles, and trigonometric dihedrals. For the description of the bonded contributions refer to [26].
To overcome the problem of very small time steps due to fast oscillations in bonded terms,
distance constraints may be applied along covalent bonds. With this technique, which is called
constraints dynamics, is determined by the relatively slow intermolecular interaction. The fast
oscillations are handled with the SHAKE algorithm.

Nonbonded forces are calculated for all distinct charge group pairs (nb pairs) under considera-
tion of a cutoff criterion. To model nonbonded forces, GROMOS makes use of a potential com-
posed of a standard Lennard-Jones effective pair potential and a reaction field correction term
(1.26).

(1.26)

Following the charge groups concept, the Coulombic interaction is included in (1.26). The reac-
tion field correction prevents distortions due to the cutoff criterion. The parameters , , ,
and (1.26) are called force field parameters. Additional parameters appear if atom i or j is
perturbed which is the case in free energy simulations [26].

Ekin
Solute

t t∆
2
-----+

Ekin
Solvent

t t∆
2
-----+

tn 1+ tn t∆+=

V
bon r t()() V

bond r t()() V
angle r t()() V

har r t()() V
trig r t()()+ + +=

t∆

t∆

V
nonb r t()() V

LJ r t()() V
CRF r t()()+[]

(nb pairs)

∑=

V
nonb r t()()

C12 i j,()

rij
6

-------------------- C6 i j,()–
1

rij
6

-----⋅
(nb pairs)

∑=
qiqj

4πε0ε1
----------------- 1

rij

Crf r⋅ ij
2

2Rrf
3

2 Crf–

2Rrf
----------------––⋅

(nb pairs)

∑+

C12 C6 Crf
Rrf

1.5 Parallel GROMOS: Motivation and Main Goals 13

When simulating liquids the nonbonded interaction calculation is the most time consuming
task. Therefore, GROMOS differentiates two kinds of molecules, namely solute and solvent mole-
cules. This naming convention is based on historical grounds but has been retained, although
today it is possible to specify any collection of molecules including solvent in the solute part. The
implementation of the nonbonded interaction calculation makes use of different specifications:
the function for solvent restricts the available features such that its implementation is fastest while
the solute part supports all available GROMOS features. These limitations do not go to the extent
that for each kind of solvent a dedicated optimised subroutine is provided. The most important
restrictions are (affected functions enumerated in brackets):

• A solvent molecule must be rigid. The internal structure is maintained by applying distance
constraint forces between its atoms (SHAKE algorithm, bonded forces).

• A solvent molecule consists of exactly one charge group and the position of the first atom
in a solvent charge group is taken to represent the position of this charge group (preparing
the Virial, pairlist).

• Distance restraining cannot be applied to atoms of a solvent molecule (nonbonded forces).

• Solvent molecules may not be perturbed (nonbonded forces).

The restrictions do have significant implications on the complexity of the implementation. The
solvent-solvent part of the nonbonded interaction calculation is simple, see (1.26), while particle
pairs including solute charge groups are much more complex to calculate, mainly caused by the
code for the perturbed case.

1.5 Parallel GROMOS: Motivation and Main Goals

1.5.1 Related Tools

GROMOS has been developed by W.F. van Gunsteren and co-workers since 1978 at Harvard Uni-
versity (USA), the University of Groningen (The Netherlands) and ETH Zürich (Switzerland).
The latest official release (GROMOS96: [26] and [60]) is written in standard FORTRAN 77 with
the only exception that include files are used, mostly consisting of global variables and constants.
Several hundred licences1 in over 40 countries and the availability of the source code for research
purposes promotes the extendability significantly. GROMOS codes can be run on various machines
ranging from PCs to super-computers. Special nonbonded force calculation subroutines (High
Performance FORTRAN–HPF) for Cray computers and for the SGI Power Challenge are availa-
ble. Competing with GROMOS are tools such as AMBER ([8], [57]) and CHARMM [34] (Chem-
istry at HARvard Macromolecular Mechanics), which belong to the same class of applications
and offer similar functionality.

AMBER has been developed at UCSF (University of California, San Francisco) in collabora-
tion with other universities and companies. Originally derived from the same source (AMBER is
a further development of an early version of GROMOS) the software architecture and fundamental

1. For more information, see the Gromos homepage at http://igc.ethz.ch/gromos/ or contact Biomos b.v., Laboratory
of Physical Chemistry, CH-8092 ETH Zürich, Switzerland.

14 Chapter 1: Introduction

functions are very similar. Additionally, AMBER provides a Particle-Mesh Ewald (PME) method
to treat long-range forces and a quantum mechanical simulation method, where one part of the
system is treated quantum mechanically, and the rest classically. However, SD simulation and
path integral method, both of which are features of GROMOS96, are not provided by AMBER.

Initially published in 1982 as “A Program for Macromolecular Energy, Minimization, and
Dynamics Calculation” [34], the CHARMM Molecular Dynamics simulation program has been
consequently developed further. Similar to the AMBER package, the current version of
CHARMM incorporates a fast multipole method based on the Ewald sum and a quantum
mechanical simulation method. The latest versions were written in FORTRAN (machine depend-
ent code in C) and provide some visualisation possibilities for X-Windows systems. A parallel
version of CHARMM, based on a replicated data model and PVM interprocessor communica-
tion, is available for various machines (PVM: parallel virtual machine). Like GROMOS,
CHARMM has the possibility to run MD simulations in four spatial dimensions.

1.5.2 GROMOS96P Design Goal

In general, molecular systems with an overall complexity of about 50,000 to 100,000 atoms are
considered. Such systems typically consist of one or more solute molecules surrounded by a liq-
uid (solvent). In each time step Newton’s equations of motion are solved by numerical integration
of the intra- and intermolecular atomic forces. Despite the usage of a pairlist combined with reac-
tion field correction techniques, one time step of a 36,000 atoms simulation takes 30 seconds on a
currently available high performance workstation ([42], and table 3.2). A ten nanosecond simula-
tion would thus take about two days, whereas for a breakthrough MD research simulations over
microseconds are required. The great demand for accelerating techniques (new algorithms, spe-
cial purpose hardware, parallelisation) is therefore a big challenge for developing dedicated par-
allel systems.

In order to speed-up MD simulations of liquids, general acceleration techniques have been
developed in the recent past: efficient algorithms, parallel simulations on general purpose com-
puters and dedicated hardware accelerators. The gain obtained from more efficient algorithms is
obvious and indisputable, and the choice of an algorithm is a compromise between accuracy and
calculation speed. One example of an algorithmic improvement is the usage of efficient neigh-
bour searching methods [64] to build the pairlist. Most recently published parallel software
implementations are often aimed at multi-million particle systems [49] or massively parallel
machines. Of course, the basic concepts in parallelising MD code (section 4.2) are more or less
the same and undisputed. Dedicated parallel hardware architectures are often developed for astro-
physical systems with millions of particles [52]. Corresponding software for MPPs (massively
parallel processors) is optimised for thousands of processors, parallel input and output (I/O) and
irregular particle distribution ([28], [62]). Highly specialised hardware accelerators for MD simu-
lations (MD-Grape [40] and MD Engine [63]) with ASICs for force calculation do not support
special MD functions like energy summation, Virial calculation, free energy calculation, never
mind Newton’s Third Law of pairwise forces [40]. In addition, parallel MD systems are often tar-
geted towards high performance and do not provide full production code functionality
[54][36][47].

1.5 Parallel GROMOS: Motivation and Main Goals 15

Already existing parallel versions of GROMOS from other sources suffer from reduced func-
tionality: EulerGromos [36] and UHGROMOS [47], which do neither support parallel simulation
of a truncated octahedron (section 4.1.3) nor the twin-range pairlist method (section 4.4). Parallel
code which is delivered with the standard GROMOS96 distribution is not sufficient for the follow-
ing reasons: a shared-memory version implemented in High Performance FORTRAN (HPF)
scales rather badly and may not fulfil our performance demands. Supporting in addition a vector-
ized version, which is outdated anyway, leads to large maintenance costs surpassing the capabili-
ties of a lab in a university environment. To overcome these problems and simplify the integration
of new features like QDGROMOS ([6], [32]), an extension to simulate some particles quantum
dynamically within a classical environment, the development of GROMOS96P—the new parallel
GROMOS based on the ’96 release—is inevitable. The expectations from this new release concern-
ing both software and hardware issues are as follows:

• The main goal of our research is to speed-up classical MD simulations of liquids by at least
one order of magnitude. The speed-up is defined as the ratio of the execution time of the
sequential GROMOS96 official release to the execution time of the new parallel
GROMOS96P, both of which running the typical performance benchmarks ThrG2 and Thr2
(appendix A).

• This speed-up is to be achieved either with an arbitrary parallel architecture or with a dedi-
cated scalable coprocessor for high-end workstations.

• The overall hardware cost may not exceed the amount of about 20,000 USD.

• In order to ensure the acceptance within the GROMOS community, the new software must
also run on all currently supported platforms (GROMOS96 release).

• Avoid many versions of the same function in order to improve the maintainability, e.g. two
versions of an interaction calculation function, one specialised for a shared memory archi-
tecture and the other for a vector machine.

• The GROMOS96P environment should derive different program versions for different paral-
lel and single processor architectures from the same source code.

• This automatically improves extendability: if a new function is to be added, the program-
mer provides one version of the new function which is inserted into the source code at one
dedicated point. So the user is not hold up by programming special code for a certain archi-
tecture.

• The new system must be scalable: by adding more hardware, an enhanced speed-up of
about 20-40 is to be reached for reasonable molecular problem sizes.

• GROMOS96P software shall not be slower than GROMOS96 on a single processor worksta-
tion.

Since one of the main goals was platform independence, the new parallel version of the soft-
ware had to be developed independently of the targeted parallel architecture. Thus great attention
was set on drawing a sharp distinction between the new GROMOS96P parallel software and sup-
plementary libraries. As it is naturally the case with any hardware extensions for PCs and work-
stations, a dedicated MD coprocessor would also come with its appropriate driver software.

16 Chapter 1: Introduction

All the mentioned goals should be achieved by leaving the GROMOS96 look and feel
untouched, changing neither the simulation setup nor the format of input and output data. This
point also implies the downward compatibility. As stated in the list above, the intention was to
improve many things without of losing even one of the achievements GROMOS96 provides.
Therefore, the new system must provide full production code capability and the same numerical
accuracy as GROMOS96. In addition, the portability of the new code must be retained, as well as
the esteemed ease of use of GROMOS96.

Fortunately, to achieve the required speed-up and to stay within reasonable bounds regarding
the parallel software complexity it is not absolutely necessary to parallelise the complete
GROMOS96 package (section 3.2.3). The focus was on parallelising the most computation inten-
sive parts of the classical MD algorithm by providing full production code functionality.

Naturally the parallel architecture, on which the new parallel GROMOS96P will be imple-
mented, was not obvious in the beginning. Therefore, a novel design space exploration method
has been developed to find the optimal trade-off between time-to-market, cost and performance
[44]. To achieve shortest development time, the latest Hardware–Software Codesign technologies
[15] and new approaches in system synthesis [17][16] were applied.

CHAPTER 2 Methodology

The most important conditions for all kinds of product development are: being on time, to be as
cheap as possible and as good as required. The industry has started looking at the product devel-
opment cycle comprehensively, to reduce the design time to be competitive in the time-to-market
race. Recent trends show that time-to-market is at least equally, if not more important, than the
performance or the cost of the product. Experience in the development of electronic systems has
shown that a good design trade-off is found very often in a mixture of hardware and software.
Providing mixed hardware–software implementations using synthesis techniques lead to the co–
synthesis approach, where the prefix ‘co–’ means ‘concurrent’. To achieve the shortest design
time along with minimal cost and maximum performance, it is indispensable to apply synthesis-
oriented methods. High level modelling of systems and synthesis techniques allow systematic
and rapid evaluation of implementation alternatives, which is a prerequisite for efficient design
space exploration.

This chapter starts with an outline of what is currently understood by the term “Hardware–
Software Co–Synthesis” and gives an overview of recent developments in high-level synthesis.
For a more comprehensive discussion of the subject we refer to [15], [16] and [17]. In what fol-
lows, three main topics are selected and worked out in more detail: 1) how systems are modelled
2) design space exploration using system synthesis methods and 3) software synthesis. It is not
intended to present here a thesis about design methodology in general, but to introduce the meth-
ods and techniques which have been used in the Molecular Dynamics project. This chapter may
be treated independently but constitutes the theoretical foundation for subsequent chapters.

2.1 System–Synthesis

2.1.1 Levels of Abstraction

Using formal methods in system design has several advantages: a formal specification can be ver-
ified, semantic checks are easily implemented, and lastly, correctness and reliability can be guar-
anteed to a large extent. All these qualities have promoted the use of formal methods to the extent
they are used today. A model is a formal description of a system or part of a system. Deliberately
considering only special properties of the system for a specific model is called abstraction. An

18 Chapter 2: Methodology

abstraction is a special view of a system and, depending on the modelled characteristics, the
resulting formal description is either a high level model, a piece of executable assembler code or
something between.

In the behavioural domain what a design does is of central interest, not how it is built. This
domain is in contrast to the structural view, which is described in the next paragraph. High level
models describe the interplay with the outside world and the behaviour of the whole system under
consideration. In addition to the behavioural model and the interface specification, a complete
behavioural specification for a certain abstraction level may also include a description of the con-
straints imposed on the system. Starting with such a behavioural top level system specification, a
number of design decisions are required to accomplish system partitioning into subsystems. The
design decisions concern the target architecture, and the partitioning determines the mapping of
parts of the behavioural model (functions) to hardware components. The next step includes the
implementation of associated subsystems, whose behavioural models mostly are derived directly
from the system level description by adding an additional level of detail. Implementing a subsys-
tem means partitioning the specification into hardware and software. The hardware part defines
the architecture of a subsystem and corresponding behavioural models describe the properties of
each component. Typical components on this level of abstraction are communication channels,
computational nodes (e.g. processors), etc. Hardware components are to be refined to the RTL
(Register–Transfer Logic) level. Typical behavioural models on this level consist of a data path
structure and a state machine specification to control that data path. Finally, the logic level is
described with boolean expressions, and the next refinement step may consider circuit descrip-
tions of physical gates (e.g. transistor behaviour: timing and other properties). The abstraction
levels of the software part are more intuitive: the software is decomposed into processes, mod-
ules, blocks and subroutines, all of which are implemented using a high level programming lan-
guage. Further refinement steps include the compilation process which results in assembler code,
which is then translated into executable binary code.

As mentioned above, on most abstraction levels the system is represented from different
views, each view providing either relevant information for the next refinement step (top-down) or
the interface to the next higher level of abstraction (bottom-up). The behavioural view represents
a certain abstraction level with a set of functions independent of their implementation. The appro-
priate structural view stands for one specific implementation of the behavioural model at the
same abstraction level. So the structural representation bridges the behavioural specification and
possible physical implementations. For example, the structural view of a behavioural subsystem
specification is a block diagram consisting of processors, memory, communication channels, etc.
As another example, a graphical VHDL1 specification of a finite state machine (behaviour) is
refined by generating a concrete implementation (structure) for a specific target, e.g. a program-
mable logic device (PLD).

Of course designing complex systems is not just a sequence of many refinement steps starting
from a system level behavioural description, several iterations between different levels of abstrac-
tions are generally inevitable. Because the focus is on short development time, there is an increas-
ing need for computer aided design (CAD) tools which partially automatise these iterations. In
addition, modern systems are not developed following a strict top-down approach, as a higher

1. VHDL=VHSIC–HDL, Very High Speed Integrated Circuit Hardware Description Language, [46]

2.1 System–Synthesis 19

level behavioural specification may be based on existing lower level implementations. CAD tools
should be able to consider that too. To make matters worse for tool implementors, alternative
classifications of levels of abstraction are in common use [16].

2.1.2 System Synthesis: Definition and Motivation

Synthesis is the (semi-)automated translation process from a behavioural description into a struc-
tural description, e.g. between two adjacent levels of abstraction or between sights within the
same level. The input for system synthesis is the behavioural specification of the whole system.
Associated with the input specification are constraints like execution time (performance) or hard-
ware cost. Several other factors may also affect synthesis results, namely the estimated develop-
ment time for a certain solution, existing reusable approaches or products, and more. Under this
point of view, system synthesis is a multi-objective optimisation problem. System synthesis
resolves the following tasks:

1. A target architecture (structural view) is provided, consisting of hardware components.

2. The behavioural model is partitioned into single functions or function blocks.

3. The mapping of functions to hardware components is determined.

On the highest abstraction level possible target architectures cover the whole range, from cli-
ent/server systems or workstation clusters over shared memory multiprocessors, specialised
workstation architectures, embedded systems, to heterogeneous solutions. So the design space,
which is defined as the space spanned by all possible implementations and all possible architec-
tures, is very large.

For lower levels of abstraction the traditional capture-and-simulate design methodology has
already been replaced with automated design tools. Especially for VLSI (Very Large Scale Inte-
grated) circuit designs, behavioural compilers are available delivering the RTL data path structure
as well as the corresponding state machine. Usually both input specification and delivered output
of the behavioural compiler are represented in a hardware description language, for example
VHDL. Within the software domain, synthesis is even more widespread: everybody is using a
general purpose compiler to translate his source code written in a high level programming lan-
guage into a machine executable program. Since synthesis on lower levels of abstraction is prac-
tised for quite some time, the wish is to move design automation to higher abstraction levels.
Moreover, as the complexity of systems increase, the need for high level design automation will
also rise, enabling very complex tasks like design space exploration to be (partially) automated.
There are many reasons to move synthesis techniques to higher abstraction levels:

• Systems are easier to understand on higher levels of abstraction as the models contain only
the most critical design parameters.

• Fast design cycle: to meet time-to-market constraints, CAD tools are essential. Even if the
CAD tool is capable to synthesize only parts of a system, it is still a major gain in time, and
verification for manually refined parts is still possible.

• For an increasing number of applications a suboptimal but synthesized implementation is
more cost effective than designing or optimising manually for optimal results.

20 Chapter 2: Methodology

• Faulty designs: synthesis tools avoid iterations due to design errors. Provable correct results
are guaranteed, because the synthesizer follows comprehensible transformation rules. The
knowledge of these rules enables a formal verification of the results.

• Design space exploration: Using synthesis techniques, many design alternatives can be
generated, quickly evaluated and assessed.

2.1.3 The Basic Synthesis Algorithm

Inferring from the previous section, the task of system synthesis may be understood as an optimi-
sation problem. This is comparable with compilers, where different optimisation goals lead to
either fastest implementations or smallest programs. A system synthesis tool, taking into account
the constraint properties, and the design space as defined earlier, has to solve the optimisation
problem to be able to provide at least one implementation proposal. After the optimisation goal is
declared (e.g. minimal cost), the problem is solved by iteratively executing 1) allocation, 2) bind-
ing and 3) scheduling.

The allocation step selects an architecture, especially the number and kind of hardware
resources like generic computational nodes, communication channels (network, buses), proces-
sors, ASICs (Application Specific Integrated Circuit), etc. This step obviously influences the
cost–performance balance. Parts of the partitioned behavioural model are associated with allo-
cated resources within the binding procedure. The schedule determines the sequence of execution
of all functions of the behavioural model. This is done by defining time intervals for functions
and communications: one specific task may start execution or data transportation only within its
associated time interval. After the schedule is determined, the implementation proposal is
checked against constraint violations. If it is found to be valid, synthesis was successful. It should
be noticed that within this context, a valid implementation is still an abstract model for which it is
expected that a physical implementation meeting the optimisation goal may be found.

Additional problems may arise if also political or other environmental authorities, e.g. a busi-
ness policy, are affecting further project drafts. Design trade-offs are mostly not strictly based on
synthesis results, but also on these informal influences and the designer’s knowledge, e.g. about
reusable systems or parts of a system. This kind of constraints are difficult or impossible to incor-
porate in a CAD tool, and due to the “human nature” of design decisions at this abstraction level
synthesis tools are still rare, if at all available, and still need a lot of manual interaction. Neverthe-
less, synthesis results are often doubtful, and intuitive or heuristic design decisions lead to better
implementations. Hence it is not surprising that CAD tools still cannot completely automatise the
synthesis of complex systems, although high quality designs are generated for single tasks.

2.1.4 System Synthesis and Design Space Exploration

Most important design decisions at system level mainly determine cost and performance of an
implementation. To explore the design space thoroughly, as many design alternatives as possible
must be tested if they meet the design goals. The previous section has shown that generating
appropriate implementation candidates may be automated by using system synthesis: different
solutions are obtained by repetitively executing a synthesis step with modified parameters. From
this point of view, design space exploration means iterating between adjacent abstraction levels or
different sights of the same level. The iteration is terminated if at least one apparently suitable tar-

2.2 Specification and Modelling 21

get architecture could be found. Using synthesis techniques, many design alternatives can be gen-
erated, quickly evaluated and assessed. Applied to design space exploration, this is a suitable aid
to search target architectures. Combined with appropriate performance and cost estimation, faulty
design decisions causing to conflicts with constraints may be detected without implementing
them. But in most cases, synthesis is not the only source of implementation suggestions. The
knowledge of the designer about existing third party implementations combined with creativity,
fantasy and intuition is the second important source.

As a key prerequisite for system synthesis the top level behavioural specification must be pro-
vided in a formal representation with a specified syntax and semantics, requiring the specification
language to be compatible with the synthesis tool. The specification model should be chosen such
that the behaviour of the system (the algorithm, interfaces and constraints) may be described,
along with the synthesis results and other implementation suggestions (structural view). The
choice of the specification model and its language is one important issue, providing enough
design alternatives another one, but successfully exploring the design space needs even some
more tasks and methods:

• Most important is a fast assessment of the implementation proposals. Those are not only
the results of system synthesis, but also other possible architectures.

• The assessment should take into account the cost of a binding and the performance of the
schedule. The assessment must be fast or automated to allow many hypothetic system
implementations to be compared with each other within reasonable time.

• Performance comparison requires an accurate performance and cost estimation. For that,
suitable metrics must be found or developed.

• The specification model should serve to describe implementations for performance and
other estimations as well. Thus the model must be able to describe architectures, algorithms
or programs, and to consider constraints.

Once an adequate solution is found, the subsystems are refined concurrently. If a subsystem
consists of hardware and software, codesign technologies are applied [17][15]. During the design
process, when the functional mapping changes (modification of system partitioning), new func-
tions are added (modification of the algorithm), or behavioural model parameters are modified
(modification of constraints, optimisation goal, etc.), the current partitioning and its implementa-
tion must be verified. This iterative process ensures that the design goal with constraints is
granted at any time.

2.2 Specification and Modelling
Models of algorithms and architectures are required to use synthesis methods, but also for manual
refinement a good formal model is the base for the design and analysis of fast and portable paral-
lel algorithms. The reason is because it is not enough to provide a lot of promising implementa-
tion variants, at least equally important are methods to estimate their cost and performance.
Estimations are used to assess and compare the variants with each other. In particular, we are
looking for a specification method which is best suited for design space exploration, especially in
connection with the Molecular Dynamics project. The demands on a specification model are
manifold, and for our purpose the following tasks must be covered:

22 Chapter 2: Methodology

• The system level behavioural specification describes an abstract model of the MD algo-
rithm as introduced in section 1.4.2.

• The same specification model should be applicable to system level and subsystem level.

• A slightly more abstract behavioural view of the top level specification is used for system
synthesis (section 2.3.2). This view incorporates only properties of the system which are
valuable for the synthesis tool.

• The model must be suitable to describe parallel architectures (structural view) and parts of
the algorithm (behavioural models of functions). This is required to allow accurate per-
formance and cost estimation.

Following an overview of some common modelling and specification methods, the modelling
techniques which were applied to the parallel GROMOS project are introduced.

2.2.1 Overview

The search for a suitable specification language is very much a subject of ongoing research, and
the final choice of a specification method depends on many factors. The choice of a system or
algorithm specification method depends on the one hand on the level of abstraction, on the other
hand on the system itself ([15], [9]). Since it is very popular to use procedural hardware descrip-
tion languages like VHDL to specify hardware and software on intermediate abstraction levels,
its usage for behavioural specification on system level is not convenient: VHDL is a complex,
very general parallel language. A system synthesis tool coping with the whole complexity of this
language is unimaginable, since the specification has to be analysed thoroughly. Additionally, it
makes no sense to use such a complex language for specifying on system level, where the specifi-
cation should be most abstract. As an advantage, VHDL specifications can be used throughout the
levels of abstraction, for behavioural and structural descriptions.

Alternatively, other parallel languages are commonly used: Verilog [23], CSP (Communicat-
ing Sequential Processes) [19], Statecharts [18], SDL (Specification and Description Language)
[4], and many more. Verilog is competing with VHDL and offers similar features, unfortunately
the complexity is also comparable. The CSP language may be used as a programming language
and for specifying hardware. Thus it is rather complex and supports a task level parallelism with
message passing communication. Statecharts are mainly used for modelling reactive systems and
might be a good choice for this domain. The advantage of CAD tools based on Statecharts is the
possibility to generate either VHDL, Verilog or C code from any specification. SDL has been
used mainly in the telecommunication field for protocol specification, but does not support pro-
gramming constructs and provides no suitable output for further processing. All the mentioned
languages do not support dataflow descriptions.

In contrast to procedural programming languages, data flow graphs (DFG, [17][48]) provide a
data-driven representation with the advantage that multiple threads of execution are part of the
model. Available tools usually produce VHDL, Verilog or C code as output. Supported specifica-
tion languages are application specific and cover all common models as mentioned above. Keep-
ing in mind that a specification language for system synthesis shall be found, domain-specific
languages seem more appropriate. Domain-specific languages capture only the important proper-
ties of the current system and the level of abstraction for which they are designed. For example, to
describe behaviour on logic level, a domain-specific language would allow only boolean expres-

2.2 Specification and Modelling 23

sions and state diagrams. Similarly, a specification model for GROMOS would incorporate only
operations which are needed by the synthesis tool, or operations to describe the behaviour
required for performance estimation. Lastly, domain-specific languages may be easier to apply.

The top level behavioural specification, once established, mostly is the constant factor in the
design process, and a structural model is what is needed next. Parallel algorithms running on par-
allel architectures demand corresponding models, and modelling parallel computation is more
ambitious than sequential equivalents. A lot of simplistic computation models have been devel-
oped so far, most famous the PRAM (parallel random access machine) model and its derivatives.
The original PRAM model [39] is rather unrealistic, because it assumes that all processors work
synchronously and that interprocessor communication is free. Several variations of the PRAM
model cover more practical cases, e.g. asynchronous execution and modelling of realistic com-
munication channels. Nevertheless, because of the restriction to shared memory architectures, the
PRAM model is not suitable for our purpose. Instead, the logP model [37], which follows the
message passing principle for distributed memory systems, was further examined (section 2.2.4).

None of the mentioned models are absolutely convincing to be applicable to the GROMOS

project. Therefore, a domain-specific specification model has been developed, in conjunction
with a derivative of the logP parallel computing model. The remaining part of section 2.2 outlines
this enhanced parallel computing model including architectures, communication and perform-
ance, and the algorithm specification. The presented graph model for behavioural system specifi-
cation includes properties like function complexity, memory demand and I/O.

2.2.2 Parallel Performance Metrics

Metrics which capture processor characteristics in terms of the clock speed, the instruction execu-
tion speed (millions of instructions per second, MIPS), the floating point performance (millions
of floating point operations per second, MFLOPS), and the execution time for standard bench-
marks (e.g. the SPEC benchmark suite1) have been widely used in modelling uniprocessor per-
formance. On the other hand, the hardware specification (processor, memory hierarchy,
interconnection network) may never be a true indicator of the performance delivered by a parallel
system. This is due to communication overheads and algorithmic overheads arising from the par-
allelisation process and (fig. 2.1).

The available speed-up is an ideal curve and determines linear scalability without loss. Algo-
rithmic overhead is composed of remaining serial parts in the parallel program plus new code
which had to be introduced to divide up the workload. The achievable performance of a parallel
application is the theoretically reachable upper bound on an ideal machine. Communication over-
head is separated into one part indicating the physical delay—bounded by the bandwidth of the
communication subsystem (indicated as communication in fig. 2.1)—and another part represent-
ing the software overhead introduced e.g. by protocol stacks (indicated as comm. overhead in
fig. 2.1). Measuring the performance of typical benchmark applications (profiling) on a real par-
allel architecture determines the delivered performance.

1. Founded 1988 by a small number of workstation vendors, SPEC has grown to become one of the most important
performance standardisation bodies with more than 40 member companies. The SPEC benchmark suite covers a
wide application area: Java-, CPU-, network-, parallel systems and www-benchmarks are freely available. Refer
to: System Performance Evaluation Cooperative (SPEC) at http://open.specbench.org/.

24 Chapter 2: Methodology

Machine and application specific performance metrics provide detailed information not only
about the overall performance of a parallel implementation but also about where performance is
lost. Once the problem is identified, it is essential to find the individual application or architec-
tural artifacts that lead to these bottlenecks and quantify their relative contribution towards limit-
ing the overall performance. One concept to capture the growth of particular system overheads
with respect to specific system parameters like network topology or the number of processors is
to introduce overhead functions [61]. These overhead functions would appear in addition to func-
tional nodes in a behavioural algorithm specification.

Performance measurement by experimentation, analytical modelling, and simulation are three
well-known techniques that can be used for quantifying parallel computing overheads. Experi-
mentation involves the implementation on a typical hardware and measuring the performance.
Analytical models describe the architecture of the target hardware as well as the timing behaviour
of complex application features with simple formulae. Simulation means that the application is
not run on the real target machine but is simulated with a tool imitating the behaviour of the target
hardware.

Evaluating the performance by experimentation of course is possible only if the design under
test is accessible, which is not the case in the design space exploration phase where only models
of possible implementations are available. The remaining alternatives are 1) implement and test
all promising approaches of the exploration step, 2) simulate everything and 3) use estimations
for assessing the quality of the design. The first two options correspond to experimentation and
simulation as already defined, both of which might be expected as too expensive (cost and time)
during the exploration phase. As a result of this, the simplicity of estimations combined with
appropriate models surpasses the accuracy of simulations, since implementing a simulator is not
a very simple task.

Consequently, analytical models as they were used to explore the design space for
GROMOS96P (section 3.3) are discussed in more depth. Moreover, in section 3.2.2, the perform-
ance of the sequential GROMOS96 is measured through experimentation. A slightly different per-
formance metrics as the one of fig. 2.1 is introduced in section 6.2, specialised to asses the
GROMOS96P parallel implementation through experimentation. Performance estimation by simu-
lation is not further examined.

Figure 2.1 Parallel systems overheads

Speed-up

Number of
processors

available

delivered

achievable

algorithmic communication

comm.
overhead

2.2 Specification and Modelling 25

2.2.3 Modelling Parallel Architectures

Historically, it has been difficult to develop a reasonable abstraction of parallel machines. The
reason is that the machines exhibited such a diversity of structures represented by radically differ-
entiated hardware organizations, including MIMD (multiple instruction–multiple data) and
SIMD (single instruction–multiple data) machines, vector processors, systolic arrays, dataflow,
shared memory, and message passing machines. Recent years of parallel machines development
have brought some convergence towards systems with a familiar appearance: microprocessors
with cache and DRAM (dynamic random access memory) main memory build one node of which
many are interconnected with a highly reliable and fast communication network. Variations of
this basic structure involve the communication interface and nodes consisting of more than one
processor.

Standard microprocessor performance increases about 50–70% per year, and the memory
capacity about 30–50%. Parallel machines must follow this curve of performance growth to
remain competitive. Because the DRAM access time is not growing as fast as the operating fre-
quency of microprocessors, sophisticated cache structures are required to bridge this timing gap.
To follow this technological progress popular manufacturers of high performance parallel
machines started to use off-the-shelf microprocessors or even full workstation nodes in their lat-
est parallel computers. Future machines will be aimed at hundreds or thousands of 64-bit off-the-
shelf microprocessors instead of machines consisting of millions of one-bit processors. As an
example, IBM’s PowerPC-based distributed memory scalable supercomputer RS6000/SP may be
cited [53]. This architecture typically consists of shared memory nodes with up to four processors
per node, which are interconnected by a switched high performance network; the system is
extendable up to 512 nodes (appendix B). This trend towards fewer computational nodes has a
significant impact on the design of parallel algorithms: they must be developed under the assump-
tion of a large number of data elements per processor.

Network performance is also improving, but at a slower rate as processing power. Therefore, it
must be assumed that latency, bandwidth and communication overhead will continue to be prob-
lems.

From the software point of view, no single programming methodology is becoming clearly
dominant: shared-memory, message-passing and data parallel styles all have significant popular-
ity. Thus, the requirements to a good computational model for parallel systems may be summa-
rized as follows:

• The computational model should apply regardless of programming style.

• It should abstract the interconnection network such that only the performance characteristic
is described but not the structure of the network.

• The user must be enforced to specify all system relevant aspects in a formal language, so
automatised processing of a specification will be possible.

Block diagrams of the hardware (fig. 2.2, left) are widely used for documentation, presentation
or explanation due to its intuitive characteristics. Because this pragmatic model is informal, it is
not well suited as a model for system synthesis, analytical analysis or performance estimation of
the GROMOS application. To overcome these drawbacks, the block diagram is transformed to a
abstract graph model as in fig. 2.2 on the right, representing the same architecture. In the archi-

26 Chapter 2: Methodology

tecture graph , consisting of nodes and edges , computational
nodes (grey) replace processing nodes and communication nodes (white) model the interconnec-
tion of the components, with Ptot the total number of computational nodes or processing elements
VPE in the system, with and . Edges in GA model directed links between
computational nodes and communication nodes.

With an abstract architecture graph the structural view of a system or a subsystem is described.
Many properties of the architecture are still missing, e.g. the computational capabilities of a spe-
cific processing node, or the characteristic of a communication channel. With other words, for
each node in the architecture graph GA a behavioural model is needed.

2.2.4 Communication Model

The scalability of a communication algorithm in parallel environments generally depends on the
communication volume, the available bandwidth, the buffering cost and the latency. A communi-
cation model should be realistic but simple enough to allow the algorithm designer testing his
approaches on a wide range of machines and getting predictable performance estimation results.
The logP model [37] seem to be a promising approach covering the mentioned issues. Initially
developed for distributed memory parallel machines it may also be used for any kind of network
topology which may be modelled with point-to-point connections. A modified logP model is pre-
sented such that long messages are modelled correctly as opposed to the original [37]. For sim-
plicity, the modified model is also referred to as logP model.

For all nodes of the architecture graph the logP communication parameters are:

Upper bound on the latency: time to communicate one single word from the
source processor to the memory of the destination processor. Li is associated with
communication nodes of the architecture model— —and in most
cases will be a constant value. To model internal communication, the latency may
also apply to computational nodes, thus .

Overhead: time that a processor is occupied in the transmission or reception of
data. During this time, the processor cannot perform other operations. This param-
eter is always determined by computational nodes . Consequently, oi
occupies computational resources.

Figure 2.2 An architecture block diagram (left) and its abstract graph model GA (right): a host
machine or processor (vHost) is connected to additional hardware with a bidirectional link (vBR1).
The additional hardware consists of a processing element (vPE) and two hardware modules
(vHWM1/2) which are interconnected with a shared bus (vBR2) and a point-to-point link (vBR3).

GA VA EA,() vi VA∈ el EA∈

VPE VA⊂ VPE Ptot=

shared bus
PTP-bus

vBR1vHost vPE vBR2

vHWM2 vBR3

vHWM1Host PE HWM1

HWM2

vi VA∈

Li L vi()=

vi VA\ VPE∈

vi VA∈

oi o vi()=

vi VPE∈

2.2 Specification and Modelling 27

Gap1: the gap per word for long messages, defined as the time per word for a long
message consisting of wi words. The reciprocal of gi is the bandwidth available on
this channel. The bandwidth is associated primarily to communication nodes

. To model internal communication, gi also applies to computa-
tional nodes .

The implementation of the logP model determines how data transfers are treated. Fig. 2.3
shows a basic logP point-to-point communication from vHOST to vPE (refer to fig. 2.2). As in
most modern networks, where the network controller has direct memory access (DMA), a trans-
mission of a message concerning the previous function may overlap the calculation of the current
function (fig. 2.3a). With the abstract architecture model described before, the overlap is mod-
elled automatically due to different node types for computation and communication. As fig. 2.3
illustrates, the overlap is easily disabled if required.

1. It should be noticed that this definition of the gap g differentiates from the original: in [37], g is the minimum time
between two consecutive writes or reads (of one word, or a small message) on a channel.

Figure 2.3 Modelling point-to-point communication with logP: task A sends a message consist-
ing of wi words to task D. The computational node vHost is able to overlap communication and
computation. Consider the two situations, where
a) node vPE is also able to overlap communication and computation.
b) node vPE may not overlap communication and computation.

gi g vi()=

vi VA\ VPE∈
vi VA∈

Task A

Task D

Time

vHost

vBR1

vPE

o(vHost)

g(vBR1) · wiL(vBR1)

o(vPE)

Task B

Task C

Task A

Task D

Time

vHost

vBR1

vPE

o(vHost)

g(vBR1) · wiL(vBR1)

o(vPE)

Task B

g(vPE)·wiTask C

a)

b)

28 Chapter 2: Methodology

Since all computational nodes work asynchronously, the latency of a specific message is
unpredictable but bound by the maximum value Li, assuming that no error occurs. Li applies each
time a message of length wi is communicated. Although the bandwidth 1/gi usually is associated
with communication nodes, in the following two cases the bandwidth additionally applies to
computation nodes:

1. Overlap of computation and communication is not possible (e.g. disabled or non-existent
DMA). In this case, a bandwidth 1/gi is associated with . If the message length wi
has reasonable size, giwi probably will dominate the overhead oi (fig. 2.3b, vPE).

2. Two successive tasks to be executed on the same computational node consequently are exe-
cuted internal on the same node. Consequently, the communication between these tasks is
composed of two times the overhead oi, the latency Li and the communication delay giwi.

Computational nodes without the capability to overlap computation and communication usu-
ally obtain the same value for gi as the connected communication channel. In practice, this is
mostly the case for simple hardware devices, where the communication unit is coupled directly to
the processor. In the opposite case, computational nodes are either idle or processing, but never
occupied with communications (consider in fig. 2.3a the vPE idle time between task C and the
overhead oi).

It is often possible to simplify the model by ignoring one or two parameters. For example, in
algorithms that communicate small data packets infrequently, it is reasonable to ignore the band-
width and capacity limits. In some algorithms, messages are sent in long streams which are pipe-
lined through the network, so that message transmission time is dominated by the limited
bandwidth, and the latency may be disregarded. The latency in most cases is a constant value,
whereas situations may arise where the latency is given as a function of the message length. Then,
for protocols supporting burst transfers, a different timing for short and long messages must be
considered.

More complex communication schemes like broadcast or global summation (gathering of
data: reduce) are mostly part of message passing libraries. Through cascading elementary point-
to-point connections those collective communications may also be modelled with logP: first the
message length wi is reduced to one to obtain an accurate model. Then, for each collective com-
munication primitive a communication schedule must be specified to obtain an accurate model in
these cases. Of course this schedule depends on the computer architecture, the network topology,
and mostly also on the network driver software. It is scarcely possible to overcome these depend-
ences. Refer to [37] for example schedules. If the network has explicit hardware support for
broadcast and reduce functions, models based on successive point-to-point communications will
produce faulty estimations.

The modified logP model which was presented here can accurately predict communication
performance with long messages of constant length. Many existing parallel machines have spe-
cial support for long messages and achieve a much higher bandwidth for long messages com-
pared to short messages (e.g. IBM SP-2 [53], Paragon, and most message passing libraries). This
dependence could easily be included in the model by making the bandwidth a function of the
message length. An alternative extension to the original logP model proposes a linear model for
long messages, this way accurately modelling short and long messages, at the expense of an addi-
tional communication parameter [27].

vi VPE∈

2.2 Specification and Modelling 29

To keep our model as simple as possible, a fixed message length per communication node wi
was assumed so that the latency and the bandwidth are independent of the message length. The
resulting modified logP model as described above with the new definition of the parameter gi has
been used to model parallel architectures in section 2.2.8 and section 3.4.1, with the following
restriction: broadcast and collective communications (reduce) are always modelled with succes-
sive point-to-point links, with messages of a constant length wi. A different modelling technique
which considers broadcast/reduce functions is introduced for GROMOS performance estimation
on the IBM SP-2 (section 3.4.2). Furthermore it was assumed that the communication of the pre-
vious function may always overlap the computation of the current function.

2.2.5 Modelling Local Performance

To estimate the performance of a given parallel algorithm it is not enough to provide a model for
interprocessor communication. Considering the system level architecture model of fig. 2.2, con-
sisting of a host machine plus arbitrary processing elements, a behavioural model for computa-
tional nodes is still missing. Such a model must be universally applicable, independently of the
target technology.

Due to the fact that the execution time of a function certainly depends on where the function is
mapped to, for each computational node in the architecture a model for local computation per-
formance is required: Perf(vi), with . This unit of measurement will be used later to
determine the execution time of a task or a function. The model, which is presented here, does not
take into account factors such as cache size and pipeline structures of processors, but differenti-
ates the following two cases:

• The computational node is an application specific custom chip: an ASIC, a programmable
gate array, or a comparable computation unit.

• The computational node is a general purpose processor: an embedded microprocessor, an
entire embedded system, or even a workstation.

For the first case, the performance is usually known: it may be derived from the data sheet of
the chip, or from the constraints in the requirements list of the behavioural model (e.g. if the chip
does not yet exist). The unit of measurement Perf(vi) for application specific chips is mostly the
number of elementary operations per second. This is in conjunction with the specific function for
which the proprietary processing element is designed. Depending on the application area of the
custom chip, Perf(vi) is sometimes given in units of MFLOPS or MIPS.

Assuming the latter case, where the computational node is a general purpose processor, the
study of data sheets results in some peak performance information which is useless to predict the
execution time of an application. This unsatisfactory situation was the initial motivation to
develop standard CPU-benchmarks. For scientific applications SPEC benchmarks are widely
used: SPECfp95 consists of ten programs with many floating point calculations, SPECint95 con-
sists of eight programs with more likely integer operations. In principle, the SPEC performance is
a delivered performance, but exclusively for one set of functions, namely the benchmark pro-
grams. Machine configurations and compiler options are well documented, and the source code
of the benchmark programs is published. SPEC results are available as integer numbers for all
workstations and PCs. These numbers denote the speed-up of the tested machine compared with a
reference machine. The SPECx95 reference machine is a Sun SparcStation10 (40MHz).

vi VPE∈

30 Chapter 2: Methodology

Although it is possible to predict the execution time of a custom application through the use of
SPEC results, it is preferable to measure the delivered performance directly at runtime. If an
application (or function) specific delivered performance of the target machine is determined,
Perfj(vi) represents the performance for a given function vj executed on the computational node
vi.

If the SPEC result is not available and direct measuring on the target node is not possible, the
execution time must be estimated. This might be the case for specialised processors, e.g. for dig-
ital signal processors (DSP) or for embedded processors. A precise prediction is only possible if a
detailed behavioural model of the function is available, combined with a thorough knowledge of
the architecture of the processor.

Consequently, there are several possibilities to provide a performance model for computa-
tional nodes: runtime measurement, MIPS, FLOPS, SPEC ratios, etc. Finally, the choice of one
specific unit of measurement is determined by the behavioural model of a function (table 2.1),
such that the interplay of performance and behavioural models is ensured (section 2.2.8).

Several calculation schemes take an expanded set of parameters to determine enhanced system
properties like overall cost, power consumption, chip area, and so on. The parallel computing
model which was presented here is suitable for an analytical performance estimation of an algo-
rithm. To estimate the performance of possible parallel GROMOS architectures, models for com-
putational nodes are derived from results of direct runtime measurements (section 3.3.2). A
FLOPS-based estimation was made in the case where the target node was not physically available
(section 3.3.2). For system synthesis (section 2.3.2 and section 3.4.1 for GROMOS96P), the archi-
tecture model additionally captures the resource costs.

2.2.6 Algorithm Specification

The application specific graph-based model which is presented next consists of 1) functional
nodes, 2) nodes representing control constructs, and 3) arcs representing either data flow or con-
trol flow.

Control/Data Flow Graph: CDFG

A control/data flow graph (CDFG, [15]) as sketched in fig. 2.4 is a heterogeneous or hybrid
model combining the advantages of a control flow graph (CFG), for example a flowchart, with
those of data flow graphs (DFG, [48]). A CDFG incorporates DFGs to represent data flow among
activities or operational nodes, as well as a CFG to represent the sequencing of the DFGs. A
CDFG explicitly shows both data dependences and the control sequence controlling the alloca-
tion of data flows. This is best shown by a piece of program code containing both computational
and control elements which has been transformed into a CDFG representation (fig. 2.4). The
transformation process typically assigns control constructs of the programming language to con-
trol nodes of the CFG, whereas assignment statements are mapped to operational nodes in the
data flow.

The CFG shall have one start and one end node. Directed edges in the CFG do not indicate
data dependence but determine possible execution sequences of the algorithm. Hence they do not
carry data but only tokens without data type. Considering the example of an if–endif statement,
an incoming token is led either to the outgoing edge of the triangle indicating the true-case (right
branch in fig. 2.4) or to the edge for the false-case. Edges carrying a token are called activated

2.2 Specification and Modelling 31

and enable subsequent functional nodes for execution. Assuming in our example ‘ldopair’ to be
false, the ‘op1’ data flow starts executing. Thus, in addition to the rectangular boxes representing
read and write from and to memory, three node types appear in fig. 2.4:

• operational or task nodes have one input and one output. They are ready to execute if all
incoming edges are activated. After execution, the output or rather all outgoing edges are
activated. Shadowed circles in fig. 2.4 represent operational nodes of the DFG and task
nodes of the CFG.

• the conditional branch node is represented as a triangle with one input and two outputs. An
associated boolean variable may not change once the control enters the CFG. Additionally,
this boolean must not appear as a variable in the data flow graph. If all incoming edges are
activated, the branch is determined according to the associated boolean variable: either all
edges connected to the right branch indicating the true-case or all edges connected to the
left branch indicating the false-case are activated.

• the corresponding join node is represented as an inverted triangle with two inputs and one
output. The output is activated as soon as all edges of one input are activated.

The execution semantics of the DFG is very similar to the CFG: assuming that the ‘op1’ data
flow starts execution, three data values (‘q’,‘r’, and ‘s’) are read from memory according to the
specification (fig. 2.4). In addition to the activating token, data values are associated with edges.
Operational nodes of the DFG execute if all incoming edges are activated. After execution, the
result data is written to all outgoing edges, together with the activating tokens. When ‘op1’
reaches its terminating node, data item ‘a’ is written. The output of the task node ‘op1’ is acti-
vated, and the control flow continues with the end–if statement.

With CDFG representations two types of parallelism may be specified. 1) As usual within the
data flow: referring to the ‘op1’ data flow, the add and multiply operations may be executed in
parallel. This is possible, because several tokens with associated data move downwards the graph,
thus possibly enabling more than one operational node for execution. 2) Control flow parallelism
is called task level concurrency and is also determined by the number of tokens. Unconditional
fork and join nodes in the CFG to specify parallel tasks are not required. Following the execution

Figure 2.4 Sample control/data flow graph (CDFG): program code (left), control flow graph
CFG (middle), and data flow graphs DFG (right).

op2op1

ldopair
get rget r

put a

get q get s

+

x

if (ldopair) {
 a = q*(q+s) + r*s;
}
else {
 a = r;
}

=

put a

+

x

32 Chapter 2: Methodology

semantics as defined above a third task ‘op3’ in parallel with ‘op2’ is easily introduced in the
CFG: with a second edge from the true-case output of the conditional branch node to ‘op3’, and
from ‘op3’ to the right input of the node representing the end–if statement.

With a CDFG specification it is possible to represent any complex activities and control
actions as it is required by the system. With the possibility of parallel control flow a CDFG spec-
ification goes far beyond the visualisation of a general purpose programming language. Moreo-
ver, several advantages qualify CDFG specification techniques against simple flow graphs:

• Compared with pure DFG or SDF (synchronous data flow graph, [48]) representations, a
CDFG model combines both control domains. Parallel algorithms advantageously are spec-
ified with a CDFG: the parallelism is apparent, because both data and functional parallel-
ism is effectively represented.

• Most algorithms—GROMOS’ MD algorithm included—are control and data flow driven and
may be specified in an easy and straightforward way.

• Dedicated languages allow application specific CDFG models. On the one hand, the repre-
sentation of control constructs and operational functions is not limited to the vocabulary of
existing programming languages, and any complex activities are realised by adding new
types of control nodes. On the other hand, an application specific CDFG may include only
control node types which are really required to specify the considered algorithm.

• During design space exploration functional models are associated with nodes of the graph,
the functional implementation is done later (gradual refinement, co–design technology)

• The CDFG description is independent of the partitioning into hardware and software.

• The specification is easy to change (replacement of functions, extension with new func-
tions, introduce or reduce parallelism, etc.), which is also a design goal of GROMOS96P.

This flexibility induces some difficulties for tool implementors: despite the existence of a for-
mal CDFG syntax specification (appendix C) extensive semantic checks are required to ensure
consistent specifications. For example it would be easy to specify a syntactically correct data flow
which is incompatible with its corresponding control flow—incompatible by means of deadlocks
or data consistency errors. Other problems arise if a commercial tool should overtake a CDFG
specification as input: compatibility issues would prevent user defined CDFGs. A summary of
some different CDFG representations may be found in [16], and a dedicated CDFG specification
model to describe the GROMOS parallel MD algorithm is introduced in section 2.4.

Dependence Graph Model

As it is the case for the parallel computing model, a CDFG is too complex for the high-level syn-
thesis tool. Therefore, a simplified model is used on higher levels of abstraction integrating only
the most critical design properties, or properties for which further optimisation is desirable.

The simplifying approach converts the CDFG into a simple DFG by choosing one specific
control flow (e.g. the “worst case”), leaving away any control constructs. In addition, data
dependences are replaced by explicit communication nodes. Although the execution semantics of
the resulting graph is the same, it is not a DFG in the conventional sense and therefore it is
referred to as dependence graph. The dependence graph GD(VD, ED) consists of a set of func-
tional nodes and communication nodes and edges . Functional nodes (grey)vj VD∈ ek ED∈

2.2 Specification and Modelling 33

typically are representatives for complex functions in a high level specification. Associated with
functional and communication nodes (white) are execution times of executable implementations
or appropriate models. The dependence graph model incorporates only one node type: whether a
node is a communication or computation is just an attribute and has no influence on the execu-
tion. Similar to the abstract architecture model, edges of the dependence graph GD model directed
links between functional nodes and communication nodes.

To keep the example model simple and comprehensible, the functional nodes of the depend-
ence graph (fig. 2.5) represent the elementary operations of the ‘op1’ data flow of fig. 2.4 (ele-
mentary operations instead of complex high level functions). With the dependence graph model,
calculation and communication are separated in accordance with the abstract architecture graph.
One important drawback of the dependence graph is that communication may not overlap calcu-
lation of the same function.

Analogous to the structural description consisting of the architecture graph plus associated
communication and performance models, the dependence graph is completed with an appropriate
behavioural function model.

2.2.7 Modelling of Functions

Analysing an existing implementation is easily done with standard profiling and analysis tools.
The result is an exact information per function about execution time, memory demand, I/O, etc.
on a specific machine. However, the goal of modelling is to provide a generic, machine independ-
ent functional model, whether or not a function is already implemented.

Functional nodes of the dependence graph represent parts of the parallel algorithm. In contrast
to communication parameters (e.g. logP parameters) which are derived from experimentation or
data sheet, function parameters depend on the algorithm and its problem parameters and are
assigned to functional and communication nodes. Simple algorithms consists of one problem
parameter n, for example a sorting algorithm with n elements to sort. More sophisticated applica-
tions incorporate several problem parameters, possibly even control variables. In practice, control
parameters are not taken into account, assuming either a worst case or a typical control flow. In
the following, represents the collective of all relevant problem parameters.

Figure 2.5 Sample dependence graph model GD(VD, ED), representing the ‘op1’ data flow of
fig. 2.4.

1

3

2

4

5

6

7

add1

mul1

add2

mul2

c1

c3

c2

n n1 n2 …, ,()=

34 Chapter 2: Methodology

Function parameters specify the computational complexity of all functional nodes in the algo-
rithm specification, as well as the local memory requirement and the amount of input and output
data (table 2.1).

The knowledge of the underlying algorithm is essential to identify specific function parame-
ters in practice. Only with this knowledge it is possible to model the function parameters with
formulae in terms of n. If a function is already implemented, the employed algorithm is deter-
mined, and the function parameters are identified by a logical analysis of the algorithm. If a func-
tion without an appropriate implementation has to be modelled, one has to choose or develop an
algorithm for this function. Once the algorithm is specified, all functional parameters according
to table table 2.1 may be determined. The resulting functional model is validated by experimenta-
tion with different parameter sets n on possible target architectures.

2.2.8 Modelling the Algorithm–Architecture Relation

This step comprises the combination of the dependence graph (fig. 2.5) with the architecture
graph (fig. 2.2, right). The resulting specification graph (fig. 2.6) has additional mapping edges
relating the nodes of two neighbouring graphs.

O(n) complexity of the function: the number of elementary operations

M(n) Memory requirement [word]

BIn(n) the amount of dynamic input data [word]

BOut(n) the amount of dynamic output data [word]

Table 2.1 Basic parameters of the functional model

Figure 2.6 Mapping algorithmic functions (dependence graph GD, left) to hardware resources
(two architecture graphs GA, middle and right).

vBR1

vHost1

5

3

2

4

7

6

vPE

vBR2

vHWM2

vBR3

vHWM1

vBR1

vHost

vASIC

add1

c1

mul2

mul1

add2

c2

c3

2.2 Specification and Modelling 35

A specification graph may consist of more than two architecture descriptions referring to dif-
ferent levels of abstraction. In fig. 2.6 on the right a system level description is added to the archi-
tecture graph. Note that it may be useful to map communication nodes to computational nodes of
the architecture graph: if both predecessor and successor of a communication node are mapped to
the same hardware resource, the communication is internal. Therefore, the communication
parameters must also be available for computational nodes of the architecture specification (one
can imagine that internal communication is not free).

The mapping edges describe one possible binding of algorithmic functions and communica-
tions to hardware resources and define a feasible system implementation. Algorithmic and archi-
tecture models are merged enabling analytical analysis of a specific implementation. The
performance model as introduced in section 2.2.5 is well suited for an arbitrary function map-
ping: testing each function separately on all possible processing nodes results
in the function specific performance model Perfj(vi). If a function vj is mapped onto a computa-
tional node vi, its execution time is given by

(2.1)

Equation (2.1) applies the logP communication model with a constant message length wi,
assuming communications overlapping computations (fig. 2.3). The overhead oi is independent of
the communicated amount of data.

Most important is the interplay of the complexity Oj(n) with the performance model Perfj(vi):
if the complexity model delivers the number of elementary operations, e.g. the number of force
calculations, then the performance model must be scaled to the same unit. Considering the nor-
mal case where all possible target computational nodes are available, the function vj is profiled on
each target, and Perfj(vi) is obtained applying (2.1). Remaining deviations are due to the
abstracted or simplified functional model.

For the case that a processing node vi is not available for testing, a standard CPU benchmark
may be used instead (if the SPEC information of vi is available): the function vj is executed on a
reference machine for which a SPEC benchmark is also available. Then, the execution time of vj
on vi is estimated through the use of the ratio of the SPEC results. This “heave ho” method has
been developed and legitimated in [45], where it has been shown that the inaccuracy lies around
±10% if the benchmark is chosen carefully. The inaccuracy is the deviation between the SPEC
estimation and the measured execution time. The choice of the benchmark type depends on the
characteristic of the function. As an example, a typical GROMOS function is scaled in section
3.3.2.

To calculate the execution time of communication nodes , at first the number of com-
municated messages Bj/wi is determined. The latency Li contributes to the overall communication
time each time a message of length wi is communicated (fig. 2.3).

(2.2)

Once the mapping is fixed and the execution times are associated with mapping edges of the
specification graph, the schedule for communication and computation may be determined. Differ-
ent algorithms to accomplish this task are in common use, e.g. ASAP (as soon as possible),

vj VD∈ vi VPE∈

Tj
comp

vi()
Oj n()

Perf j vi()
---------------------- 2 oi⋅+=

vj VD∈

Tj
comm

vi()
Bj n()

wi
-------------- Li giwi+()⋅=

36 Chapter 2: Methodology

ALAP (as late as possible), list scheduling, ILP (integer linear programming), and many more
[16]. If a satisfactory schedule fulfilling the optimisation or design goal may not be found, the
proposed implementation is not a valid system. Then, the designer may try to modify the system
representation (architecture, algorithm) and their parameters (summarized in table 2.2), or try dif-
ferent allocations and bindings until a valid schedule may be developed. This iterative character-
istic was the motivation to apply a semi-automated approach which is described in the next
section.

Complex operations are represented by a functional node mapped on, for example, a dedicated
hardware chip. Of course an exact prediction of cost, execution time and memory demand is not
possible for such bindings, and an exact measurement implies the synthesis of these components.
With the proposed modelling technique sufficiently good estimations are possible if computa-
tional nodes are available for testing.

Parameter Explanation

GA(VA,EA)
architecture graph with computational and communication nodes
and edges .

GD(VD,ED)
dependence graph with functional and communication nodes and
edges .

Ptot, VPE
total number Ptot of processing elements VPE, , with

. []

Li latency of communication node . [s]

oi
communication overhead of computational node . If the communi-
cation is internal, oi models the overhead of the context switch. [s]

gi
gap: inverse of the communication bandwidth of a communication node

. [s/word]

wi
message size (number of words) for which the latency and bandwidth is
scaled. [word]

Perfj(vi)
performance of function when executed on computational node

. Delivers the number of elementary operation per second. [EOP/s]

n the collective of all problem parameters . []

Oj(n)
complexity of functional node : the number of elementary opera-
tions. [EOP]

Mj(n) memory requirement of a functional node . [word]

,
the amount of dynamic input and output data of functional node .
[word]

execution time of functional node which is mapped onto .
[s]

execution time of communication node which is mapped onto
. [s]

Table 2.2 Model parameter glossary

vi VA∈
el EA∈

vj VD∈
ek ED∈

VPE VA⊂
VPE Ptot=

vi VA∈

vi VPE∈

vi VA∈

vj VD∈
vi VPE∈

n n1 n2 …, ,()=

vj VD∈

vj VD∈

Bj
In n() Bj

Out n()
vj VD∈

Tj
comp

vi() vj VD∈ vi VPE∈

Tj
comm

vi() vj VD∈
vi VA∈

2.3 Design Space Exploration 37

2.3 Design Space Exploration
Commonly used as a generic term in a technological sense, design space exploration is mostly
done at the start phase of system development. Considering an embedded system development,
one can imagine an algorithm which may be realised as an ASIC, with a third party custom chip,
or alternatively as software on the embedded controller. Exploring all these design alternatives,
finding trade-offs, and finally coming to a design decision are typical design space exploration
tasks. Successful design space exploration delivers an implementation concept. This concept is
not proven to be optimal with regard to all considered parameters but provides a solution proba-
bly fulfilling the constraints. This cannot be guaranteed, because design decisions based on
assumptions must not necessarily coincide with the reality. Independently of the system and the
design goal, it seems that exploration always comprises similar tasks:

1. Working out a requirements list of the final product including constraints (e.g. cost, per-
formance).

2. Perform a market analysis on existing approaches or solutions and check for in-house reus-
ability.

3. Develop new approaches or concepts taking into account as many design alternatives as
possible. Alternatives incorporate different hardware architectures, system and subsystems
partitioning, algorithm modifications, etc.

4. Provide assessment functions to compare the design alternatives.

5. Make a preliminary design decision based on the results of the assessment functions and
the requirements list.

6. Check the preliminary concept against the constraints if necessary. Review the temporary
design decision in connection with point 2, and come to a final decision.

A new semi-automated design space exploration method has been developed which is applica-
ble to system level [44] [7]. With this method it is possible to test many different hardware archi-
tectures and algorithms against cost, speed, computation time and other constraints within very
short time. The method is based on solving the system-synthesis problem through the use of an
optimiser which is based on an Evolutionary Algorithm (EA).

With appropriate models, the EA is capable to automate points 3, 4, and 5 from the list above.
The remaining manual work is to exploit the model parameters. The remaining exploration tasks
were adopted to the Molecular Dynamics project as follows: in section 1.5.2 the GROMOS96P
main goal has been stated. An extensive market analysis and a study of existing MD hardware and
software has been done and is reported in detail in [45]. In this thesis only the most important
results are summarized in section 1.5.1 and section 3.1. To explore the GROMOS96P design space,
the focus was twofold: 1) to find new approaches with system synthesis and conventional meth-
ods, and 2) to assess these approaches with performance estimation. Within this section, the
method of synthesis based design space exploration is introduced with a simple exemplary sys-
tem. Within chapter 3, the method is applied to find GROMOS96P architectures, and the perform-
ance of all implementation proposals is estimated and assessed.

38 Chapter 2: Methodology

2.3.1 Modelling for System Synthesis

As input specification, the system synthesis tool requires a specification graph as illustrated in
fig. 2.7. This specification is very similar to the mapping of fig. 2.6 with the difference that
between the dependence graph and the architecture graph additional mapping edges appear
describing all possible bindings (dashed and solid lines). The insertion of mapping edges is one
step requiring the designer’s knowledge and strongly influences the behaviour of the synthesizer
(performance and results). Similar to redundant mapping edges, the architecture graph is a super-
set of possible architectures with many alternative communication channels and computation
nodes.

A specification graph as in fig. 2.7 represents many possible implementations, all of which
with different properties by means of the overall cost, performance and/or other parameters. The
solid mapping edges indicate one possible binding of functions to resources, thus defining an
implementation where the communication link vBR1 and the computational node vHOST are not
allocated.

Communication and functional model parameters are associated with mapping edges as
described in previous sections: the execution time of a functional node ,
which is mapped onto the computational node of the architecture graph, is associated
with the mapping edge between vj and vi. Analogously, the execution time of a com-
munication node , which is mapped onto a architecture graph node , is associ-

Figure 2.7 Specification graph, derived from the architecture graph GA of fig. 2.2 and the
dependence graph GD of fig. 2.5.

vBR1

vHost1

5

3

2

4

7

6

vPE

vBR2

vBR3

vHWM1

add1

c1

mul2

mul1

c2

c3

add2

vHWM2

Tj
comp

vi() vj VD∈
vi VPE∈

Tj
comm

vi()
vj VD∈ vi VA∈

2.3 Design Space Exploration 39

ated with the mapping edge between vj and vi. Consequently, for each mapping edge in the
specification graph the execution time of either a computational or a communication model must
be available.

Since the synthesizer is not capable to process complex analytical execution time models, only
integer numbers representing the respective time are allowed on the mapping edges. The same is
true for the hardware cost of the architecture graph. Thus, as a precondition to use the synthesizer,
execution times according to (2.1) and (2.2) must explicitly be determined for all possible bind-
ings.

2.3.2 An Evolutionary Algorithm for System Synthesis

Evolutionary algorithms (EA) apply the principles of natural evolution to a random population.
Natural evolution means selection and random variation through crossover and mutation, the pop-
ulation consisting of individuals represent implementations in the search space. Initially devel-
oped to solve global optimisation problems, the methodology has been adopted for system
synthesis which is one of the key prerequisites of automated design space exploration [44]. The
proposed methodology in [7] and [44] allows design space exploration during a simple optimisa-
tion run which is outlined in fig. 2.8. To start the optimiser, one has to specify the optimisation
goal, e.g. latency minimisation (period) under resource constraints (cost).

Optimisation is an iterative task repeating the following steps:

1. The input for the first iteration is a randomly generated population of feasible bindings. A
feasible binding is any association of functional nodes to hardware resources according to
the specification graph.

2. With a heuristic list schedule algorithm appropriate schedules for the whole population is
generated

3. A fitness evaluation function assesses all individuals of the population.

Figure 2.8 Application of an Evolutionary Algorithm (EA) to system synthesis.

Evolutionary Algorithm

Selection

Crossover

Mutation

Allocation Decoder
Repair heuristic

Binding Decoder
based on allocation

Heuristic Scheduing
list scheduler

Fitness Evaluation
with respect to constraints

Allocation
Binding

Individual

40 Chapter 2: Methodology

4. Within the EA, the population is resized according to a selection criterion. Selection is con-
trolled by the optimisation goal (Pareto, cost, period: see below).

5. The initial population size is restored with crossover and mutation algorithms. Due to the
randomly chosen allocations, many suggestions of the EA are not feasible.

6. Infeasible allocations are partially repaired using a heuristic. Exact repair methods would
perform badly, and if no feasible binding may be found in reasonable time, the respective
individual is deleted.

7. Go to step 2.

The result of step 2 is a set of implementations, illustrated as points in fig. 2.9.

Depending on the selected optimisation goal, the EA tries to find the cheapest (cost) or the
fastest solution (period), or it performs a Pareto point optimisation. Pareto points are indicated by
lines in fig. 2.9. A point is denoted to be Pareto optimal if it is not dominated by any other point.
Referring to the fastest two implementations of fig. 2.9, the cheaper of both is Pareto optimal
because there is no cheaper implementation with at least equal performance.

When the scheduler is invoked, allocation and binding are fixed. Therefore, the scheduler must
be capable to perform latency minimisation under resource constraints. Since most signal or
image processing algorithms work on data streams, a scheduler supporting the iterative nature of

Figure 2.9 Design space and Pareto points

2.3 Design Space Exploration 41

these algorithms would be desirable (pipelining, time stepping algorithms), since MD algorithms
are iterative too. The list scheduling algorithm is only capable to schedule non-cyclic dependence
graphs into non-iterative schedules.

Iterative schedules are characterised by different values for latency and period: the latency is
the time which is needed to process the dependence graph one time. If the dependence graph is
invoked repetitively, a result is delivered after each period. With a good pipelined schedule,
period can be significantly smaller than the latency thereby improving the throughput. The basic
list scheduler had been extended such that iterative algorithms are planned with minimised
period. The basic idea of the iterative scheduler is to remove edges from the dependence graph
such that the non-iterative list scheduler can be used. It should be noticed that the iterative sched-
uler is indeed implemented in the system synthesis tool [7]; unfortunately the vertical axis in
fig. 2.9 is erroneously labelled with ‘period’ instead of ‘latency’, and tasks from preceding and
succeeding steps do not appear in the Ganttchart of the schedule (fig. 2.10).

The input for the fitness evaluation function are—amongst others—the latencies of the imple-
mentations. Depending on the optimisation goal either Pareto points, very fast or very cheap solu-
tions receive a high score. Implementations violating one or more constraints or the optimisation
goal are penalised and receive a bad score.

2.3.3 Design Decision

Performing design space exploration with the synthesis approach solves the problem of mapping
an algorithm, which is specified as a dependence graph GD, onto a heterogeneous hardware/soft-
ware architecture which is specified with an architecture graph GA. This exploration technique
takes into account: 1) the communication requirements, 2) finite computation and communication
resources and 3) loop pipelining (iterative schedule). The method still shows some weaknesses:

• The models are very simple: only fixed computation and communication time is consid-
ered.

Figure 2.10 Schedule of an implementation. The depicted example refers to the Pareto point of
fig. 2.9 representing the fastest implementation.

42 Chapter 2: Methodology

• Complexity functions and I/O demands of functional nodes are not taken into account
dependence upon the problem parameters.

• Memory may not be modelled.

• Latency and overhead of the communication are not considered, and communication may
not overlap computation of the same function.

• The EA delivers reasonable results only for large search spaces. Additionally, the EA is
very sensible: marginal changes of one parameter delivers completely different results.

The method is very well suited if the search space has reasonable size. Then, the EA works as
a filter fading out bad solutions while sometimes delivering surprising but promising proposals.
One should always keep in mind that the EA is just one source of implementation proposals, and
the designer’s know how is essential to provide more variants. System partitioning and schedule
for those additional architectures are determined manually or by using the EA too. To come to a
final design decision, all suggestions are compared with each other. The comparison includes the
assessment of all variants, based on estimations of the design quality.

To assess design alternatives, accurate performance estimation is important regardless of
whether or not the design space is explored using synthesis techniques. To achieve a moderate
accuracy, the estimation will probably also consider the control flow, combined with detailed
functional models which describe the behaviour of the algorithm in dependence upon the prob-
lem parameters. The same is true for architectural models. They incorporate different properties
like latency and overhead of communication channels, and dedicated performance models for
computational nodes (section 2.2). With those models it is possible to predict the performance of
an implementation with varying problem and architectural parameters. Together with the cost
estimation, the choice for an implementation is straightforward.

Consequently, in most cases it will be impossible to come to a design decision without adding
a level of detail to the models which have been used for synthesis. This is because the architec-
tural differences between design alternatives may be small, even though a ranking list must be
established. To explore the design space for the parallel GROMOS project (chapter 3), system syn-
thesis was used [44], as well as performance estimations based on the models of section 2.2.

2.4 Software Synthesis

2.4.1 Overview

A short overview is given about the problem of synthesizing the software component of a system
or subsystem. Related topics such as operating systems design, real time operating systems, and
scheduling algorithms for operating systems [25] do not affect the parallelisation of MD algo-
rithms and are not further discussed. The system for which software is to be generated shall be
given as a behavioural description of the algorithm, preferably in the form of a graph model (e.g.
in accordance with fig. 2.4). Functional nodes of the graph do not represent simple assignment
statements but complex operations, for example the calculation of the pairlist. Due to significant
differences between a graphical high level specification and abstractions at processor or instruc-
tion level (section 2.1.1), the task of software synthesis is performed in three steps [17]:

2.4 Software Synthesis 43

1. System or subsystem partitioning defines which functions belong to a program thread or
functional block. Each program thread is a subgraph of the system level graph model.
Depending on the mapping, individual threads are combined and compose a representation
of the program to be executed on one processor.

2. From the graph of the program specification, high level source code (e.g. C code) for each
processor is generated.

3. The compilation process translates the program into machine instructions by a software
compiler and a processor specific assembler.

Structuring the system specification flow graph with threads has the advantage that parallelism
is expressed by several ways: 1) data parallel characteristics appear within a function of a thread
2) functional parallelism within individual threads of a program and 3) functional parallelism
between programs running on different processors. In many cases, a functional block is defined
as a subgraph with a single entry node and a single exit node. Then, synchronisation or communi-
cation is at most necessary on thread level. This leads to a considerable simplification of the code
generator.

Before generating code, one first has to decide if the schedule for each processor is determined
at compile-time or at runtime. In the general case, the execution time of functions is not exactly
predictable, hence called non-deterministic. This is caused by external events, internal exceptions
or data dependent branches within a function. In this case, the operating system might be able to
minimise processor idle times if the schedule is obtained dynamically (at runtime): since the
operating system has the complete information about data dependences, a function is only exe-
cuted if all required data is available. In the case of static or compile-time scheduling, the proces-
sor may idle because results of another task must be awaited, although an executable function
would exist.

In data flow oriented systems it is often possible to predict the execution times very accurately,
and a static schedule with minimum processor idle time may be determined. This is only possible
if the execution times of all functions in the flow graph are made accessible to the code generator.
Execution times of functions with internal control flow dependences are fixed assuming the worst
case timing. The code generator takes the execution times into account to generate the scheduler.
Control flows in the specification graph are included in the generated scheduler.

It is expected that off-the-shelf processors are delivered with appropriate compilers. Therefore,
compilation and optimisation of source code into machine instructions is not further exploited.

2.4.2 Sequential Programming Environment

In the following it is assumed that a repetitive algorithm is given as a sequential program written
in a high level language, e.g. FORTRAN or C. The GROMOS96 MD simulator would be a good
example. As is the normal case for sequential programs, the execution sequence of (complex)
functions is determined at compile-time. Within the iterations, an explicitly programmed sequen-
tial scheduler calls one function after the other, obeying the dynamic control flow of the algo-
rithm. Referring to fig. 2.11, these function calls are identified with bidirectional arrows, and
corresponding functions are depicted as striped white circles and labelled as e, f, g, h_x, and i.
Some functions may occur as different versions (h_x), all of which implementing exactly the
same part of the algorithm. The versions differ in that they are optimised for a specific target

44 Chapter 2: Methodology

machine. The function h is available as three versions h_1, h_2 and h_3 representing for example
a standard sequential version (seq), a shared memory version (SMP) and a vectorized version
(MPP), respectively. The source code consisting of all functions, the sequential scheduler, and the
enclosing loop is translated into machine code with standard FORTRAN or C compilers. Com-
plex makefiles control the compiler and linker to create programs targeted to different platforms.
The linker selects the functions according to the target machine and determines whether addi-
tional proprietary libraries are required. This way, different platforms may be supported with ded-
icated optimised code, or the basic algorithm is implemented using special versions of a specific
function.

The described procedure to build executable programs applies regardless of whether different
versions of functions represent parallel alternatives or just specialised sequential implementa-
tions. In other words, all functions in fig. 2.11 are treated the same. However, the situation drawn
in fig. 2.11 matches the GROMOS96 code organisation, particularly multiple occurrences of the
same functionality (section 1.5.2). If such a ‘sequential’ program is to be parallelised, two alter-
natives seem evident:

1. Adding new parallel functions as additional alternatives to possibly already existing multi-
ple versions of functions. As a result, parallel executables would consist of a selection of
parallel and sequential functions, and the selection of functions depending on the target
architecture. This is the status quo of GROMOS96.

2. Writing one parallel program containing all versions of functions. This ‘big’ program spe-
cialises itself at runtime by choosing functions based on parameters.

Figure 2.11 Sequential programming environment: outline of the GROMOS96 code organisation.

AAAAAAA
AAAAAAA
AAAAAAAAAAAAAA

AAAAA
AAAAA

AAAAA

main loop

start

end main loop

standard libraries

AAAAA
AAAAA

seq. scheduler

AAAAA
AAAAAend

A
A

e

A
A

A
A

A
A

A
AA
A

f

g

h_1
h_2

h_3

A
A

i

compiler:

AAAAAAA
AAAAAAAtarget architecture

linker:

proprietary libraries
AA
AA

h_3

executable programs
seq SMP MPP

AAAAAAA
AAAAAAA

FORTRAN/C

FORTRAN

A
A

AA
AA

h_2

A
A

h_1

2.4 Software Synthesis 45

The first concept was shown to be a bad solution (section 1.5), because it meets the require-
ments of GROMOS96P in now way. The second solution would result in unreadable code and slow
executables. In addition, knowledge of the algorithm, the parallelisation strategy and parallel pro-
gramming would be required of all users. This is in contradiction with the design goals. There-
fore, an alternative intermediate approach has been pursued.

2.4.3 Proposed Parallel Programming Environment

The proposed concept (fig. 2.12, [41]) is especially well suited to situations where only parts of
an existing implementation are subject to parallelisation. The parallelised part of the algorithm is
preferably executed on distributed memory computational nodes using message passing commu-
nication based on MPI (Message Passing Interface, [21]), assuming that the same program is run-
ning on all nodes. Shadowed boxes in fig. 2.12 denote the handling of this parallelism.

In order to explain the concept, it is assumed that only one part of the algorithm must be paral-
lelised, for example, the successive functions g and h (fig. 2.11). First, both subroutine calls are
removed from the sequential scheduler (fig. 2.12). Instead of the function calls, an interface is
inserted. The interface has one entry point and one exit point and represents the parallel sched-
uler function call. All remaining function calls in the sequential scheduler are left unchanged.
Parallel and sequential schedulers differ in that the parallel scheduler is executed on all computa-
tional nodes, whereas the sequential scheduler may only run on the host.

Coming from an existing sequential program, functions that may contain internal parallelism
(e.g. g and h_x) will be parameterized by following strict guidelines (“stepwise migration”,
fig. 2.12). These guidelines are further explained in section 5.2.2 and affect mostly the formal
specification of the calling interface of a parameterized function. To distinguish parameterized

Figure 2.12 Overview of the proposed parallel programming concept.

AAA
AAA

A
A

e

A
A

f

A
A iAAAAAAAAAAA
AAAAAAAAAAAparallel scheduler

AA
AA
AA
AA

AA
AA

h_1 h_2 h_3
stepwise migration:

AA
AA

g

h’g’
AAAA
AAAA
AAAA

AAAAAA
A

architecture,
mapping

AAAAAA
AAAAAAk’ l’ decomposition

functions

AAAAAAAAAAA
AAAAAAAAAAA

AAAAAAA
AAAAAAA

AAAA
AAAAFORTRAN

compiler
standard
libraries AAAA
AAAA

AAAA
AAAAC

compiler
standard
libraries AAAA

AAAA
MPI

libraries

AAAAAAAAAAA

AAAA
AAAA
AAAA

FORTRAN/C
linker

AA
AAAA
AA

AA
AA

AA
AA
AAAA
AAAAseq. scheduler

AAAAAA
AAAAAA
AAAAAA

sequential and
parallel executables

46 Chapter 2: Methodology

functions by name, they are supplemented with an apostrophe. Parameterized functions comply
with the rules of the chosen parallel decomposition and appear as grey circles. They may be exe-
cuted on more than one processor. All parameterized functions are either of type parallel or
sequential. A sequential parameterized function—for example g’—performs the same operation
on the same data, whereas parallel parameterized functions—depicted with an inner circle:
h’—perform the same operation on different sets of data. Thus, parallel parameterized functions
exploit the domain decomposition.

The parameterization process removes all hardware dependences from algorithmic functions.
Therefore, different versions of the same function, h_1, h_2, h_3, may be replaced by one param-
eterized version, h’, which is valid for all possible target architectures. The hardware depend-
ences are specified separately through the use of a simple architecture graph and the appropriate
binding of algorithmic (parameterized) functions to computational nodes of the architecture
graph (“architecture, mapping”, fig. 2.12).

A domain expert adds special “decomposition functions” k’ and l’. Decomposition functions
are parameterized by definition, but never parallel, and determine the data set per processor on
which parallel parameterized functions work. Consequently, g’ and h’ must be data parallel func-
tions co-operating with decomposition functions.

2.4.4 Code Generation from Control/Data Flow Graphs

To find a suitable parallel implementation of an algorithm, the design space of possible solutions
must be defined. If the design space is explored using synthesis methods (section 3.4), a system
level flow graph model will be naturally available. In addition, functional models, system and
subsystem partitioning, and appropriate schedules of possible parallel systems are also deter-
mined. The goal is to use this preliminary work for further automated refinement.

To accomplish automation, the approach as illustrated in fig. 2.12 is suggested. The parallel
scheduler represents the parallel part of the algorithm. Similar to the sequential scheduler, param-
eterized functions are successively invoked by procedure calls, following the control flow rules.
Consequently, the parallel scheduler is specified as a control/data flow graph (CDFG) very simi-
lar to that of fig. 2.4. This CDFG is a subgraph of the system specification graph and also has ded-
icated entry and exit points coinciding with the interface which has been inserted in the sequential
scheduler. The CDFG contains not only parallel and sequential parameterized functions, but also
a selection of decomposition functions. The mapping of these functions to computational nodes,
as well as the graph itself, is specified with a domain-specific language.

With the intention to partially automate the parallelisation of the MD algorithm, a C code gen-
erator has been implemented [41][59]. The code generator is able to process the CDFG specifica-
tion and to generate the parallel scheduler. A standard C compiler is used to translate the
generated code. The remaining tasks are the same as for any sequential program: a FORTRAN or
C linker is used to produce either sequential or parallel executable programs for different plat-
forms. Additional communication libraries for interprocessor communication are possibly
required.

2.4 Software Synthesis 47

The key issue of this approach is that sequential and parallel programs are derived from the
same source code: a certain function called by the sequential scheduler is not allowed to coexist
as parameterized function. The same rule applies for parameterized functions which are called by
the generated parallel scheduler. This approach offers a number of benefits:

• Specification of the language with EBNF (Extended Backus-Naur Form, [65]) results in
well documented and standardised interfaces. Additional semantic checks reduce the sus-
ceptibility to errors.

• Automatically produced source code is deadlock free. The fact that there is no unnecessary
code leads to fast executables.

• Decomposition functions determine how the workload is distributed among computational
nodes. First, the decomposition functions must be established. Then, new parallel functions
are easily added.

• The concept is applicable to replicated data or data parallel algorithms, depending on the
decomposition functions.

• Local parallelism is advantageously exploited if computational nodes are SMPs: 1) the data
parallel characteristic is retained within the functions of a thread and may be exploited by
the compiler 2) functional parallelism within individual threads (task level concurrency) is
handled by the code generator.

• Design decisions are made based on a CAD supported specification graph, for example
design space exploration [44]. Tasks like testing new algorithms or modifying algorithms
by replacing functions, or generating different implementations for different architectures,
are streamlined through the use of a dedicated code generator.

• Parallel and sequential program versions are derived from the same source code: mainte-
nance cost is reduced drastically, with a small impact on the sequential performance.

• An existing program may be parallelised stepwise, by starting with the most time consum-
ing parts; most of the existing code is left untouched.

The main aspects of the presented parallel programming environment (fig. 2.12) are as fol-
lows. Together with a code generator and a CDFG specification (chapter 5), the environment may
handle one parallel scheduler, and the same program is executed on all nodes. A parallelised pro-
gram consists of one sequential scheduler, which is executed always on the host, and the parallel
scheduler. The parallel scheduler is invoked by the sequential scheduler and is running on all allo-
cated computational nodes. Parallelism of multiple programs must be handled by the operating
system scheduler.

48 Chapter 2: Methodology

CHAPTER 3 Design Space
Exploration

In order to find the optimal hardware architecture to accelerate the GROMOS96 distribution, exten-
sive design space exploration has been done. Design space exploration, as it is presented here,
comprises the following tasks:

• Studying existing third party dedicated hardware approaches as well as other parallel
Molecular Dynamics implementations.

• Analysis and benchmarking of the existing sequential GROMOS96 software to find perform-
ance bottlenecks.

• Exploring the design space through the use of a system synthesis tool based on an Evolu-
tionary Algorithm (EA) to find possible hardware architectures.

• Estimation of performance and cost of implementation candidates. For that purpose, analyt-
ical models of the GROMOS algorithm and possible architectures are developed, applying
the modelling techniques of chapter 2.

As a result of this chapter, it could be shown that a general purpose distributed memory multi-
processor or a workstation cluster can fulfil the basic requirements. Performance estimations have
shown that with a high performance network running MPI (Message Passing Interface [21]) the
delivered performance is satisfactory, provided that a spatial domain decomposition scheme is
applied. Although for dedicated hardware or special purpose processors a better performance is
predicted, the complexity of hardware and software components of these approaches contradicts
important design goals such as extendability, platform independence, development cost and the
overall ease of use of GROMOS96P.

3.1 Existing Approaches
The motivation to investigate existing or related approaches is twofold: Firstly it is important to
verify if there is already a product on the market which may be used instead of a proprietary solu-
tion; secondly, if this is not the case, it is still possible to make much of a profit on third party
experiences with already realised concepts. From the hardware point of view, two projects have
recently been published, MD-Grape [40] and the MD Engine [63], both of which implementing
dedicated hardware accelerators for classical Molecular Dynamics with ASICs as central force
processors. Parallel implementations without specialised hardware support are AMBER [57],

50 Chapter 3: Design Space Exploration

CHARMM [34] and Gromacs [30]—three MD simulation packages competing with the current
GROMOS distribution—as well as EulerGromos [36] and UHGromos [47], which are earlier par-
allel GROMOS implementations. These approaches had a direct impact on the development of
GROMOS96P, some less related projects have also been investigated [43][45].

3.1.1 Specialised Hardware for Molecular Dynamics

The MD Engine card [63] consists of four ASICs to calculate forces and the Virial. Up to four
MD Engine 6U-VME (Versa Module Europe) chassis can be connected to a host computer
(SunUltra2) via a Sbus (SUN peripheral bus) interface, and up to 19 MD Engine cards can be
placed in each chassis. Thus, the system is theoretically scalable up to a total of 304 processors,
whereas the realised MD Engine consists of 76 processors. With 76 processors, the MD Engine
reaches a speed-up of 48 compared with a host only simulation of 13,258 atoms. The force proc-
essor has a hardware pipelined architecture to calculate the total nonbonded force, the Virial is
calculated in the same manner as it is the case for the GROMOS algorithm. The major difference is
how Coulombic force is treated. GROMOS follows the charge group concept and applies the same
cutoff criterion for Coulombic forces as for the Lennard-Jones potential. The MD Engine does
not apply a cutoff criterion to Coulombic forces, thus calculates all particle pairs. Nevertheless, a
pairlist is required because a cutoff criterion is applied for the Lennard-Jones interaction calcula-
tion. During the scan of all particle pairs for Coulombic forces calculation, the pairlist is easily
constructed. Consequently, the performance behaviour of the MD Engine is worse than a GRO-

MOS simulation, even if the pairlist would be reconstructed within each iteration using the brute
force algorithm.

The GROMOS force field incorporates the Coulombic dipole-dipole interaction and the corre-
sponding reaction field correction in the Lennard-Jones potential. Yet, the resulting equations for
the GROMOS nonbonded interaction (equation (1.26), [63]) are similar to the equations which are
implemented in the MD Engine hardware. Therefore, the ability to realise an appropriate ASIC
considering the GROMOS force field is not out of scope. In addition, it may be assumed that such
a dedicated GROMOS force processor reaches at least the same performance as the MD Engine: to
calculate one nonbonded interaction within 400ns [63]. Despite of the fact that the MD Engine
has hardware support for very important features like pairwise forces and periodic boundary con-
ditions with a cubic box, promising concepts concerning the pairlist construction are missing.

Similar to the MD Engine, one MD-Grape board (6U-VME) consists of four MD chips. The
MD chips are also capable to handle an arbitrary (that is, not only 1/r2 dependent) central force.
Hardware pipelines allow the calculation of one interaction per clock cycle if the direct summa-
tion algorithm is used. Direct summation means that the interaction of all particle pairs is calcu-
lated without using a cutoff criterion. Then, MD-Grape reaches the peak performance of 4.2
GFLOPS per board.

Therefore, the principal application of MD-Grape is cosmological N-body simulation because
it requires a force without cutoff. If a cutoff is applied, MD-Grape stores the particle coordinates
in the local memory in a way that the cell index method (section 4.1.1) is supported and only par-
ticles residing in one of the 27 neighbouring cells are fed to the force processor. A pairlist is not
calculated explicitly, the pair separations of all particle pairs reaching the force processor is cal-
culated. If the distance is greater than the cutoff, the calculated force is rejected. This leads to a
much worse performance compared to the direct summation, because a considerable amount of

3.1 Existing Approaches 51

calculated interactions are not used, and the gain of deep hardware pipelines is significantly
reduced. Moreover, the address processor provides the particles of all 27 neighbouring cells, so
pairwise identical forces are calculated twice. In addition, if the Virial is to be calculated, the
main loop is executed twice. As a consequence, if the Virial is to be calculated and a cutoff is
applied, an overhead of a factor of four occurs. The MD-Grape hardware is limited to 43,690 par-
ticles. If there are more particles in the system, an additional loop over the particles must be exe-
cuted. The most interesting concepts of MD-Grape are the hardware address unit which supports
the cell index method and, again, the hardware pipelines to calculate the forces.

Both hardware approaches use the replicated data approach: data distribution is simply done
with a broadcast to all boards, since each board stores all coordinates of the system. Both ASIC
solutions are able to calculate the basic Lennard-Jones interaction potential (1.9), either com-
bined with the Virial calculation, or the Coulombic force, but not both. Still missing is a concept
how more sophisticated features like solute interactions, or perturbation (section 1.4.3), is to be
incorporated in an ASIC-based coprocessor architecture.

The Grape-6 [52] specialised hardware is aimed at large stellar systems to simulate the evolu-
tion of star clusters with up to one million stars. To achieve the projected peak performance of
200 TFLOPS, the total number of 4096 pipeline chips is required. Six pipelines per chip are espe-
cially designed to calculate the gravitational force between particles, the integration step is done
on the host. Two pipeline chips are packaged with four fast SSRAM (Synchronous Static Ran-
dom Access Memory) chips in a multi-chip module (MCM). The MCM internal data transfer
speed is around 1.2GByte per second. 2048 MCMs are organized into 16 clusters each with eight
processor boards. The particle coordinates are replicated on the off-chip memory of each of the
16 clusters. To divide up the workload, for each cluster a disjunctive set of particles is grouped
together and stored in the MCM on-chip memories. Thus, within one cluster, different chips cal-
culate the forces of the same set of particles, but from different particles. Partial forces only occur
within a cluster and must be summed up through a reduction network. Given a system consisting
of one million particles, each pipeline processor has to calculate more than 100 million interac-
tions, since interactions are always calculated for all possible particle pairs. Generally, good scal-
ability can be achieved with a large number of interactions per processor and time step. The usage
of MCMs and the employed domain decomposition are two promising concepts, both of which
applicable to the GROMOS96P project.

The Grape-6 technique applied to Molecular Dynamics would mean calculating all particle
pairs highly efficient (pipelines). On the other hand, adopting a pairlist method would reduce the
number of considered interactions. The MD Engine and MD-Grape hardware approach the trade-
off between the two extremes. Generally, for MD systems of reasonable size, the gain of pairlist
methods dominates. Because the usage of a pairlist significantly reduces the number of interac-
tion calculations per processing node, the communication time will become more significant.

3.1.2 Parallel Software Implementations

AMBER and CHARMM software packages both have been shortly discussed and assessed in
section 1.5.1. The initial version of Gromacs [30] was a specialised parallel computer for MD
simulations, consisting of 32 commercially available i860 boards with two 8 Bit wide parallel
ports to interconnect the boards in a ring. After the hardware became outdated, Gromacs has been
further developed for general purpose parallel computers. Currently available versions support

52 Chapter 3: Design Space Exploration

shared memory machines and message passing systems based on MPI or PVM (Parallel Virtual
Machine). In contrast to EulerGromos [36] and UHGromos [47] (section 1.5.2), Gromacs [30]
incorporates a parallel twin-range pairlist method. In addition, an atomic Virial calculation is
employed, in this way enabling the implementation of the efficient domain decomposition
scheme (section 4.2). Nevertheless, none of the three GROMOS derivatives support octahedron
periodic boundaries in their parallel versions.

Differently to dedicated hardware approaches, the gain of studying parallel software imple-
mentations of other MD simulators is lowered. Various parallelisation techniques are well known
and described in section 4.2, where different decomposition schemes with their advantages and
disadvantages are compared. To predict the performance of possible GROMOS96P solutions, two
different schemes are applied to several architectures in section 3.4.2. Parallel software imple-
mentations differ mainly in the number of supported parallel functions, e.g. parallel twin-range.
The main advantage of pure software solutions is that computational nodes consist of general
purpose processors. Therefore, it is possible to parallelise the whole algorithm and not only the
nonbonded interaction calculation. Parallel programming is simplified significantly if standard
communication libraries like MPI or PVM are used.

3.2 GROMOS96 Analysis
As a foundation for all subsequent work, GROMOS96 has been analysed thoroughly to find per-
formance bottlenecks and entry points for optimisation. The performance analysis is based on
simulations of typical molecular systems, which are defined as performance benchmarks in sec-
tion 3.2.1. Running the benchmarks with GROMOS96 delivered profiling results which are docu-
mented in [45] for many different platforms; section 3.2.2 summarizes profiling results with
respect to the reference platform (SunUltra30). Properties of the reference machine are specified
in appendix B. Analysing the execution time of standard benchmarks allows the calculation of
best-case speed-ups for different grades of parallelism (section 3.2.3). Best-case speed-ups reveal
those parts of the algorithm which must be parallelised in order to reach the performance goals.

Models of hardware architectures and the MD algorithm are developed in section 3.3. Accu-
rate models are required for design space exploration, especially for the tasks comprising system
synthesis and performance estimation. An enhanced version of the logP parallel computation
model is used to model parallel architectures. By using this architecture model together with ana-
lytical models of GROMOS96 functions, the execution time of computation and communication
may be predicted (in conjunction with profiling results). The specification of the algorithm as a
dependence graph serves as input for the system synthesizer.

In order to invent as many target architecture proposals as possible, the knowledge about exist-
ing parallel MD approaches was essential. Additional promising implementation proposals are
expected to be found through the use of a system synthesis tool (section 3.4.1). To take a decision
concerning the GROMOS96P parallelisation strategy, generic models of GROMOS functions and
promising architectures were implemented in Mathematica [24] to estimate the performance of
hypothetical GROMOS96P implementations (section 3.4.2).

3.2 GROMOS96 Analysis 53

3.2.1 Benchmark Specification

Two typical benchmarks are used throughout this thesis for performance testing. A typical simu-
lation consists of one or more solute molecules, typically proteins, surrounded by a solvent, e.g.
liquid water, with periodic boundary conditions applied. Both performance benchmarks consist
of the same solute molecule (Thrombin) and the same solvent (water). The only difference is that
the simulation box of one benchmark is a truncated octahedron (Thr2), whereas the other is a rec-
tangular box (ThrG2). As an option, Thrombin may be simulated without water (Thr1), viz in a
vacuum without periodic boundaries.

Measured times are always in units of seconds and refer to 100 simulation steps unless other-
wise noted. Example simulations are always performed in three spatial dimensions, with double
precision floating point arithmetic. The pairlist is updated every five steps, and the twin-range
pairlist option is disabled. The SHAKE algorithm is used to handle constraints and the Virial is
calculated. For a complete description of the benchmark systems, we refer to appendix A.

3.2.2 Profiling

Before developing hardware or parallel software, possible performance bottlenecks of the exist-
ing sequential software must be pointed out. To accomplish this, operating systems provide utili-
ties for monitoring program execution and system activity. To trace the timing behaviour of
GROMOS96, the unix profiling program gprof has been used. gprof produces an execution profile
of a program. Parts of GROMOS96 profile data is summarized in table 3.1.

The effect of called routines is incorporated in the profile of each caller. The profile data is
taken from the call graph profile file which is created by programs compiled with the -pg option.
Quantizing errors may occur if a function has a very small ‘self’ time. The granularity of the sam-
pling is shown, but remains statistical at best. It is assumed that the time for each execution of a
function can be expressed by the total time for the function divided by the number of times the
function is called.

A SunUltra30 was used as a reference machine. The profiled MD simulation program
promd.64 is based on GROMOS96 FORTRAN source code with the exception that some timing
functions are written in C. The number suffix (.64) indicates double precision floating point cal-
culation. The reference machine and compilation details are also described in appendix B. The
example listing in table 3.1 summarizes total execution times and call counts of the most time
consuming functions of promd.64, sorted by decreasing time.

The majority of time (75.2%) is spent for the nonbonded forces calculation in subroutine
nonbml_. Trailing underscores indicate FORTRAN functions, leading underscores denote library
functions. Underscores are omitted in the following. Subroutine nbnone calculates the
GROMOS96 pairlist without twin-range interactions, shake handles constraints, and mdleap is the
MD-integrator. If the Virial is to be calculated (1.20), subroutine prpvir is called each time step,
delivering the atom positions relative to the centres of mass of charge groups (equations (1.17)
and (1.18)). Subroutine clcgeo calculates the charge group positions. The function clcgeo is
called from nbnone because charge group positions are used only for pairlist construction. The
function force is called from within the main simulation loop (main MD loop), which is part of
runmd. The reason why runmd and force have a very small self time per call is because they con-
sist of subroutine calls rather than performing local calculations. Indeed force comprises all func-

54 Chapter 3: Design Space Exploration

tion calls for bonded (e.g. cenmas, dihang, angle) and nonbonded forces calculation as well as
the pairlist construction. The rest of the MD algorithm (mdleap, shake, etc.) is calculated within
the main MD loop. Before entering the main MD loop, initialization functions and functions to
handle the preconditions, as described in section 1.4.2, are called from runmd.

Most of the simulation time is spent to construct the pairlist and to calculate the nonbonded
forces. Except shake, all other tasks do not contribute anything worth mentioning. The library
function times is called from software timers which were added to the GROMOS96 distribution
primary to test gprof results. These timers provide similar features like a stop watch (start-stop,
lap, reset) and are available anywhere in the code. It is therefore possible to decompose the non-
bonded forces execution time into two parts: one part containing interactions involving solute and
solvent molecules (solute-solute and solute-solvent interactions), and another part containing
only solvent-solvent nonbonded interactions. Table 3.2 summarizes execution times of promd
functions similar to the output of gprof, but by using the mentioned timers exclusively. Thus, the
C-times delivered by gprof and the software timer may be cross-checked (table 3.2 and table 3.1).

granularity: each sample hit covers 2 byte(s) for 0.00% of 3074.56
seconds
 % cumulative self self total
 time seconds seconds calls ms/call ms/call name
 75.2 2312.39 2312.39 100 23123.90 23128.33 nonbml_ [7]
 20.5 2941.39 629.00 20 31450.13 31450.13 nbnone_ [9]
 2.4 3016.20 74.81 710003 0.11 0.11 _write [11]
 0.8 3040.39 24.19 200 120.93 120.93 shake_ [16]
 0.3 3048.27 7.88 705344 0.01 0.01 _lseek [17]
 0.1 3052.19 3.92 100 39.20 281.05 mdleap_ [15]
 0.1 3055.17 2.99 1096204 0.00 0.00 cenmas_ [20]
 0.1 3057.29 2.12 _mcount (985)
 0.0 3058.70 1.41 100 14.10 49.45 prpvir_ [18]
 0.0 3060.11 1.41 400 3.53 4.22 dihang_ [23]
 0.0 3061.28 1.17 200 5.85 5.85 angle_ [26]
 0.0 3062.44 1.16 oldarc [28]
 0.0 3064.95 0.48 100 4.80 29457.81 force_ [6]
 0.0 3065.78 0.41 fseek [12]
 0.0 3066.15 0.37 100 3.70 3.70 shiag_ [40]
 0.0 3066.83 0.34 1411892 0.00 0.05 _xflsbuf [10]
 0.0 3067.17 0.34 _fconvert [19]
 0.0 3068.05 0.26 1080500 0.00 0.00 __anint [51]
 0.0 3068.53 0.23 8 28.75 28.75 _setbufend [54]
 0.0 3068.74 0.21 397 0.53 0.53 _read [57]
 0.0 3069.15 0.20 539909 0.00 0.00 _memcpy [59]
 0.0 3069.89 0.18 1 180.00 180.00 .mul [63]
 0.0 3070.22 0.16 705340 0.00 0.05 _fflush_u [14]
 0.0 3070.99 0.15 35961 0.00 0.01 chpnre_ [55]
 0.0 3071.13 0.14 705325 0.00 0.00 _wrtchk [41]
 0.0 3071.41 0.14 137492 0.00 0.00 random_ [70]
 0.0 3071.69 0.14 100 1.40 5.50 conat_ [34]
 0.0 3071.82 0.13 20 6.50 6.50 clcgeo_ [75]
 0.0 3072.07 0.12 1442 0.08 0.08 _times [77]
 0.0 3073.48 0.06 1 60.00 2979995.82 runmd_ [5]

Table 3.1 gprof output of ThrG2 benchmark: pairlist every five steps, 1.4nm cutoff without
twin-range. Machine: SunUltra30.

3.2 GROMOS96 Analysis 55

3.2.3 Reachable Speed-ups

Amdahl’s law defines the speed-up as

(3.1)

with Tseq the execution time of the sequential part of a program and Tpar the execution time of the
parallelised part of a program running with Ptot processors.

If Ptot is set to infinity, the result is a best-case speed-up for a given degree of parallelism. In
table 3.3, best-case speed-ups for both Thr2 and ThrG2 benchmarks are listed.

The leftmost column describes the simulation parameter set of the examined MD simulations.
The parameters are: pairlist update ratio, cutoff radius and benchmark type. The next columns
refer to different degrees of parallelism as follows: 1) only the solvent-solvent part of the non-
bonded interactions contribute to Tpar 2) in addition to that, the pairlist is also parallelised 3) all

Function Thr2 [s] ThrG2 [s] Thr1 [s]

main MD loop 1,565 2,976 117.68

all forces (force) 1,540 2,928 114.16

integration (mdleap) 14 27 2.09

pairlist (nbnone, clcgeo) 228 607 3.94

all nonbonded forces (nonbml) 1,308 2,318 106.93

solute-solute and solute-solvent 365 366 106.90

solvent-solvent 943 1,952 0

Table 3.2 Benchmark execution times of 100 simulation steps, measured with C-timers, on the
SunUltra30.

Pl-Update/Cutoff
Benchmark

Solvent–Solvent
Solvent–Solvent and

Pairlist
Nonbonded and

Pairlist

5/1.4 thrG2 2.9 7.1 58

5/0.8 thrG2 1.5 9.9 21

10/1.4 thrG2 3.7 6.4 52

10/0.8 thrG2 1.9 7.2 50

5/1.4 thr2 2.5 4.0 54

5/0.8 thr2 1.6 5.7 17

10/1.4 thr2 2.9 3.7 52

10/0.8 thr2 1.9 4.3 13

Table 3.3 Maximum speed-ups for Thr2 and ThrG2 benchmarks for different degrees of parallel-
ism.

Speed-up
Tseq Tpar+

Tseq Tpar Ptot⁄+
--------------------------------------=

56 Chapter 3: Design Space Exploration

nonbonded calculations and the pairlist construction contribute to Tpar. Results of the first and
fifth row are derived from execution times of table 3.2.

In order to reach a speed-up of at least ten on realistic conditions (the delivered performance of
the final implementation) the solvent and solute part of the nonbonded forces as well as the pairl-
ist construction must be parallelised. The separation of the nonbonded interaction into solvent
and solute is essential: the force field is significantly simpler for solvent-solvent interactions (sec-
tion 1.4.3). The separation allows different functional models representing different implementa-
tions for the solute and solvent nonbonded part, respectively. In the following discussion, solute-
solute and solute-solvent nonbonded interactions are abbreviated as soluForce, and solvent-sol-
vent nonbonded interactions as solvSolv.

3.2.4 Function Models

According to section 2.2.7, the complexity, memory and I/O demands of the GROMOS functions
are modelled. The function models as they are presented here incorporate GROMOS specific prop-
erties and parameters as follows:

• All important control flow alternatives of the MD algorithm are considered: octahedron or
rectangular periodic boundaries, the pairlist update ratio, and the Virial calculation option.
Most other flow controls (e.g. options for covalent bond forces calculation) do not contrib-
ute perceptibly to the overall performance. Perturbation would contribute, but is not mod-
elled in the solute nonbonded interaction function. For simplification, the oblique
simulation box is treated like a rectangular one.

• Models for complexity, memory and I/O demand are generic, i.e. all parameters as listed in
table 3.4 are considered.

• Complexity models for the pairlist construction and solvSolv offer some finer granularity.
The elementary operations (e.g. distance calculation) are further examined: the number and
kind of floating point (fp) operations per elementary operation is established dependent on
the problem parameters.

• The I/O model takes into account only dynamic data. Dynamic data change at least once
during the simulation run.

A generic model for elementary operations delivering the number of floating point operations
is very useful to predict the delivered performance of ASICs or processors with specialised or
multiple floating point units [2]. During design space exploration, computational nodes consist-
ing of specialised processors are often not yet synthesized and therefore not available for testing.
Planned to execute exclusively one dedicated function, the internal architecture of the processor
and the embedding environment is well known. The software part of the function which is imple-
mented on this node probably is manually optimised or programmed directly with an assembler.
On these conditions, the behaviour of a computational node is predictable, allowing the execution
time of a particular function to be estimated on that node.

It is not recommended to apply the floating point model to general purpose processors or
microcomputers, because that model would not lead to more accurate performance estimations.
The reason is the execution behaviour of these computational nodes which is highly influenced
by the cache hit ratio, the operating system, and other tasks running on the same node. Even

3.2 GROMOS96 Analysis 57

though, the floating point model facilitates the assessment of the quality of an implementation.
The delivered floating point performance may be compared with peak performance rates of the
processing node. The result of that comparison determines the maximal reachable performance
gain of further optimisation.

Pairlist

The pairlist construction consists of two tasks: the determination of the particle positions and the
neighbour searching itself. The position of a solute charge group is taken to
be its centre of the geometry (superscript ‘cg’):

(3.2)

The double index denotes atom i of solute molecule which consists of atoms. The posi-
tion of a solvent charge group is taken to be the position of the first atom of the solvent molecule.

Distance calculations between charge groups are required for neighbour searching and are per-
formed with periodic boundaries applied. The number of floating point operations for both
tasks—position and distance calculation—are given in table 3.5.

Parameter Explanation

ndim number of dimensions to calculate (three or four)

nvcag total number of solvent charge groups

nram number of atoms per solvent charge group

npm total number of solute molecules

ncag number of charge groups in one solute molecule

nrp the number of atoms per solute molecule

nragt total number of charge groups

nattot total number of atoms

rc the cutoff radius

Vbox volume of the simulation box

l4d false if ndim equals three; true if ndim equals four

ldovir true if the Virial is to be calculated

ldopair true if a pairlist is to be constructed within the current time step

p1
the probability that due to the nearest image convention periodic boundary cor-
rection are applied for one component of the connecting vector between two par-
ticles (rectangular and octahedron box)

p2
only for octahedron boundaries: the probability that an additional boundary cor-
rection term is applied

Table 3.4 GROMOS MD simulation parameters and control variables. Generic models of GRO-

MOS functions are based on these parameters.

Rα
cg α 1 … npm, ,=

Rα
cg riα

Nα

i 1=

Nα

∑=

iα α Nα

58 Chapter 3: Design Space Exploration

Given the computational cost of the basic pairlist operations in table 3.5, we are mainly inter-
ested in the complexity of the algorithm itself, that is how many times these basic operations are
executed. The centre of solute charge groups is calculated times (function clcgeo),
which goes linear with the number of particles. Therefore, the algorithm is supposed to be opti-
mal and not subject to optimisation. The solvent part is disregarded because nothing is calculated.

(3.3)

(3.4)

 (3.5)

GROMOS96 is delivered with a “brute force neighbour searching” algorithm (nbnone), where
all possible (distinct) particle pairs are tested against the cutoff criterion. In the following this
brute force pairlist algorithm is referred to as oldPair. A more sophisticated algorithm which is
based on grid cells (section 4.1.3) is referred to as newPair. The brute force approach leads to the
complexity model for oldPair as follows:

(3.6)

The memory demand is composed of the input coordinates of all atoms, the charge group posi-
tions as an intermediate result, and the pairlist itself as output. The pairlist is stored in two integer
arrays: a pointer list 1) with nragt elements containing an index per charge group which is used to
access its neighbours in the neighbour list 2). The size NN of the neighbour list depends on the
cutoff radius and may be determined by experimentation or analytically by assuming a homoge-
neous liquid (3.10).

(3.7)

(3.8)

(3.9)

(3.10)

Operation Centre of Geometry Distance: ThrG2 Distance: Thr2

+/- (nrp/ncag-1)*ndim (ndim)*2
+ (ndim*p1)*1

(ndim)*5
+ (ndim*p1)*1
+ ((ndim+1)*p2)*1

/ ndim 0 0

* 0 (ndim)*1 (ndim)*1
+ (p2)*1

Table 3.5 The number of floating point operations to calculate the geometrical centre of all sol-
ute charge groups and the number of floating point operations to calculate the distance between
one charge group pair. The complexity of distance calculations also depends on the kind of peri-
odic boundaries (ThrG2: rectangular; Thr2: octahedron).

npm ncag⋅

O clcgeo() npm ncag⋅=

BIn clcgeo() ndim nattot⋅=

BOut clcgeo() ndim nragt⋅=

O oldPair() nragt nragt 1+()⋅
2

---=

M oldPair() ndim nattot nragt+() nragt NN+ +⋅=

BIn oldPair() ndim nragt⋅=

BOut oldPair() nragt NN+=

NN
2π
3

nragt

2
rc

3⋅
Vbox

--------------------------⋅=

3.2 GROMOS96 Analysis 59

The accuracy of the NN-model is of fundamental importance, because the execution time of
nonbonded forces calculation principally depends on the size of the pairlist. When simulating liq-
uids, typical cutoff radii always lie between 0.6nm and 2.0nm. Thus the NN-model should be
accurate for cutoffs within this range. The deviation of NN according to (3.10) is +3% for a
0.6nm cutoff and +0.1% for a 2.0nm cutoff, so the introduced error due to density fluctuations
near the solute may be neglected. As subsequent function models are separated into solute and
solvent parts, the pairlist model must necessarily follow this concept. The neighbour list has to be
divided up into three lists, one list for solvent-solvent (subscript ‘vv’), one for solute-solute (sub-
script ‘ss’), and one for solute-solvent (subscript ‘sv’) interactions. Appropriate size models for
these sub-lists are derived directly from (3.10) by substituting and

:

(3.11)

(3.12)

(3.13)

The deviation of NNvv is approximately -5%, whereas the deviation of (NNss+NNsv) is
between +18% (2.0nm cutoff) and +50% (0.6nm cutoff). Deviation data is derived from the
ThrG2 benchmark and varies slightly with the solute to solvent ratio. The separated model deliv-
ers too many solute interactions at the expense of less solvent pairs. As solute interactions are
more complex to calculate, these uncertainties may increase the estimated total execution time.

Instead of an analytical newPair complexity model, the execution times were determined by
experimentation for cutoffs between 0.6nm and 2.0nm. The step size was chosen 0.1nm and the
section between two adjacent cutoff radii has been interpolated. The algorithm and its perform-
ance compared with the brute force approach is described in section 4.1.3. The newPair algorithm
delivers the pairlists in a different format: a third integer array with nragt elements was intro-
duced containing the number of neighbours of each charge group. This additional information
simplifies the access to neighbours of a given charge group.

(3.14)

(3.15)

(3.16)

nragt ncag nvcag+=
NN NNvv NNss NNsv+ +=

NNvv
2π
3

nvcag

2
rc

3⋅
Vbox

----------------------------⋅=

NNss
2π
3

rc

3

Vbox
----------- ncag

2⋅ ⋅=

NNsv
2π
3

rc

3

Vbox
----------- 2nvcag ncag⋅⋅ ⋅=

M newPair() ndim nattot nragt+() 2 nragt⋅ NN+ +⋅=

BOut newPair() 2 nragt⋅ NN+=

BIn newPair() BIn oldPair()=

60 Chapter 3: Design Space Exploration

Solvent-Solvent Nonbonded Interaction

Following the concept of the pairlist model, table 3.6 lists the number of floating point operations
for one atom-atom interaction calculation. ‘absr’ and ‘signr’ are standard FORTRAN library
functions. Type casts appear only in conjunction with the parallel version of the function, which
is described in section 4.3.2.

Atom-atom interactions are calculated for all distinct solvent charge group pairs according to
the solvent pairlist. It is assumed that periodic boundary conditions always apply. The operations
as they appear in table 3.6 are executed times per MD time step, viz

(3.17)

The amount of input data depends on the control flow of the MD algorithm: only if a new pair-
list was calculated within the current time step (‘ldopair’ == true), the respective amount of data
appear on the function’s input. In the opposite case, (3.18) reduces to the first summand: the coor-
dinates of all solvent atoms. The output consists of the partial forces on the solvent atoms, the
molecular Virial (if calculated), and the energies according to the simulation specification. For a
reasonable problem size, Virial and energies do not contribute to , hence, they are omitted in
the model.

(3.18)

(3.19)

(3.20)

Operation octa, Virial octa, no Virial rect, Virial rect, no Virial

+, - (ndim)*7
+ (ndim*p1)*2
+ (ndim*p2)*1
+ (p2)*1
+ (l4d)*2
+ 10

(ndim)*4
+ (ndim*p1)*2
+ (ndim*p2)*1
+ (p2)*1
+ (l4d)*2
+ 10

(ndim)*7
+ (ndim*p1)*1
+ (l4d)*1
+ 8

(ndim)*4
+ (ndim*P1)*1
+ (l4d)*1
+ 8

* (ndim)*4
+ (p2)*1
+ (p2*l4d)*1
+ 14

(ndim)*2
+ (p2)*1
+ (p2*l4d)*1
+ 14

(ndim)*4
+ 14

(ndim)*2
+ 14

/ 1 1 1 1

√ 1 1 1 1

absr (ndim)*1 (ndim)*1 0 0

signr (p2*ndim)*1 (p2*ndim)*1 0 0

type cast (ndim)*2 + 6 (ndim)*1 + 6 (ndim)*2 + 6 (ndim)*1 + 6

Table 3.6 Number of floating point operations for one atom-atom interaction, function solvSolv.
The columns apply to octahedron (octa) and rectangular (rect) periodic boundaries, with and
without Virial calculation, respectively.

nram2 NNvv⋅

O solvSolv() nram2 NNvv⋅=

BOut

BIn solvSolv() ndim nvcag nram ⋅ ⋅ 2 nvcag⋅ NNvv+() ldopair⋅+=

BOut solvSolv() ndim nvcag nram ⋅ ⋅=

M solvSolv() BIn solvSolv() BOut solvSolv()+=

3.3 Modelling GROMOS for Design Space Exploration 61

Solute-Solute and Solute-Solvent Nonbonded Interaction

The complexity of this function (soluForce) is in proportion with the number of solute pairlist
entries. A detailed floating point operation analysis similar to the solvent-solvent interaction
model has not been done. Analogous to the solvent model represented by (3.17), equation (3.21)
also assumes that atom-atom interactions within a solute charge group are not calculated in the
nonbonded functions. In contrast to the solvent-solvent case, this is not necessarily correct for
solutes, since calculating nonbonded atomic interactions within the same solute charge group is a
GROMOS option. In most cases this option is disabled, and its contribution to the execution time
would be very small, i.e. linear to the number of solute atoms.

(3.21)

Note the subtle differences between the memory and I/O models of solvSolv and the solute
nonbonded interactions soluForce: soluForce requires all atom coordinates as input, plus the pair-
list depending on the control flow parameter ‘ldopair’. The output consists of the partial non-
bonded forces, other results do not contribute for systems of a reasonable size.

(3.22)

(3.23)

(3.24)

Virial and Remaining Functions

If the Virial is to be calculated, the centre of mass positions of solute charge groups are calculated
in accordance with (1.17). For solvent molecules, the centre of mass is the position of the first
atom of the molecule. For both solute and solvent, the relative positions of the atoms to the centre
of mass positions must be calculated according to (1.18). The complexity of the Virial preparation
function prpvir as well as its memory and I/O demand is in proportion to the number of atoms.
Complexities as well as the memory and I/O demand of the remaining functions (bonded forces,
integration, etc.) are linear with the number of atoms. Simulation setup, program initialization
and termination, and file I/O (e.g. writing trajectories or other data) is not considered and not
modelled.

3.3 Modelling GROMOS for Design Space Exploration

3.3.1 Parallel Model Extension

Profiling the Gromos application provides information about performance bottlenecks and the
most computation time consuming functions. In the previous section, a behavioural model for all
functions has been developed including the complexity of the function, the memory requirement
and I/O demands. Most accurate models are provided for the most time consuming functions.
Dependence graph models—introduced in section 2.2.6—represent control or data dependences
of an algorithm and, in addition, task level concurrency. This type of parallelism may only be
applied on the level of complex functions. Considering the GROMOS MD algorithm, the conse-

O soluForce() nrp
ncag

 2
NNss⋅ nrp nram⋅

ncag
------------------------ NNsv⋅+=

BIn soluForce() ndim nattot⋅ 2 nragt⋅ NNss NNsv+ +() ldopair⋅+=

BOut soluForce() ndim nattot⋅=

M soluForce() BIn soluForce() BOut soluForce()+=

62 Chapter 3: Design Space Exploration

quence is that the most time consuming function solvSolv may be executed in parallel with other
functions, e.g. bonded, but cannot be further decomposed. To overcome this drawback, adapting
the functional model seems appropriate.

A first simple approach would duplicate the function within the dependence graph as many
times as it seems appropriate. Then, each instance of solvSolv would have its own function
parameters, this way allowing maximum flexibility by means of load balancing and decomposi-
tion method. In addition, communication requirements and functional complexity are associated
with each instance independently. Once the number of instances for a specific function is fixed,
and the functional parameters are calculated in accordance with the parallelisation strategy, the
dependence graph is reluctantly changed. Hence, if the grade of parallelism is to be changed, a
new specification graph is needed. This is in contradiction to synthesis-based design space explo-
ration, where it is of central interest to test many different approaches semi-automatically and in a
short time. A dependence graph, where functions are allowed to represent scalable parallel func-
tion nodes, overcomes this drawback.

In addition to the task level parallelism further parallelism is introduced into the system. This
new kind of parallelism is an attribute to functional nodes in the specification. The execution
semantics of the graph do not change, and the specification remains compatible with the synthesis
tool. In return some restrictions arise: 1) because the synthesizer is not able to process this kind of
parallelism, it is not specified explicitly in the dependence graph model; 2) the parallelisation
strategy must take into account that a function can only be decomposed if it is mapped onto iden-
tical computational nodes. Thereby a symmetric decomposition is enforced and a linear scaling is
used to modify the (sequential) function parameters (table 2.1). Due to the linear scaling
approach the number of identical processing nodes, on which a parallel function node is exe-
cuted, is independent of the functional model itself. The parallel attribute of a functional node is
of type boolean, and the grade of parallelism is not a property of the behavioural function
description. Instead, the number of identical processing instances is a property of computational
nodes of an architecture and is included in the models after the binding of functions to hardware
resources.

Assuming a parallel function node mapped onto a computational node . The
computational node itself—represented as a single node in the architecture graph GA—consists
of Pi identical processing elements. Then, the parallel execution time is given by (3.25).

(3.25)

In contrast to equation (2.1), the parallel execution time models the execution time of the
‘slowest’ virtual processing element. Although all virtual processors are identical and a linear
scaling is assumed, the parameter ‘Loadj’ allows to model workload fluctuation or parallelisation
overheads. If the load balancing is perfect and overheads are neglected, ‘Loadj’ is set to one.
Later on, the parallel extension of the execution time is employed for system synthesis and for
performance estimation.

The communication time from and to a parallel function node changes in a similar way, but
depending on the parallelisation strategy. For a domain decomposition with replicated data, the
communication time must be multiplied with Pi, if broadcast and collective communications are
modelled as successive point-to-point transmission.

vj VD∈ vi VA∈

Tj
comp,p

vi()
Loadj

Pi

Oj n()
Perf j vi()
----------------------⋅=

3.3 Modelling GROMOS for Design Space Exploration 63

3.3.2 Scaling the GROMOS Models

All generic GROMOS function models developed in section 3.2.4 are completely hardware inde-
pendent. They specify the number of elementary operations in dependence upon problem param-
eters. In addition, elementary operations of the functions oldPair and solvSolv are expressed in
terms of the number of floating point calculations per elementary operation. Once a function is
mapped onto a processing node (binding), the respective execution and communication times
may be calculated (equations (2.1) and (2.2)). This is where the hardware dependence comes in.

Although the models are scaled with measured execution times of one typical MD simulation,
it is possible to predict the performance of arbitrary simulations, assuming that the models cover
all relevant simulation parameter dependences (table 3.4). Once the models are scaled with a typ-
ical MD simulation (e.g. ThrG2), the result must be verified. Verification is done by modification
of typical MD simulation parameters, e.g. the cutoff. Cross-checking the scaled model with
another molecular system is recommended. In the course of the following discussion it will be
explained how the models are scaled under different circumstances, and an example is given for
the function model solvSolv.

Given the complexity Oj(n) of a function vj; Oj(n) providing the number of elementary opera-
tions. Assuming that the function vj is mapped onto the processing node vi, three scenarios to
determine or Perfj(vi) are differentiated:

1. vi is available for profiling the function vj.

• determine the execution time of vj on vi (measurement) and the overhead oi.

• calculate Perfj(vi) according to (2.1)

2. vi is not available for profiling, but standard benchmarks are available.

• choose a benchmark of vi which is expected to coincide best with the function vj. Esti-
mate oi.

• run or obtain the same benchmark on a reference machine. It is an advantage for the ref-
erence machine to have a comparable architecture as vi. Calculate the ratio of the bench-
mark results.

• run vj on the reference machine, scale the measured execution time with the benchmark
ratio, this way estimating the execution time of vj on vi.

• calculate Perfj(vi) according to (2.1)

3. the number and kind of floating point operations per elementary operation is known, vi is
not available for profiling, and benchmarks of vi are not available.

• refer to the data sheet of vi to determine the number of clock cycles for the floating point
operations. Determine the number of cycles per elementary operation under considera-
tion of possibly available multiple floating point units.

• add overhead cycles: estimate the efficiency of an implementation. This is the gap
between the delivered floating point performance compared with the peak performance.

• multiply the number of elementary operation with the number of clock cycles.

Tj
comp

vi()

64 Chapter 3: Design Space Exploration

• calculate by dividing the total number of clock cycles by the operating fre-
quency of the processor. If required, consider an overhead oi.

If some functions are executed in parallel on identical processing nodes, the sequential execu-
tion time must be corrected according to (3.25). Regardless of the scaling strategy it is generally
assumed that there is always enough main memory so that hard disk swapping never occurs.

Scaling the problem dependent part of the memory demand is easily done after fixing the
number of bytes per word. The execution time of communication nodes is determined
by equation (2.2). The communication parameters are derived from data sheets, or from the spec-
ification of the communication link. In special cases estimations are sufficient e.g. if two succes-
sive functions are mapped to the same computational node, and only internal communication
occurs. The memory demand was not taken into account in order to explore the GROMOS96P
design space (section 3.4).

Example: solvSolv

The scaling procedure is illustrated with solvSolv. The function model is scaled with the ThrG2
molecular system (table 3.6, with Virial) on a SunUltra30 workstation (appendix B). Table 3.7
summarizes the required simulation parameters to calculate the size of the pairlist, which is part
of the solvSolv complexity model.

With the measured execution time, the performance model for solvSolv on the SunUltra30 is
determined (3.26). In this context, [EOP/s] is the number of atomic solvent-solvent interaction
calculations per second.

(3.26)

Table 3.8 provides the missing parameters which are required for an additional floating point
analysis to asses the quality of the implementation. The first two columns of table 3.8 list the
number of CPU clock cycles per floating point operation for single (sp) and double precision (dp)
floating point arithmetic. Latencies of addition (add) and multiplication (mult.) are three cycles
each, whereas division (div.) and square root operations (sqrt) are not pipelined.

Parameter Value Derived Quantities

nram 3
equation (3.11):

nvcag 10,961

rc 1.4
table 3.2:

Vbox 371.271

Table 3.7 Scaling example for the SunUltra30, function solvSolv: problem parameters and
derived quantities. Values for simulation parameters are derived from table A.1, the execution
time from table 3.2.

Tj
comp

vi()

vj VD∈

NNv
2π
3

nvcag

2
rc

3⋅
Vbox

----------------------------⋅ 1,859,739= =

TsolvSolv
comp

SunUltra30() 19.52s=

PerfsolvSolv SunUltra30()
nram2 NNvv⋅

TsolvSolv
comp

SunUltra30()
-- 857,462

EOP
s

-----------= =

3.3 Modelling GROMOS for Design Space Exploration 65

The values for the number of cycles are derived from the UltraSparc-I microprocessor data
sheet1 and are used to calculate the number of floating point operations per atom-atom interaction
and the number of clock cycles per atom-atom interaction (table 3.9).

The result is the best-case time for one atom-atom interaction calculation (338ns). Without
adding any overhead cycles, the estimated execution time is calculated by multiplying
the time per interaction with the total number of interactions. The resulting estimated time (equa-
tion (3.27): 5.66 seconds) is about 3.5 times faster than the measured value (table 3.2: 19.52 sec-
onds). As a consequence, predicting the execution time on the basis of floating point models is
not recommended. If possible, runtime measurements or estimations based on a SPEC compari-
son are preferred. It could be shown in [45] that the uncertainty of performance estimations using
SPEC ratios is in the range of ±10%.

(3.27)

All generic GROMOS96 models were scaled using runtime measurement results and the ThrG2
benchmark with a 1.4nm cutoff. For 100 steps, the scaled model predicts an execution time of
2951 seconds, whereas the measurement delivered 2976 seconds (table 3.2). The deviation of less
than one percent is due to the imbalance of the pairlist model for solute and solvent. More inter-
esting is the comparison for a different cutoff radius (0.8nm): the model predicts an execution
time of 1066 seconds, the measurement delivers 1074 seconds, thus leading to a deviation of also
less than one percent.

Cycles sp dp Cycles sp dp Parameter

add 1 1 div. 12 22 ndim 3 l4d 0 (false) p1 0.13a

mult. 1 1 sqrt 12 22 p1 0.13 ldovir 1 (true) p2 0.14b

Table 3.8 Scaling example for the SunUltra30, function solvSolv: the number of CPU clock
cycles per operation for single (sp) and double precision (dp) floating point arithmetic. Additional
parameters are given as they are required for floating point analysis in accordance with table 3.6.

a. Measured with ThrG2 benchmark, refer to [42]

b. Measured with Thr2 benchmark, refer to [42]

1. Available at http://www.sun.com/microelectronics/whitepapers/UltraSPARCtechnology/

Parameter Value Unit Derived from

number of floating point operations
per atom-atom interaction

58 [FLOP]
table 3.6 (56 add/multiply + 2
divide/square root)

number of clock cycles per atom-
atom interaction

100 [cycles]
table 3.8 (56 add/multiply + 44
divide/square root)

time per atom-atom interaction 338 [ns] , table 3.9

Table 3.9 Scaling example for the SunUltra30, function solvSolv: calculation of the execution
time of one atom-atom interaction using the floating point model.

100cycles
296MHz

TsolvSolv
comp,est

TsolvSolv
comp,est

SunUltra30() nram2 NNvv 338ns⋅ ⋅ 5.66s= =

66 Chapter 3: Design Space Exploration

3.3.3 Models of the MD Algorithm

The dependence graph of the iterative time stepping MD algorithm is shown in fig. 3.1a, repre-
senting the algorithm which has been described in section 1.4.2. The specified algorithm does not
correspond to the initial sequential GROMOS96 version, but rather represents the software struc-
ture of the new parallel implementation. The graphic editor of the Codesign framework [10] was
used because of its interface to the system synthesis tool [7].

Parallel function nodes as introduced in section 3.3.1 are not explicitly shown on the depend-
ence graphs of fig. 3.1. The reason is that the system synthesizer treats functional nodes in
accordance with the execution semantics, which is the same for parallel functions nodes as for all
nodes.

In fig. 3.1, complex functions are represented by shadowed, rectangular functional nodes,
whereas communication is depicted as white, round communication nodes. The functions
soluPair, solvPair, soluForce and solvSolv are parallel function nodes. For the sake of simplicity,
some algorithmic functions were put together. This is appropriate if it is known in advance that
the mapping of a group of functions is the same anyway. If the Virial is to be calculated, the solute
part of the Virial preparation—which is not parallelisable—is included in the function integra-
tion, whereas the solvent part—which is parallelisable—goes to solvSolv. The function parts
sorts the charge group spatially in preparation for the pairlist construction. In contrast to
GROMOS96, the pairlist construction is decomposed into two functions soluPair and solvPair,
both of which delivering the pairlist for solvSolv and soluForce respectively. Due to this decom-
position, and because oldPair is not parallelisable, the algorithm newPair (section 4.1.3) must be
used. Model parameters for soluPair and solvPair are easily derived from the newPair model. The
function sum collects and adds partial forces, thus its functional model is trivial. Finally integra-
tion incorporates not only the Leapfrog integrator, but also the shake algorithm and all remaining
functions within the main MD loop.

The dependence graph of fig. 3.1b represents exactly the same algorithm with the difference
that some redundant functional (light grey, F3, F4, F9, F10) and communication nodes (c11, c12,
c20, c21) have been inserted. Redundant functions nodes always have the complexity zero, thus
the execution time is always zero, independent of the mapping. The function join determines the
sum of the partial forces delivered by solvSolv and soluForce. Additional nodes are inserted to
enable the system synthesizer exploiting a maximum number of feasible bindings—if the map-
ping edges in the specification graph provide enough flexibility.

The amount of data that a certain communication node is carrying is determined by the I/O
specification of the connected functional model. For example, the input of the function solvSolv is
composed of the pairlist delivered by solvPair and the particle coordinates from integration. The
nodes c1, c2, c3, and c4 (referring to fig. 3.1a) all represent the communication of particle coordi-
nates. If all target functions of these communications are mapped onto the same computational
node, the model considers four times the same data transmission. This is a weakness of the speci-
fication model, because repetitively communicating the same data to the same target node would
never be done in practice.

3.3 Modelling GROMOS for Design Space Exploration 67

3.3.4 Architecture Models

Two types of architecture models are separated: the abstract graph model which is used for syn-
thesis, and block diagrams. The block diagrams in fig. 3.2 are not used for automated processing
but describe concrete implementations for which the performance is estimated. All architectures
have in common that they are connected to a host workstation (SunUltra30) with the PCI (Periph-
eral Component Interconnect) bus. The dashed line indicates the board outline of dedicated hard-
ware approaches. Modern workstations can be extended with up to six PCI cards, that way
enabling all depicted systems to be scalable. The PCI bus is modelled with a sustained bandwidth
of 30 MBytes per second (MB/s), at a latency of per message, and with a message size of
2kByte (kB). The on-board communication (bus) is fixed to 50MB/s with a small latency (
per 128 Byte message). The bus model applies for all architectures with a shared bus.

The first architecture (fig. 3.2b) consists of six ASICs especially designed for the function
solvSolv. The study of existing ASIC-based MD accelerators (section 3.1) has shown that six
force processors, all accessing the same bus, is a reasonable number. The host interface (HI) of
this architecture is also a specialised processor generating a pairlist (PL) if required. The pairlist
is used on the host interface to distribute the particles on the board, since each ASIC has a private

Figure 3.1 Dependence graph of the parallel GROMOS MD algorithm:
a) Basic algorithm.
b) Extended graph with redundant nodes for system synthesis.

a) b)

70µs
3µs

68 Chapter 3: Design Space Exploration

particle and partial forces memory. Considering some glue logic devices, the physical extent of a
PCI board would not allow more than seven computational nodes. The performance of one ASIC
was assumed to be two times the performance of the host. This is in conjunction with third party
developments, e.g. the MD Engine [63] (section 3.1.1). Referring to (3.26) and to the MD Engine
performance (400ns per nonbonded interaction calculation), it was assumed that a GROMOS dedi-
cated chip reaches at least the same performance as the MD Engine chip. Because the pairlist
processor has to handle additional tasks like data distribution, its execution time is assumed to be
equal to that of the host.

A similar approach incorporates six general purpose RISC (reduced instruction set computer)
microprocessors on one board (fig. 3.2b). Analogous to the ASIC-based approach, memory bus
congestion is reduced since each processor has a local memory. The difference to the previous
approach is that all parallel MD functions can be executed on the coprocessors. Therefore, a ded-
icated pairlist processor is not needed. Fig. 3.2b represents two architecture alternatives, differing
in the communication structure: the first proposal allows the processors to communicate with
direct neighbours over a bidirectional ring. This is advantageous if the MD algorithm is parallel-
ised following the domain decomposition scheme (section 4.2). The alternative architecture has a
shared bus for interprocessor communication. The host interface (HI) either distributes the data
over the ring or via the bus.

Fig. 3.2c illustrates a solution without dedicated hardware: a number of general purpose
processing elements (PE) are interconnected with a high-speed network, e.g. Myrinet [33]. All
parallel MD functions may be mapped onto the PEs, because general purpose clients like PCs or
workstations are used. The performance of the clients and the host machine shall be the same.
The Myrinet bandwidth is assumed to be very similar to the PCI bus: 30MB/s, full-duplex, with a

 latency per 2kB message. The switch introduces an additional latency of per mes-
sage.

Myrinet performance information for message passing systems may be derived directly from
Myricom Inc.1, or from published experimental results [33][45][56]. Bandwidth and latency of a
Myrinet network are strongly dependent on the message size, and the maximum bandwidth
(100MB/s) is achieved with message lengths of about 100kB and a latency around .

The hierarchical DSP architecture of fig. 3.2d consists of thirteen 100 MHz Sharc DSP proces-
sors [2] arranged on one board. A high level cross compiler as well as a Sharc simulator is availa-
ble from the manufacturer [3]. Therefore, all functions may be executed on all processors. Each
DSP processor has enough on-chip memory (4 MBit), so external memory is not needed if
domain decomposition is applied. An integrated I/O processor with DMA provides six 8-bit link
ports for interprocessor communication with a maximum throughput of 600MB/s. Consequently,
the proposed architecture uses three upper level Sharc processors to distribute and collect the data
(fig. 3.2d). Remaining ten DSPs are planned for pairlist and forces calculation. Due to the fact
that all processors are interconnected with link ports, the amount of additional glue logic is
reduced to the host interface (HI), and 13 Sharc chips per board is a reasonable number. The link
port communication model assumes a sustained bandwidth of 80MB/s, with a small latency of

 per 64 Byte message.

1. Myricom, Inc., 325 N. Santa Anita Ave., Arcadia CA 91006: performance results for a wide range of machines
and network topologies as well as various third-party device drivers are available: http://www.myri.com

50µs 20µs

100µs

100ns

3.3 Modelling GROMOS for Design Space Exploration 69

Figure 3.2 Architectural block diagram models: four architectures which are referred to as
ASIC, RISC, Net and Sharc:
a) Distributed memory coprocessor board consisting of six ASICs on a shared bus.
b) Distributed memory coprocessor board with off-the-shelf RISC microprocessors. Processors
communicate either over a shared bus or a bidirectional ring.
c) Net: Workstation cluster with a switched high performance network (e.g. Myrinet).
d) Hierarchical Sharc-DSP [2] coprocessor.

ASIC ASICASIC

AAAAAAAAAAAAA
AAAAAAAAAAAAA
AAAAAAAAAAAAA
AAAAAAAAAAAAA
AAAAAAAAAAAAA

soluPair
solvPair

solvSolv

bonded
sum

ASIC ASIC

Host

integration
soluForce

PL

HI

PCI

AAAAAAAAAAAAA
AAAAAAAAAAAAA
AAAAAAAAAAAAA
AAAAAAAAAAAAA
AAAAAAAAAAAAA

RISC

Host

AAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAA

Host HI

CPU

ADSP

RAM

... ...
CPU

ADSP

RAM CPU

ADSP

RAM CPU

ADSP

RAM CPU

ADSP

RAM

CPU

ADSP

RAM CPU

ADSP

RAM

clcgeo
parts

soluPair
solvPair
soluForce
solvSolv

PE PEPE
IF IF IF

Host

PE PEPE
IF IF IF

Switch

PCI

bonded
sum

integration
soluForce

ASIC

PCI

bonded
sum

integration
soluForce soluPair

solvPair
soluForce
solvSolv

PCI
integration
soluForce
bonded
sum

soluPair
solvPair
soluForce
solvSolv

F3, F4, F9, F10

join

HI

M RISC M RISC M

RISC MRISC MRISC M

PE
IF

HI

a)

b)

c)

d)

70 Chapter 3: Design Space Exploration

Investigations with a predecessor 40 MHz Sharc version have shown that about 25% of the
peak performance () can be reached: In [45], the ThrG2 pairlist construction
with the brute force algorithm has been implemented on the 40 MHz Sharc for testing purposes.
The measured execution time was 86.2 seconds. The execution time of the model (table 3.5) is
calculated with equation (3.6) using the peak performance value (11 floating point operations
without adding extra cycles: 20.6 seconds). In order to estimate the performance of the new Sharc
processor, the duplicated floating point unit (factor 1.5) and the higher operating frequency of 100
MHz (factor 2.5) must be considered. With respect to the 40 MHz chip, an overall performance
gain of a factor 3.75 was assumed. Under this assumption, the pairlist is calculated within 23 sec-
onds on the new Sharc, whereas the host needs 30.35 seconds (table 3.2). This rough estimation
was used to scale the performance of the Sharc processors to be 1.32 times faster than the host
machine.

For system synthesis, the architecture graph must be a super-set of all architectures which can
be allocated, and the knowledge of the designer is essential to provide suitable architectures. Two
different super-architectures are defined as abstract architecture graphs GA (fig. 3.3).

The first abstract architecture (fig. 3.3a) consists of a host workstation and three alternative
coprocessor or client architectures: 1) an architecture consisting of specialised ASICs for force
calculation 2) a network architecture with general purpose computational nodes PE_gp and a
high performance network, and 3) a dedicated hardware approach with off-the-shelf microproces-
sors PE_ded. Fig. 3.3a represents a super-architecture consisting of the three concrete proposals
of fig. 3.2a/b/c. All three proposals have in common that they are scalable () by replicating
the computational nodes named Host, Asic, PE_gp, and PE_ded. Scalable computational nodes
are depicted rectangular, whereas those with rounded corners are not scalable (). The host
workstation is connected to the client architectures with an expansion bus BUS1, e.g. PCI.The
full-duplex Myrinet is modelled accordingly.

Figure 3.3 Abstract architecture graphs for system synthesis:
a) Three implementation alternatives in accordance with fig. 3.2a/b/c.
b) Hierarchical Sharc DSP-based architecture in accordance with fig. 3.2d.

Perf 40 MFLOPS=

Pi 1≥

Pi 1=

a) b)

3.4 Exploring the Design Space 71

Fig. 3.3b is the abstract architecture of the hierarchical Sharc board (fig. 3.2d). The scalable
computational nodes SOLU and SOLV represent the lowest level of the DSP hierarchy. The
nodes SUM1, SUM2 and DIS model intermediate levels, responsible for data distribution and
calculating the sum of partial forces. Similar to the algorithm specification, and for the same rea-
son, redundant communication nodes were inserted (H1, H2, H3, H4, H5, H6).

3.4 Exploring the Design Space
Some tasks to explore the design space for new GROMOS96P architectures have already been
accomplished: the requirements list and the main goals have been stated in section 1.5.2. Existing
parallel software approaches and hardware accelerators were also briefly assessed in the introduc-
tory part, and a more thoroughly analysis about pros and cons is outlined in section 3.1. Based on
this knowledge, new architectures have been introduced in section 3.3.4. One design decision
may be derived implicitly from the table of the best case speed-ups (table 3.3): to reach a speed-
up of at least ten, it is necessary to parallelise the nonbonded forces calculation (solute and sol-
vent interactions) and the pairlist construction. Coming from this situation, system synthesis is
used to obtain even more design alternatives.

3.4.1 System Synthesis

The synthesizer is able to exploit different allocations and function mappings and to provide a
appropriate schedule. Through varying cost and communication parameters of the previously
proposed architectures, the number of degrees of freedom in the input specification is increased.
Since the input for the synthesizer is a dependence graph, the control flow including pairlist cal-
culation has been selected to determine the dependence graph (fig. 3.1).

Three examples are explored with the synthesizer: The dependence graph of fig. 3.1b is com-
bined with the abstract architecture of fig. 3.3b to build the specification graph of the first two
examples. The third example deals with the combination of fig. 3.1a and fig. 3.3a. All examples
use the ThrG2 benchmark to determine the execution times of algorithmic functions.

Example 1: Specification Graph composed of fig. 3.1b and fig. 3.3b

Associated with edges of the specification graph, which is not depicted due to its complexity, are
execution times of communications and computations in accordance with the scaled function
models of section 3.2.4. In principle, functional nodes of the dependence graph may be arbitrarily
mapped onto computational nodes of the abstract architecture. Nevertheless, the designer will
insert mapping edges carefully selected. Care must be taken when corresponding execution times
are calculated: if a regular functional node vj (regular: non-parallel or redundant) is mapped onto
a scalable computation node vi, equation (2.1) without parallel extension must be used in order to
calculate the execution time, this way ignoring the parameter Pi, which is associated with vi. If vj
is a parallel function node, the parallelism of vi is taken into account by applying (3.25). On the
other hand, if vi is a regular node, which is the case if , equation (2.1) applies for all types
of vj.

The calculation of the communication time is more sophisticated: considering a parallel func-
tion node vj1 which is mapped onto a scalable computation node vi consisting of Pi processors,
and a communication node vj2 which feeds data to the binding (vj1, vi). In this case, the calcula-

Pi 1=

72 Chapter 3: Design Space Exploration

tion of the communication time of vj2 depends not only on the mapping, but also on the decompo-
sition scheme of the parallel function vj1. For a domain decomposition (section 4.2), each
processor of vi works on disjunctive data sets. In this case it may be assumed that the communica-
tion time is constant for all Pi. With a replicated data decomposition approach vj2, has to distrib-
ute all data to all instances of vi. This is accomplished either with successive point-to-point
communications or with a broadcast. The point-to-point strategy multiplies the communication
time with the number of processors Pi, whereas an efficient broadcast may introduce only a cer-
tain overhead factor. The broadcast overhead factor is multiplied with the communication time
instead of Pi. In the ideal case, when the broadcast is as fast as one point-to-point transmission,
the broadcast overhead factor equals one. Because the calculation of all execution times is done
manually, considering all cases is a lavish task and susceptible to errors.

Coming back to the example, the parameter Pi is fixed to five for SOLV and SOLU, respec-
tively, and PHOST is assumed to be one. The resulting abstract architecture represents exactly the
block diagram of fig. 3.2d. The execution times of all functions are determined according to sec-
tion 3.2 for a SunUltra30 host machine (HOST). Since the Sharc processors are estimated to be
faster than the host machine by a factor of 1.32 (section 3.3.4), the execution times associated
with corresponding mapping edges must be corrected. Further, if a parallel function node is
mapped onto SOLV or SOLU, an additional speed-up of five is applied. The total execution time
of newPair (fig. 4.7, 6.4 seconds) has been taken to approximate the time for soluPair and
solvPair: according to the ratio of the respective pairlist sizes, soluPair takes one second on one
Sharc processor, while solvPair takes five seconds, refer to equations (3.11), (3.12), and (3.13).

The functions integration, bonded, and sum may only be executed on the host. Additional
mapping constraints are applied to parallel function nodes: soluPair and soluForce may not be
executed on SUM1 and SOLV, solvPair and solvSolv may not be executed on SUM2 and SOLU.
To ensure that the synthesizer finds at least one implementation, all nodes of the dependence
graph are allowed to execute on host. Communication times are not scaled for parallel nodes, thus
assuming either perfect broadcast communication or domain decomposition. The synthesizer is
not able to handle floating point numbers. Therefore, execution times are normalised: all calcu-
lated times are multiplied with a factor of five and rounded to integers. Execution times of tasks
running strictly on the host machine are intentionally enlarged for purposes of visualization.

The hardware cost for computational and communication nodes of the architecture graph is
fixed as follows: the host costs 30, and each Sharc processor 4. These cost values are also normal-
ised, thus are given without unit. Communication resources are free with the exception of redun-
dant Hx-nodes, which cost 1. Running the synthesizer with this specification results in a set of
implementations in the cost–performance design space. Table 3.10 summarizes cost, perform-
ance and the allocation of the selected Pareto points. The time is given in units of seconds, on the
expanded time scale as mentioned before. The synthesizer generates a schedule for each Pareto
point. The schedule of fastest implementation (indicated bold in table 3.10) is shown in fig. 3.4.

Referring to table 3.10, the architecture with the overall cost of 62 has the same allocation of
computational nodes as the fastest implementation with cost 64. The difference in the expense of
both solutions is caused by the allocation of two additional Hx nodes. The wide discrepancy
between the performance is symptomatic of the behaviour of the synthesizer: the Evolutionary
Algorithm (EA) is not able to find the communication path via an intermediate computational
node, although for that reason redundant nodes were inserted in the dependence graph. Instead,

3.4 Exploring the Design Space 73

the EA determines the mapping in a way that time consuming tasks are executed on slow nodes.
Even if the hardware cost and execution time of regular nodes is artificially reduced, the EA pre-
fers the more expensive and slower redundant communication hardware. This results in the
appreciably worse performance.

Another motivation to introduce redundant nodes is to enlarge the population of the EA, and in
this way the number of possible feasible bindings. Due to redundant nodes, the EA is able to find
more and in particular better implementations, because a disjunctive population of individuals
increases the probability that the EA finds new feasible bindings. The initial idea of steering the
algorithm such that the EA itself chooses an implementation without redundant nodes did not
succeed.

The surprising result of this first run is that SOLU is not allocated. The reason is that the ratio
of the execution times of solvSolv and soluForce (table 3.2) is approximately 5:1. Not surprising,
the function soluForce requires the same amount of time on the one Sharc SUM2 as solvSolv on
five SOLV Sharcs (fig. 3.4). As a result, the Evolutionary Algorithm has found the optimal archi-
tecture, binding, and schedule. This success must be considered with the reservation that the pro-

Specification Cost Time Allocation

architecture: fig. 3.3b
algorithm: fig. 3.1b

30 156 HOST only

42 237 HOST, DIS, SUM1, SUM2

62 219 HOST, DIS, SUM1, SUM2, SOLV

64 38 HOST, DIS, SUM1, SUM2, SOLV

Table 3.10 Synthesis results of example 1, given as Pareto points. The fastest implementation is
indicated bold. Note that not all computational resources are allocated to reach the maximum
speed.

Figure 3.4 Schedule of example 1, representing the fastest implementation of table 3.10. The
hierarchical Sharc architecture without the scalable computational node SOLU was allocated. To
improve the readability, some function names are shortened: SLUP = soluPair, SLUF = solu-
Force, SLVP = solvPair, SLVF = solvSolv, INT = integration, BND = bonded.

Cycles

74 Chapter 3: Design Space Exploration

posed implementation is only optimal for the ThrG2 benchmark, with a cutoff of 1.4nm, and if
the pairlist is calculated. Since the capabilities of the EA do not go so far, the question remains
whether or not this implementation is also well suited for arbitrary MD simulations.

Example 2: Specification Graph composed of fig. 3.1b and a reduced Architecture

The architecture of fig. 3.3b is modified by removing one branch of the hierarchy. The remaining
nodes SUM1 and SOLV represent two and ten Sharcs, respectively. This is simply accomplished
by adapting the parameter and , and the cost accordingly. This architec-
ture also represents the Sharc hierarchy as depicted in fig. 3.2d with 13 processing nodes. The dif-
ference to the previous example is that the mapping of functions is less constrained. The parallel
function nodes solvPair, solvSolv, soluPair and soluForce may be executed on SUM1 or SOLV.
The execution times of the parallel functions are adapted accordingly, all other parameters are the
same as for example 1. Running the synthesizer delivers implementations which are listed in
table 3.11.

The results show that for the fastest implementation all computational resources are allocated.
The overall workload of the coprocessors is better than in the previous example (fig. 3.4 and
fig. 3.5), where one Sharc (SUM1) was allocated exclusively for data distribution and partial sum
calculation. Here, a better load balancing and more processing power leads to a faster but also
more expensive solution. Again, it is not ensured that the proposed architecture performs well for
other MD parameter sets.

Specification Cost Time Allocation

Architecture: fig. 3.3b with-
out SUM2 and SOLU.
Algorithm: fig. 3.1b

30 156 HOST only

42 87 HOST, DIS, SUM1

82 75 HOST, DIS, SUM1, SOLV

84 26 HOST, DIS, SUM1, SOLV

Table 3.11 Synthesis results of example 2, given as Pareto points. The fastest implementation is
indicated bold.

Figure 3.5 Example schedule of the fastest implementation of table 3.11. The allocation repre-
sents a hierarchical Sharc architecture consisting of 13 coprocessor Sharcs.

PSUM1 2= PSOLV 10=

3.4 Exploring the Design Space 75

Another implementation not appearing in table 3.11 is rather evident, namely calculating all
parallel functions on SOLV. In this case, the normalised total execution time would increase to 29.
The functions soluPair (SLUP: plus one on SOLV) and soluForce (SLUF: plus two on SOLV)
would contribute extra time because they must execute in sequence with SLVP and SLVF. The
cost for this implementation would remain the same, since the allocation did not change. As this
solution is not a Pareto point it is omitted in table 3.11.

Example 3: Specification Graph composed of fig. 3.1a and fig. 3.3a

No redundant nodes are inserted into the specification graph consisting of the dependence graph
of fig. 3.1a and the abstract architecture of fig. 3.3a. Synthesis with the EA results in useless new
implementations. The EA even does not find the fastest solution by allocating all three possible
branches of the architecture, since functional nodes may not be mapped onto PE_gp. At least,
depending on the grade of parallelism of Asic and PE_ded, the synthesizer correctly distributes
the workload: solvent-related functions are mapped to Asic, the construction of the solute pairlist
and the solute interaction calculations are mapped to PE_ded.

Changing the grade of parallelism means adding or removing dedicated hardware boards from
the system, or adapting the parallel system to a certain simulation. This is a contradiction to the
design goal stated in section 1.5.2: a flexible solution is to be found which reaches the required
speed-up for a defined range of MD simulations (table 3.3).

If the system synthesizer is used to generate implementations, there are basically two possibil-
ities to verify that a design proposal succeeds: 1) many benchmarks covering the required range
of simulations must be explored with system synthesis 2) the behaviour of a the design proposal
is estimated for all required simulation parameter sets. To find the GROMOS96P target architec-
ture, the performance of the most promising suggestions is estimated by an implementation of
analytical models.

3.4.2 Performance Estimations

The parallel computation model has been implemented in Mathematica [24] for performance esti-
mation. As opposed to the synthesis approach, the main advantage of the Mathematica implemen-
tation is that control flow is considered and that generic functional models may be used. The
current Mathematica estimation model stands out for the following features:

• interprocessor communication is modelled with the modified logP model (section 2.2.4),
including bandwidth, latency and message length. The latency is not considered in depend-
ence upon the message length, and the logP communication overhead (parameter o) is
neglected.

• Scalable computational nodes are modelled in accordance with (3.25). All examined archi-
tectures have only one scalable computational node with .

• The parameter Loadi is assumed to be one for all parallel function nodes (as perfect load
balancing is expected). Parallelisation overhead is neglected for parallel function nodes.

• Algorithmic functions are implemented using generic models for the complexity and I/O
demands, the memory demand is not modelled (section 2.2.7).

• Functional nodes are statically mapped onto computational nodes and scaled according to
(3.25), and in accordance with section 3.3.2 (scaling)

Pj Ptot=

76 Chapter 3: Design Space Exploration

Generic GROMOS models are scaled on the host machine, a SunUltra30. Four architectures are
modelled and referred to as ASIC (fig. 3.2a), RISC (fig. 3.2b), Net (fig. 3.2c) and Sharc
(fig. 3.2d). These architectures are described in section 3.3.4, including communication parame-
ters and performance models of computational nodes. The default settings for the PCI bus, the
Myrinet and on-board buses are according to section 3.3.4. The information about how the MD
algorithm is implemented on these architectures for performance estimation is given here.

For each architecture a static assignment of functional nodes to computational nodes is deter-
mined. The mapping is also given in fig. 3.2, where the respective function names appear close to
the processing nodes. Because the binding of functions to resources is fixed, a schedule may be
determined considering the task level concurrency of fig. 3.1a, with one control flow extension.
The control variable ‘ldopair’ steers the pairlist construction, and the pairlist update ratio is also a
parameter in the Mathematica model. As a consequence, two schedules per architecture are
required, one incorporating the pairlist and one for the interaction calculation only.

The implemented schedule for the ASIC architecture calculates the solvent pairlist on the
coprocessor board, whereas the solute pairlist is calculated on the host in parallel. Pairlist con-
struction and interaction calculation may not overlap, because the pairlist determines which parti-
cle pairs currently interact. When the new particle positions are determined after the integration
step, the coordinates are downloaded to the ASIC architecture. The time required for the down-
load of the solvent atomic coordinates is not dependent on the number of ASIC boards in the sys-
tem, because each board reads in only the required data set. The data sets are defined by the total
number of interaction processors (number of processors) Ptot in the system. The simulation box is
divided up into Ptot slices of equal size. During the download process, each processor receives
and stores only coordinates of atoms residing in the associated slice. During calculation, missing
data is communicated from neighbouring processors in compliance with the domain decomposi-
tion (section 4.2). Since communication between boards is avoided, additional memory must be
planned on each board containing atomic coordinates and partial forces of the spatial overlap
zone. The bus is modelled appropriately.

The communication of interaction forces back to the host machine may not be accomplished
by a broadcast, since data sets of different boards are not disjunctive. Thus, the communication
from ASIC boards to the host is modelled as point-to-point communications. This leads to the
sharp points in the speed-up estimation of fig. 3.6. The effect is only visible for the RISC and
Sharc architecture, because the maximum performance of the ASIC solution is already reached
with one board.

The main difference between the RISC and ASIC architectures is the function mapping: the
RISC architecture with general purpose processing nodes allows all parallel function nodes to be
executed on the coprocessor boards. This has a direct impact on the schedules. The data distribu-
tion algorithm as well as the decomposition scheme of the MD algorithm is not changed with
respect to the ASIC architecture. If a pairlist is to be calculated, at first the local neighbour table
for solute and solvent is constructed on each node. The functions clcgeo and parts are executed on
each processor, although these functions are not parallel function nodes. The sequential execution
times of clcgeo and parts apply. After all interactions have been calculated, the forces are read
from the host, as is the case for the ASIC architecture. As mentioned in section 3.3.4, the commu-
nication between two adjacent processors is alternatively accomplished by a bidirectional ring.
Both methods—bidirectional ring and bus—have been implemented in the Mathematica model.

3.4 Exploring the Design Space 77

The ring bandwidth was assumed to be 20MB/s with a latency of per 2kB message. Esti-
mations have shown that the gain of the ring is insignificant if the ring contains less than about 20
processors. For that reason, the alternative of ring communications was not further examined.

Figure 3.6 Speed-up estimation of parallel architectures of fig. 3.2, achieved with respect to the
sequential GROMOS96 (table 3.2). Pairlist update every five steps. Indicated are values for band-
width, latency (L) and message size (msg), applying to the PCI bus and the Net network. ASIC,
RISC and Sharc architectures employ domain decomposition. Net uses the replicated data
method with broadcast and collective communication. IBM SP-2 parameters are used for broad-
cast/collective communication.
a) Speed-up for 1-10 computational nodes.
b) Speed-up for 1-50 computational nodes.

0 10 20 30 40 50
number
of processors

5

10

15

20

25

30

35

speedup

ThrG2, cutoff: 1.4
bandwidth: 30MByte per sec
L: 70us; msg: 2kByte

0 2 4 6 8 10

number
of processors

2

4

6

8

10

12

14

speedup

ThrG2, cutoff: 1.4
bandwidth: 30MByte per sec
L: 70us; msg: 2kByte

ASIC
RISC
Net
Sharc

ASIC
RISC
Net
Sharc

a)

b)

20µs

78 Chapter 3: Design Space Exploration

The mapping of functions as well as the execution sequence of parallel function nodes are the
same for the Net architecture and the RISC architecture. These architectures differ in the commu-
nication network. The PCI slots of the Net host machine do not contain coprocessor boards, but
network interface cards to connect client computers. With eight-port full-crossbar Myrinet
switches a workstation cluster with up to 48 nodes may be realised. The replicated data method is

Figure 3.7 a) Estimated speed-up of the Net architecture with replicated data and point-to-point
communication. Standard communication parameters are assumed for the PCI bus (30MB/s,

, 2kB). The (Myrinet) network parameters are varied as indicated.

b) Speed-up estimation, dependent on the bandwidth of PCI and Net network. Indicated values
for latency (L) and message size (msg) apply for the PCI bus and the Net network; the number of
processors is valid for all architectures. Net uses broadcast and collective communication. IBM
SP-2 parameters are used for broadcast/collective communication.

0 10 20 30 40 50

number
of processors

5

10

15

20

25

30

35

speedup
ThrG2, Net
cutoff: 1.4, msg: 2kByte

0 20 40 60 80 100

bandwidth
MByte s

5

10

15

20

25

30
speedup

ThrG2, cutoff: 1.4
L: 70us, msg: 2kByte
number of processors: 30

30/70
50/70
100/70
100/25

bandwidth [MByte/s]/Latency [us]

a)

b)

ASIC
RISC
Net
Sharc

70µs

3.4 Exploring the Design Space 79

used to distribute particle coordinates as opposed to the RISC architecture. This is tenable
because the clients are supposed to have enough memory. Due to the fact that Myrinet networks
are switched, broadcast does not exist. If a parallel application program uses MPI broadcast or
MPI collective communications, successive point-to-point connections are established on the
Myrinet’s physical layer.

Figure 3.8 a) Speed-up estimation in dependence upon the cutoff radius. Indicated are values for
bandwidth, latency (L) and message size (msg), applying for the PCI bus and the Net network.
Net uses broadcast and collective communication with IBM SP-2 parameters.

b) Estimated speed-up of the ASIC architecture, in dependence upon the solvent to solute ratio
(atoms). For the ThrG2 benchmark, the ratio is about ten.

0 10 20 30 40 50 60

#solvent

#solute

5

10

15

20

25

30
speedup

ThrG2, cutoff: 1.4, ASIC
number of processors: 6,12,18
bandwidth: 30MByte per sec
L: 70us, msg: 2kBytes

0.6 0.8 1 1.2 1.4 1.6
cutoff

5

10

15

20

25

30
speedup

ThrG2
bandwidth: 30MByte per sec
L: 70us, msg: 2kByte
number of processors: 30

ASIC
RISC
Net
Sharc

1
2
3

number of ASIC boards:

a)

b)

80 Chapter 3: Design Space Exploration

Of course, the Net architecture is not limited to Myrinet networks and the Mathematica model
distinguishes two options as well: point-to-point connections and broadcast. Point-to-point com-
munication is easily implemented in the model by repetitively executing the same transmission.
The aggregated point-to-point communication time is down-scaled if broadcast is enabled. The
linear scaling function is determined by the achieved speed-up in the case of broadcast instead of
point-to-point communication.

The Net architecture model is also applied to the IBM SP-2 parallel machine (appendix B).
The SP-2 nodes are interconnected with each other through a multi-stage crossbar switch.
Despite the switched network, broadcast communication is preferable if more than about four SP-
2 nodes are allocated. An IBM SP-2 broadcast communication including 32 nodes achieves a
speed-up of about four, compared with 31 successive point-to-point communications [21]. The
same speed-up is expected for collective communications. The speed-up factor may be explained
with the architecture of the SP-2 nodes: each node has four communication interfaces, thus is
able to establish four switched connections concurrently [53].

The dependence graph of fig. 3.1b was used to map the MD algorithm onto the hierarchical
Sharc architecture. Redundant nodes are mapped to intermediate-level Sharc processors and
model the partial sums calculation (functional nodes f9, f10, join), as well as upwards and down-
wards communications in the hierarchy (fig. 3.2). Data distribution and gathering to/from Sharc
boards is modelled the same as for the RISC and ASIC architectures. Additional communication
cost due to the hierarchy is considered. While data is distributed, each Sharc processor stores the
coordinates of particles residing in the associated slice and in neighbouring slices. This decompo-
sition scheme is a trade-off between domain decomposition and replicated data. Communication
during pairlist and forces calculation is not necessary. The add operation—required for partial
sums on f9, f10, join—is modelled with 20ns per floating point addition.

The results of the presented performance estimations and the limitations of the discussed
architectures may be summarized as follows:

• ASIC: the solvSolv performance of this architecture is the best of all (fig. 3.6a). The speed-
up is limited either by pairlist calculations or soluForce, all of which not parallelised. In the
presented estimations for ThrG2, soluForce is the limiting factor (sharp bend in fig. 3.6a).
The ASIC architecture may reach a speed-up of ten only if 1) the pairlist for solvent is cal-
culated on the coprocessor board, the pairlist for solute on host and 2) the molecular system
contains at least 20 times more solvent atoms than solute atoms, at a cutoff of 1.4nm
(fig. 3.8b).

• RISC: the RISC architecture is primarily limited due to the interprocessor communication
during calculation, and secondarily due to the communication between host and coproces-
sor boards. The more coprocessor boards the system contains, the more point-to-point com-
munications are required to gather partial forces from each board. This effect introduces the
short but steep falls in the speed-up graphs (fig. 3.6b).

• Net: the Net solution is limited because all computational nodes (not only boards) commu-
nicate directly with the host. The reachable speed-up is strongly dependent on the quality of
broadcast and collective communications the network provides. Scalability is rather bad if

3.4 Exploring the Design Space 81

only point-to-point communication is supported (fig. 3.7a). The most important fact is that
a high bandwidth and low latency does not solve the problem: the Net solution of fig. 3.6a
reaches the better maximum speed-up with moderate bandwidth and rather long latency.

• Sharc: the Sharc architecture is faster than the RISC architecture for two reasons. First, the
performance of a single processing chip is better by a factor of 1.32. Second, no interproc-
essor communications occur during calculation, which is the primarily limitation of the
RISC architecture. In addition, Sharc DSPs offer sophisticated communication capabilities
(fast link ports with low overhead and DMA). The model shows that the gain of fast inter-
processor communication exceeds the disadvantage of the hierarchy.

3.4.3 Assessment and Design Decision

Despite the fact that Sharc and RISC architectures are completely different, their performance
behaviour is almost identical. If Sharc and RISC processors would be chosen to have the same
performance, and if the same decomposition strategy applies, the RISC architecture would even
outperform the Sharc architecture (with the same number of computational nodes). Therefore, in
principle, not two different architectures are differentiated, but two decomposition schemes. One
should keep in mind that complete implementation proposals (including the decomposition strat-
egy) are assessed. The following assessment refers to the Gromos96P design goals as stated in
section 1.5.2.

The Main Goal: Speed-up and Cost

The ASIC solution may not fulfil the performance requirement considering representative molec-
ular systems with solute. Because the speed-up goal is the most important, the ASIC solution is
out of the contest. All other proposals achieve the required speed-up of at least ten, but not neces-
sarily with a total cost of less than 20,000 USD. This has shown to be difficult, since the RISC
solution would require two boards with 10-11 processors, the Sharc architecture would require at
least one board with a total of 13 processors. Both solutions might be too expensive; anyhow, the
additional cost is expected to be within tolerable bounds.

The Net solution undoubtedly is too expensive: at least 10 client workstations are required.
Together with Myrinet network interface cards and switches the cost constraint is exceeded.
However, it is not mandatory to buy everything. If there are already enough workstations availa-
ble, purchasing additional machines is superfluous. Moreover, the Net solution also runs on all
networks, if the appropriate message passing library is available. As a conclusion, the Net archi-
tecture may be adapted to an existing workstation cluster without any additional cost.

Scalability

All examined systems scale very good for the required speed-up (at least ten). If the number of
computational nodes is increased further, the scalability depends on many factors, e.g. the cutoff
radius influences the ratio of the number of solvent to solute interactions. The presented estima-
tions are based on the optimistic cutoff of 1.4nm. This is optimistic because a long cutoff
increases the total number of interaction calculations per time step, and all parallel algorithms
scale better if computation dominates communication.

82 Chapter 3: Design Space Exploration

Highest computational performance was assumed for RISC and Sharc architectures, presum-
ing manually optimised code or even hand-coded assembler. In contrast, the code running on Net
clients was not expected to be especially optimised. The assumptions of the Net network commu-
nication parameters are conservative as well: it is assumed that the message passing library does
not employ a dedicated Myrinet driver but utilises protocol stacks instead.

Platform Independence, Maintainability and Development Cost

All parallel architectures require the parallelisation of the simulation software. Different software
levels are separated, namely the application (GROMOS), device drivers (Myrinet, dedicated hard-
ware boards) and firmware (the software running on coprocessor boards). The new parallel appli-
cation is implemented completely platform independent, a standard message passing system has
been used (MPI). To access possibly attached MD hardware, a device driver would intercept the
interprocessor communication function calls of the application program. Device drivers are plat-
form dependent by definition, whereas the firmware probably will not change for different plat-
forms. However, if one of the functions, which is performed on the dedicated hardware, is subject
to change, the firmware is also affected. This is a remarkable restriction in the flexibility of spe-
cialised hardware: changes of the MD algorithm are hard to employ. True platform independence
may only be achieved with the Net architecture.

Implementing GROMOS96P on a Net architecture undoubtedly leads to the solution with the
lowest development cost: as soon the parallel application is available, the Net solution is com-
pleted whether or not dedicated hardware and software is still in development. Development cost
is essential for dedicated hardware. The total cost doubles if a dedicated hardware including
appropriate low level software (device driver and firmware) is to be implemented, compared with
the development cost of the parallel application based on message passing (no custom hardware).

The maintenance cost depends on the software structure and code organisation of the parallel
application. Implementing the programming environment which has been introduced in section
2.4.4 is a promising approach to improve the maintainability and the ease of use of Gromos96P.
Overall maintenance cost will not rise much if dedicated hardware is attached to the system.
Once implemented and tested, firmware and device driver are not subject to change. Of course,
each supported platform is requiring its own device driver.

Design Decision

Reviewing the given facts, the focus of interest is to develop a parallel GROMOS96P software fol-
lowing the concept of section 2.4.4, regardless of possible underlying hardware solutions. Fol-
lowing the trends in high performance computing, all evaluated architectures are distributed
memory parallel machines with message passing communication. For our purposes, the MPI [21]
message passing standard seems very suitable. MPI libraries are available for a wide range of
platforms and operating systems. A great store was set on the declaration of the communication
interfaces, such that possible future developments (coprocessor boards) are easily attached. In
order to promote the development of customised device drivers, only synchronous point-to-point
communication has been used in the prototype Gromos96P implementation.

Studying existing parallel MD software has shown that the replicated data method is the most
simple parallelisation strategy. Consequently, GROMOS96P is based on a spatial decomposition of
the simulation space, where the data is replicated on each computational node. An MPI compliant

3.5 Conclusions 83

message passing library is to be used for interprocessor communication. The fact that an MPI
implementation must be supported on the target machine(s) is the only condition in order to pre-
serve platform independence.

The next chapter deals with the parallelisation of GROMOS. Different decomposition strategies
are compared, of which the spatial decomposition is employed using the replicated data method.
Chapter 5 refines the parallel programming model which has been introduced in section 2.4.4. A
graphical specification method for replicated data parallel algorithms is introduced together with
the appropriate code generator.

3.5 Conclusions
The benefit of EA-based system synthesis to find suitable implementations for a given parallel
algorithm strongly depends on the decomposition scheme of that algorithm. Classical Molecular
Dynamics algorithms are data parallel algorithms, viz the same operation (e.g. interaction calcu-
lation) is repetitively executed on a given data set, whereas task level concurrency is of minor
importance. However, the EA is best suited to find many design alternatives if the algorithm spec-
ification provides a sufficient amount of task level concurrency. Applying system synthesis to the
MD algorithm has shown that only with some cunning techniques new implementation proposals
were found. For example, artificial degrees of freedom have been added to the specification
graph. Finally, the EA is only capable to find implementations for a specification graph with fixed
execution times. In order to consider different parameter sets of the parallel algorithm or the
architecture model, several specification graphs would be required and the synthesis repeated.

Analytical performance estimation of the most promising approaches was indispensable for
two reasons: first, the synthesizer is unable to consider control flow, second, the need to predict
the behaviour of possible target architectures for different molecular systems. Generic functional
models incorporate Molecular Dynamics simulation parameters as long as they have a considera-
ble relevance to the execution time of a function. In addition, basic control flow is considered, e.g.
whether the pairlist is to be reconstructed or not. Speed-up predictions based on analytical models
of architectures and the MD algorithm allow the designer to quickly assess design alternatives for
different scenarios. A specific scenario is not only determined by Molecular Dynamics simulation
parameters, but also by the chosen hardware composition like the number of processors or the
communication bandwidth.

Generic models of Gromos functions and architectures were implemented in Mathematica
[24] to estimate the performance of possible target architectures. The comparison of the results
led to the design decision: A distributed memory environment based on message passing commu-
nication (workstation cluster with high speed network or general purpose supercomputer) is
expected to fulfil our requirements.

84 Chapter 3: Design Space Exploration

CHAPTER 4 The Parallel
GROMOS

Algorithm

Exploring the design space in order to find a suitable architecture for parallel Molecular Dynam-
ics algorithms has brought about the design decision that a workstation cluster with a fast inter-
connection network or a general purpose distributed memory supercomputer would be an
adequate platform for a parallel GROMOS. General purpose architectures are not restricted to par-
ticular parallelisation techniques but allow the application to employ different parallel program-
ming models. For that reason, commonly used Molecular Dynamics decomposition methods are
investigated. Several factors like implementation costs, communication requirements, scalability
and algorithmic overheads are taken into account to assess different decomposition methods.

One of the key issues of parallel MD algorithms is the distributed construction of the pairlist.
This chapter starts with an overview of well-known efficient pairlist algorithms since similar
principles are applied to the novel GROMOS96P algorithm. The already mentioned study about
general MD decomposition methods follows. In section 4.3 it is shown how the domain decom-
position and replicated data method are adapted to the GROMOS algorithm which is capable to
handle truncated octahedron periodic boundaries as well. The applicability of these approaches is
tested taking into account special algorithmic features like the twin-range pairlist method, the
octahedron simulation box, and the calculation of the molecular Virial. Section 4.5 summarizes
the results.

4.1 Neighbour searching
For systems consisting of a small amount of particles N, approximately less than 100, it is con-
venient to examine the interaction of all of the N(N-1)/2 particle pairs. This brute force approach
requires too much computation time for systems of reasonable size. For this reason, Verlet1 intro-
duced a neighbour table in 1967, in which those particle pairs which are separated by a distance
of less than are stored (fig. 4.1a), where ric is the cutoff radius for which the interactions
are calculated, and rs is a small skin. The Verlet table led to a significant reduction in computation
time because the search over all pairs of particles, which still scales with N(N-1)/2, needs only to
be done at intervals. Between the updates of the neighbour list—also called pairlist—the program
just has to check the particle pairs which appear in the list.

1. Verlet’s original paper, dated 1967, is not referenced here, because the Verlet neighbour table format and update
method is also well documented in [1] and [13].

ric rs+

86 Chapter 4: The Parallel GROMOS Algorithm

The interval between pairlist updates is often fixed at the beginning of the run. The choice of
the interval size depends on the thermodynamic state of the system, the length of the time step,
and the values of ric and rs. However, the update interval can be calculated dynamically at runtime
by monitoring the displacement of each particle since the last update of the table. The basic idea
is to choose the skin rs thick enough so that a particle, which was outside (ric+rs) at pairlist con-
struction time, may not penetrate the skin in the time between two pairlist updates. Or, if the sum
of the magnitudes of the two largest displacements exceeds rs, the pairlist is reconstructed. Using
this sum as an update criterion minimises the number of updates, but if the skin chosen is too
thick and the update interval grows, this might result in an unacceptable drift in the energy [38].
Therefore, alternative displacement formalisms have been proposed [1][38].

While the Verlet neighbour table is constructed, all distinct particle pairs ij with a distance rij
smaller than (ric+rs) are considered. Every time step, the interaction is calculated between parti-
cles if , in accordance with the neighbour table. If one of the particles currently reside
within the skin area, the interaction is disregarded.

The calculation and bookkeeping of the displacement for each particle requires considerable
time and memory, hence GROMOS makes use of a constant pairlist update interval which is deter-
mined at startup; on the other hand, the use of a brute force neighbour searching in GROMOS96
has a more harmful effect on execution time. Additionally, GROMOS employs a charge group
neighbour list, as opposed to the original Verlet list which relates atom pairs.

4.1.1 The Link Cell Method

For molecular systems with thousands of particles, searching over all pairs to determine those
fulfilling the cutoff criterion is too expensive, even if the pairlist is not updated every simulation
step. Instead, an alternative method, the so-called cell index or Link Cell [1][13][64][38] method
is more effective. Fig. 4.1 shows a two dimensional slice of a three dimensional (cubic) simula-
tion box, broken into a regular lattice of cubic cells with an edge length h.

Because of the condition on the edge length, , the total number of cells depends on
ric and rs. If the edge length of each cell exceeds ric, then all interacting particle pairs ij are
located within the same cell or in one of the eight neighbouring cells (26 in three dimensions).
Using Newton’s Third Law of pairwise forces, only the same cell and four neighbouring cells

Figure 4.1 Link Cell method in two dimensions, showing nine square cells of width h,
, as a part of the simulation box, with ric the cutoff radius for which the interactions

are calculated, and rs a small skin.

rij ric≤

ric+rs

ric

h

h ric rs+>

h ric rs+>

4.1 Neighbour searching 87

(shadowed in fig. 4.1) have to be searched for neighbours (13 neighbouring cells in three dimen-
sions). It should be noticed that early MD implementations in the seventies included all particles
of the neighbouring cells in the pairlist and interaction calculation, that way introducing an artifi-
cial cubic symmetry which was called the cube-corner effect [64]. These outdated methods some-
times were also referred to as cell methods.

To determine the cell dimensions (hx, hy, hz) and the number of cells, a three dimensional rec-
tangular simulation box with edge lengths bx, by, bz is assumed. Accordingly, the number of cells
along the axes are to be nbx, nby, nbz, see equation (4.1). The function ‘ ’ accepts a floating
point number as input and delivers the largest integer not greater than the argument.

(4.1)

The spatial extent of the cells is easily obtained by dividing the simulation box dimensions by
the number of cells. Due to the nearest image convention, the number of cells must be at least two
in each direction, hence, the cutoff radius may not be greater than half the smallest simulation
box width.

All particles in the system are identified with an unique sequence number starting from zero
up to N-1. The same is true for the cells, see fig. 4.2. The cell structure may be set up and used by
the method of linked lists [1][13]. The usage of linked lists is illustrated in fig. 4.2 for the cells
with sequence number zero and one. The example shows cell zero containing six particles and
cell one with five particles. The particles are sorted spatially and accommodated in the arrays
‘head’ and ‘chain’ as follows: The index of the head array is the cell number. The value (e.g.
head[1] = 6 for cell one) is the sequence number of the first particle of the respective cell. This
sequence number serves as index in the chain array, which delivers the sequence number of the
second particle of the cell (8). Again, the sequence number is used as index. The last particle of a
cell is identified with the value -1 in the chain list.

Figure 4.2 Cell method in two dimensions with a rectangular simulation box consisting of 4x3
cells. Note the cell numbering scheme in the upper left of the figure. A close-up of cell zero and
one is shown in the upper right. The interconnection of the particles inside the cells have no phys-
ical meaning but indicate the sequence they will be processed. How the particles are stored in the
arrays ‘head’ and ‘chain’ is shown at the bottom of the figure.

…

nbx/y/z
bx/y/z

ric rs+
----------------=

1 2 3

4 5 6 7

8 9 10 11

0

nbx=4

nby=3

0 1

1

2
7

9

10

3

0 1 2 3 4 6 75 8 9 10

index

chain

head

4

0

5

6

8

4

3 6

-1 9 7 -1 8 100 5 1 2

hy

...

...

hx

88 Chapter 4: The Parallel GROMOS Algorithm

Using the linked list structures is very convenient in all cases where memory is an issue (e.g.
when a system contains a large amount of particles), the main advantage being that the memory
used always equals the number of particles plus the number of cells.

Assuming a homogeneous liquid, the number of particles per cell Nc is roughly constant. In
order to construct the pairlist, the Link Cell method needs to check particle pairs
against the cutoff radius, whereas operations are required for the brute force
approach. If the cutoff radius increases to meet condition (4.2), the simulation box may be
divided up in only four cells. In this case, the cell method coincides with the brute force search.

(4.2)

In practice, MD simulations with a solvent are always designed to have minimum size, thus a
typical cutoff should be expected to be relatively large compared with the simulation box dimen-
sions. As indicated above, the efficiency of the cell method is not satisfactory with only a few
cells due to two reasons: firstly, the search space grows as the cutoff radius grows, secondly, the
examined volume per particle is at least times bigger than the cutoff sphere—at
least because it was assumed that in the cubic case.

4.1.2 Grid Cell vs. Link Cell

Using a finer grid alleviates the influence of the cutoff, and the search space may be better
approximated towards the cutoff sphere. The grid cell technique also uses a regular lattice of
cells, but here the cells are chosen so small that not more than one particle occurs in one cell
[64][38]. This corresponds to the situation where the volume diagonal of the cells is shorter than
the smallest possible distance between two particles. All particles are spatially sorted into cells,
e.g. by using a three dimensional array representing the grid. This array contains either a particle
number or -1 if the cell is empty. A linked list is obsolete, because no cell is allowed to contain
more than one particle.

Figure 4.3 Grid cell method, illustrated in two dimensions. The interaction cutoff radius rc indi-
cates that no skin rs is applied. Thus, rc always refers to a static pairlist update interval.
a) Arbitrary cell grid, such that one cell contains at most one particle.
b) Calculating the minimal distance rmin between sub-cells.

13.5 Nc N⋅ ⋅()
N N 1–()⋅ 2⁄()

3 rc⋅ Min bx by bz, ,[]>

81 4π()⁄ 6.4≈
rc h=

hx

rc

rc

rmin

x

y

x

y

rc
rc

hy

hx

hy

a)

b)

4.1 Neighbour searching 89

The major problem of the grid cell technique is to find the neighbouring cells: given a non-
empty cell somewhere in the lattice (e.g. the shadowed cell in fig. 4.3a) with cell coordinates

. The cell coordinates are used as indices in the mentioned three dimensional array.
Possible cell neighbours —indicated with the thick line in fig. 4.3a—are easily found
by accessing the array with indices relative to as follows:

(4.3)

With equal to the number of cells per cutoff and hx/y/z being the cell dimensions:

(4.4)

The function ‘ ’ accepts a floating point number as input and delivers the smallest integer
not less than the argument. Accessing the array with indices according to (4.3) delivers the cells
indicated with a thick line plus four spare cells completing the rectangle. These spare cells must
be eliminated. This is done by calculating the cell sequence number of the neighbouring cells
(4.6). All neighbour-cells with a smaller index number than the primary cell are rejected.

Not all cell pairs according to (4.3) must be examined to find neighbouring particles. Because
the cutoff sphere is better approximated with a finer grid, the cells identified with a cross are
always too far away from and their minimum distance exceeds the cutoff. How these
cell pairs may be eliminated is sketched in fig. 4.3b, given the minimum distance rmin as

(4.5)

with the integer connecting vector of the two cells under consideration. Two exam-
ples clarify how equation (4.5) is used:

1. Consider the two dimensional example of fig. 4.3b with , ,
and . Equation (4.5) results , with . Thus, the distance of the
particle pair (fig. 4.3b) must be checked against the cutoff.

2. The example in fig. 4.3a refers to and , thus the number of cells per

cutoff according to (4.4) is . The distances between the cells with a cross and

the primary cell according to (4.5) are and , respec-

tively.

The grid cell algorithm approximates the cutoff sphere very accurately, hence the number of
examined particle pairs is very close to the number of pairlist entries. The drawback is, of course,
that many cells are empty.

It is shown in [38] that for a mono-atomic Lennard-Jones liquid near its triple point the cell
size must be chosen so that about 90% of the cells are empty, as a result of which neighbour
searching is not efficient. To allow a coarser grid, the particles may be redistributed to neighbour-
ing empty cells not further away than a certain distance. Then, the search space is extended by
this distance to also reach the displaced particles. Grid cell algorithms using this technique allevi-
ate the problem of many empty cells, an efficient exemplary algorithm is presented in [38] and
requires at most two cells per particle. A slightly different approach is applied to GROMOS96P.

x1 y1 z1, ,()
x2 y2 z2, ,()

x1 y1 z1, ,()

x2 y2 z2, , x1 ncpcx–()… x1 ncpcx+() y1()… y1 ncpcy+() z1 ncpcz–()… z1 ncpcz+(), ,=

ncpcx/y/z

ncpcx/y/z
rc

hx/y/z
------------=

…

x1 y1 z1, ,()

rmin bx Max dx 1– 0,[]⋅()2
by Max dy 1– 0,[]⋅()2

bz Max dz 1– 0,[]⋅()2
+ +=

dx dy dz, ,()

hx hy 1= = rc 2.6= dx 2=
dy 3= rmin 5= 5 rc<

hx hy 1= = rc 3.6=

ncpcx/y/z 4=

3
2

3
2

+ 4.243= 2
2

3
2

+ 3.606=

90 Chapter 4: The Parallel GROMOS Algorithm

4.1.3 GROMOS96P Pairlist Algorithm

In order to improve the performance of the existing pairlist algorithm its parallelisation was una-
voidable. Without an efficient parallel pairlist implementation the major design goal, a speed-up
of at least ten, could not be achieved (section 3.2.3). In connection with GROMOS, the new pairlist
algorithm had to meet some preconditions:

• The cutoff radius rc is specified at startup. Both pairlist update interval and rc are constant,
thus, there is no skin rs.

• The algorithm must support rectangular, truncated octahedron, and monoclinic periodic
boxes as well as nonperiodic systems.

• A parallel version of the algorithm for all supported types of boxes must be available.

• The compliance with the twin-range method should be maintained.

Simulations in nonperiodic systems permit the free choice of the shape of the grid. However,
for periodic systems, the grid boundary must fit into the periodic box such that it also obeys the
periodicity rules.

Rectangular Box

Similar to the Link Cell algorithm, the simulation box is partitioned into cells. To illustrate how
periodic boundaries are considered, the edge lengths of the cells are chosen longer than the cutoff
in fig. 4.4 which leads to . Though, given a certain primary cell, only directly adja-
cent cells must be examined. The example simulation box is divided up into 4x3x5 cells, follow-
ing the same cell numbering scheme as in fig. 4.2. The figure shows which cells must be searched
for neighbouring particles under consideration of periodicity: for a particle residing in cell
number six, possible interaction partners are in the same cell, or in one of the neighbouring cells
as illustrated in fig. 4.4 (middle). For the primary cell 6, periodic boundary corrections never
apply. This is in contrast to cell 11 (fig. 4.4, right), whose neighbouring cells also belong to peri-
odically repeated images of the simulation box.

Figure 4.4 A three dimensional rectangular 4x3x5 simulation box (left) is shown, following the
cell numbering scheme of (4.6) and assuming the number of cells per cutoff . All par-
ticles fulfilling the cutoff criterion are in the same primary cell or in neighbouring cells as indi-
cated for cell 6 (middle) and 11 (right). Note that for cell 11, periodically replicated images
appear as neighbouring cells.

ncpcx/y/z 1=

3 0

18 19 16

22 18 20

21 15 12

plane z=0

plane z=1

811

y

z

x

10 11

13 1415

17 1819

21 22 23

plane z=0

plane z=1

764

8

0 1 2 3

7

9 10 11

5 6

9

2

ncpc 1=

4.1 Neighbour searching 91

Given the cell coordinates (x,y,z) of any cell as integer values, the corresponding cell number
is given by

(4.6)

Neighbouring cells are searched using (4.3) and (4.6) with periodic boundaries. First, the sur-
plus cells are faded out: if the cell number of the secondary cell, derived from (4.6), is smaller
than the cell number of the primary cell, the secondary cell is rejected. If the secondary cell is not
rejected, the cell number must be recalculated in accordance with the periodicity rules. The com-
ponents as a result of (4.3) must be corrected before they are fed to (4.6) as follows: if a compo-
nent x/y/z is smaller than zero, nbx/y/z is added; else, the component is taken modulo the number
of cells nbx/y/z.

Because the Link Cell algorithm is not efficient with only cells, the number of
cells is increased in practice. The total number of cells along the axes are chosen so that 1) the
cells approximate a cube and 2) the total number of cells approaches the total number of particles.
The cells are allowed to be empty or to contain more than one particle. As an additional con-
straint, the number of cells per cutoff ncpcx/y/z is the same in all spatial directions. This simplifies
the search over neighbouring cells according to (4.3). The number of cells and their extent are
given by an iterative algorithm in dependence with the number of processors (section 4.3).

The neighbour-cell search does not test minimal cell distances to determine if particle separa-
tions must be calculated at all. Instead, all neighbouring cells as delivered by (4.3) are evaluated.
This means that cells with a cross (fig. 4.3a) are also considered. Experiments have shown that
there is no performance gain by calculating the integer distance between cells instead of floating
point distances between particles.

The GROMOS96P algorithm does not restrict the number of particles per cell. Therefore, to sort
the particles spatially into cells, the implemented algorithm uses a linked list (fig. 4.2) as opposed
to the grid cell algorithm which applies a three dimensional cell array for particle storage. The
neighbour search uses cartesian coordinates to access the cells according to (4.3) and (4.6). For
rectangular simulation boxes, the GROMOS96P pairlist algorithms may be summarized as follows:

1. Calculate the centres of geometries of solute charge groups according to (3.2). For solvent,
the centre of geometry is the position of the first atom.

2. Calculate the number of cells nbx/y/z and the number of cells per cutoff ncpc such that the
total number of cells tnbx approximates the total number of charge groups (section 4.3.1).

3. Sort particles into cells using a linked list (fig. 4.2).

4. Get a primary cell (sequence number and cell coordinates).

5. Determine all neighbouring (secondary) cells according to equations (4.3) and (4.6). Ignore
cells with sequence numbers smaller or equal to the primary cell.

6. Search particle-particle pairs in the primary cell: if ncpc equals one or two, calculate all dis-
tinct particle pair separations. Check the distances against the cutoff and put the pairs into
the list if necessary. If ncpc is greater than two, put all distinct particle pairs into the pairlist
without evaluating the pair separation.

cellnumber x y z, ,() y nbx⋅ x+() z nbx⋅ nby+ +=

3 4 5⋅ ⋅ 60=

92 Chapter 4: The Parallel GROMOS Algorithm

7. For each particle in the primary cell, calculate the distance to all particles in secondary
cells, check the distances against the cutoff, and put the particle pairs into the list if neces-
sary.

8. Get the next primary cell and repeat steps 5–7 until all cells are processed.

Truncated Octahedron

In GROMOS, the truncated octahedron is always the most regular one, that is a regular octahedron
fitted into a cube with edge length b (fig. 4.5). In order to apply a grid to the truncated octahedron,
two conditions must apply: 1) the grid must be chosen so that the truncated octahedron bounda-
ries coincide with cell boundaries 2) the truncated octahedron boundary has to cut a cell into two
equal parts such that the periodicity causes no overlap of grid cell contents at the truncated octa-
hedron boundary. As a consequence of this symmetry requirement, the number of cells nbx/y/z
along all axes must be four or an integer multiple of four.

Due to the nearest image convention, the maximum cutoff is , which is half the length
of the distance between two adjacent six-sided planes of the octahedron. If the cutoff is in the
range between b/4 and , the number of cells per cutoff ncpc will be two (with).
This means that—similar to the rectangular case—the neighbours are searched with the brute
force method. To exploit the advantages of cell-based methods, the cutoff must be smaller than
b/4, leading to with 16 cells. An example of an octahedron divided up into 4x4x4 cells
is shown in fig. 4.5. The cell numbering scheme remains the same (rectangular box).

Figure 4.5 Truncated octahedron simulation box, fitted into a cube with edge length b, and with
: the diagrams on the right show how neighbouring cells of the primary cell 43 are

determined in consideration of periodic boundaries.

5 6

29 30

16 17 18

20 21 22

243

28

4

47 44

53 54 52

57 58 56

61 62 60

plane z=3

4043

46

x

z

y

1 2 30

5 6 74

16 17 18 19
32 33 34 35

48 49 50 51

Box No. 43

b

plane z=2

plane z=2

plane z=3

ncpcx/y/z 1=

b 3 4⁄

b 3 4⁄ nb 4=

ncpc 1=

4.1 Neighbour searching 93

Finding neighbouring cells of a given primary cell is much more sophisticated with octahe-
dron boundaries, as opposed to the rectangular case: fig. 4.5 illustrates that not the same neigh-
bouring cells (cell numbers) are to be examined as for the rectangular case. Therefore, simply
applying (4.3) as in the rectangular case would provide only a subset of the octahedron neigh-
bouring cells, namely the cells depicted in the top right-hand corner of fig. 4.5. Neighbour cells in
the plane (outside the central box) come from the replicated octahedron adjacent to the
four sided octahedron plane (depicted light grey in fig. 4.6). Additional neighbouring cells of cell
43 are also to be found in the replicated dark shaded octahedrons in the background. Neighbour-
cells coming from these two octahedrons are depicted in the bottom right-hand corner in fig. 4.5.

A simple and straightforward algorithm to find these additional neighbouring cells could not
be found. A brute force algorithm to find neighbouring cells has been reluctantly implemented
instead. Each cell in the central box is spatially shifted (replicated) towards the primary cell by at
most half the box length per coordinate component, at the same time minimising the length of the
connecting vector. This way, only octahedrons adjacent to the six-sided planes are replicated. The
minimum cell distance rmin is calculated (4.5) for all shifted cells and tested against the cutoff.
The remaining part of the algorithm is identical to the rectangular one. Not surprisingly, the octa-
hedron pairlist algorithm performs worse than its rectangular equivalent. Especially important is
to find the best trade-off: with more cells fewer particle-particle distance evaluations (floating
point operations) are necessary, at the expense of the brute force neighbour-cell search (integer
distance calculation) which becomes the limiting factor. Experience has shown that there is no
profit on modern workstations if floating point distance calculations between particles are
replaced with integer distance calculation between cells.

Monoclinic box

The periodic monoclinic box is used for systems in the crystalline state, where the periodicity is
determined by the crystal form. Within GROMOS, the oblique coordinate system is
defined as , with orthogonal to and , and the angle between and . With a
simple coordinate transformation it is possible to adopt the oblique crystal system, so that the
pairlist and the interaction functions designed for rectangular systems may be also be used for
octahedron boundaries, with the minor change that the distance between particles must be cor-
rected [5][26].

Figure 4.6 Replicated truncated octahedrons in which neighbour-cells of cell 43 may also be
found (in addition to the central computational box).

x 4=

43

x' y' z', ,()
y' y= y' x' z' β x' z'

94 Chapter 4: The Parallel GROMOS Algorithm

Performance

The performance of the new cell-based pairlist algorithms for rectangular and octahedron peri-
odic boundaries is given in fig. 4.7, measured with a SunUltra30. Fig. 4.7a shows the speed-up of
the new algorithms compared with the GROMOS96 pairlist function nbnone. If the cutoff radius is
small compared with the simulation box extent, the advantage of the cell method is most appar-
ent. The reason is because the examined volume with a small cutoff is significantly smaller than
that with a long cutoff, whereas the brute force algorithm nbnone performs independently of the
cutoff. The performance data of fig. 4.7 is determined with the ThrG2 and Thr2 examples, the
simulation box length lies around 7nm for both benchmarks. Refer to table A.1 for exact values.

With a cutoff of 2nm, the cell-based octahedron pairlist algorithm does not seem to perform
better than the brute force approach. The reason for this being that a 2nm cutoff is in the range
between b/4 and , and a search over all pairs is performed anyway. The bad performance
of the octahedron pairlist is due to the expensive search for neighbouring cells. A trade-off
between the number of cells and execution speed is hard to find, because the number of cells per
axis may be increased only by multiples of four.

The pairlist algorithm for rectangular boxes is capable of processing an arbitrary number of
cells. If the total number of cells approximates the number of particles (nragt), the algorithm
reaches its maximum performance. The values in fig. 4.7b refer to the total number of cells rela-
tive to the total number of particles as follows, for different cutoff radii. The shadowed bar in the
middle represents the best case execution time which is reached with one processor in the system,

Figure 4.7 Performance of GROMOS96P cell-based pairlist algorithm.
a) Speed-up of the cell-based algorithm for both rectangular and octahedron periodic boundaries,
with respect to the GROMOS96 brute force algorithm nbnone.
b) Performance of the pairlist algorithm with rectangular periodic boundaries is dependent on the
total number of cells, with the total number of particles (charge groups) in the
system.

b 3 4⁄

10.5

8.5

19

3.3
1.9

4.7

3.
1

1.
7

11.
3

3.
1

3.
1

0

5

10

15

20

0.8 1 1.2 1.4 1.6 2

cutoff [nm]

sp
ee

d-
up

rectangular box
octahedron box

rectangular box,
number of cells:

0

5

10

15

20

0.8 1 1.2 1.4 1.6 2

cutoff [nm]

tim
e

[s
]

< nragt
≈ nragt
> nragt

a) b)

nragt 12,246=

4.2 Decomposition Methods 95

and with the number of cells approximating nragt. Incrementing the parameter ncpc leads to
many empty cells (hatched bar), decrementing ncpc results in many unnecessary particle distance
calculations (white bar).

As a conclusion, the advantage of the cell-based pairlist algorithm is reduced with long cut-
offs, regardless of the type of periodicity,

4.2 Decomposition Methods
Three decomposition methods are typically used with MD simulations. Particle decomposition,
also referred to as atom decomposition, assigns unique particles to processors; the particles
remain with the assigned processor throughout the simulation. Spatial decomposition [55]
assigns partitions of the geometric space to processors; the particles may migrate to different
processors based on their spatial coordinates. Interaction decomposition [62] assigns unique par-
ticle pairs to the different processors; the pairlists represent the interactions to be calculated dur-
ing the simulation.

Interaction decomposition assigns all possible interactions to processors. Hence, no interproc-
essor communication is needed to calculate the forces. For the case that the number of processors
is approximately equal to the number of particles, the interaction calculation remains local to
each processor. Communication is required among processors that share common (primary) par-
ticles, which is the case only if there are more processors than particles. This method implies that
pairwise identical forces are calculated twice. Interaction decomposition is not recommended for
molecular systems with considerably more particles than processors.

The above mentioned methods are usually implemented with one of the following techniques:
systolic loops, replicated data, and domain decomposition.

Systolic loop methods [29][58] distribute the atomic data equally over all processors and by
passing data between them permit the calculation of all possible pair forces. For example, the
coordinates are distributed over a ring of processors such that half of the coordinates passes every
processor exactly once (mobile particles). Each node also stores the coordinates of a group of
particles of the overall system (permanent particles). During a systolic cycle each processor eval-
uates and accumulates the interactions of the permanent particles with the passing mobile ones.
Due to the geometric decomposition of permanent particles, generally it is not necessary to exe-
cute the complete systolic loop if a cutoff is applied. The computed forces are passed back over
the ring to accumulate the global force on their residential processor. Particle decomposition usu-
ally is implemented with systolic loops.

The replicated data decomposition to Molecular Dynamics is a typical example of the data
parallel approach which can be implemented for a large number of problems [54][47]. Each proc-
essor in a network has a copy of all atomic coordinates, velocities and forces and, in principle,
attempts a full simulation of the system of interest, while sharing the workload equally with the
other available processors. For inexpensive operations, for example a function with a complexity
linear in the number of particles, there is little to be gained from parallelisation, so the computa-
tional effort is simply duplicated on each node. Time savings accrue where expensive program
operations can be divided between the individual processors and carried out in parallel. However,
some of the time saved by these operations is then negated by the need to circulate any changed

96 Chapter 4: The Parallel GROMOS Algorithm

data around the network of nodes. The key to successful parallelisation rests with maximising the
time spent in the parallel sections of the code and at the same time minimising the amount of data
interchanged in the time consuming communication steps.

The domain decomposition [36][50] strategy is a well-known approach for the simulation of a
large numbers of particles (multi-million systems) interacting with short-range forces. The GRO-

MOS force field, for example, is such a short-range interaction, including Coulombic forces with
the charge group concept. The simulation box as a whole is divided up into a series of regions of
equal size, with each region handled by a separate computational node. The regions themselves
are divided into cells of equal size with the number of cells maximised, subject to the condition
that none of the cell sides are smaller than the cutoff radius. Particles in a particular cell will inter-
act only with particles in the same or adjacent cells, as illustrated in fig. 4.4. Assuming the box of
fig. 4.4 being a region on one computational node, special treatment is needed for cells on the
boundary of that particular region. Message passing is used to communicate particle positions
and interactions. That way, communication with three neighbouring regions or computational
nodes is required. After all the forces have been calculated, the particle positions are updated.
Since the domain decomposition has its basis on geometry, all the data structures must be updated
to account for positional changes. The particle coordinates are checked and if a particle is in the
wrong cell it is moved to the proper cell. If the new cell is on a different computational node,
message passing is used to send the particle to the new computational node. Each node checks for
incoming particles and places them in the proper cell when received. However, the amount of
data required to be passed is much smaller than that needed for a global sum. This potentially
means that this algorithm provides substantial time savings over the replicated approach. Com-
munications due to the region overlap is minimised if the regions are cubes. Recapitulating the
domain decomposition, a spatial decomposition without replicating the data has been described,
where missing data in the overlap zone between the regions is replicated or communicated.

The choice of an algorithm depends on several factors: The replicated data method is conven-
ient for a few hundred processors and up to about 50,000 atoms, since it is adapted to a parallel
system by straightforward means. Domain decomposition algorithms are very effective for multi-
million particles simulation [49], allowing dynamic load balancing for heterogeneous particle
density. Domain decomposition is best suited to reduce the communication overhead which ham-
pers the scalability of replicated data implementations. In return, the complicated communication
scheme itself induces a considerable overhead, which is not dependent on the number of proces-
sors. To determine a possible trade-off, UHGROMOS (replicated data) and its further development
EulerGromos, which employs the domain decomposition, are compared in [36]. The performance
of both implementations have been measured on Myoglobin, a molecular system consisting of
10,914 atoms, with a cutoff radius of 1nm. The measurement was done on a 512-node Intel
Touchstone Delta machine (32GFLOPS peak performance, 16MB memory per node) and it was
pointed out that the replicated data version outperforms EulerGromos if less than about 60 com-
putational nodes are allocated. For larger molecular systems or smaller cutoff radii the crucial
advantage of domain decomposition will become evident for a smaller number of processors.
This has been shown in section 3.4.2 (performance estimation).

4.3 GROMOS96P Spatial Decomposition 97

4.3 GROMOS96P Spatial Decomposition
The ratio of the number of processors to the number of particles has proven to be the crucial fac-
tor in order to determine if domain decomposition outperforms the replicated data approach. Par-
ticularly, the replicated data approach will perform badly with a large number of processors and a
moderate number of particles (less than 100,000 is considered as moderate). For that reason it
was evident to contemplate a GROMOS96P implementation applying the domain decomposition
scheme. At first sight, the implementation of an elaborated communication scheme seems to be
the only difference between a domain decomposition and the replicated data alternative.

The domain decomposition algorithm as roughly described in the previous section assumes
that no global communication is required. Remembering the GROMOS MD algorithm (section
1.4.2) and assuming that the functionality of GROMOS96P must not be reduced, global communi-
cation is required each time step. Depending on the selected features, scaling factors must be dis-
tributed to all computational nodes and/or solute particle positions must be replicated. The
reasons are as follows:

• Temperature scaling is used to keep the total energy at a constant value, which is a required
in closed systems. The unconstrained velocities (1.22) are scaled with the temperature scal-
ing factor which is derived from the kinetic energy of all degrees of freedom in the molecu-
lar system and the reference temperature.

• In addition to temperature scaling, GROMOS provides pressure coupling to keep track of the
constant total energy of the system. The Virial (1.20) is used for pressure coupling as
opposed to the kinetic energy for temperature scaling.

• In most systems, the fast oscillations of covalent bonds are handled with the iterative
SHAKE algorithm. Solvent molecules are never split over region boundaries and could be
handled independently on each processor. Solute molecules consisting of several charge
groups are split over regions. Moreover, solutes usually overlap regions by more than the
cutoff radius depending on the extent of the molecule.

• A similar problem arises if the molecular Virial is to be calculated. To calculate the centres
of mass positions for solutes (1.17), all solute coordinates are needed which are spread over
the entire simulation box.

The first two points refer to the total kinetic energy and the molecular Virial, respectively, both
of which not contributing to a serious amount to global communication. The two latter cases are
worse, since all solute coordinates are needed. Nevertheless, a modified spatial decomposition
scheme has been implemented.

4.3.1 Spatial Decomposition with a Rectangular Box

The rectangular simulation box is divided up into regions of equal size such that the number of
regions match the number of computational nodes. The axis along which the system is decom-
posed is chosen to be the longest side length of the simulation box. Fig. 4.8 illustrates a spatial
decomposition along the z-axis, since (a glossary concerning decomposition parame-
ters is provided in section 4.5.2).

bz bx by,>

98 Chapter 4: The Parallel GROMOS Algorithm

The number of cells are iteratively calculated as follows:

1. Set the initial number of cells along the z-axis to be equal to the number of processors. By
this, the number of regions is determined:

; the initial number of cells along the z-axis.

2. Calculate the width of one cell. Within the first iteration, hz is the width of the regions:

3. Calculate the number of cells per cutoff: ncpc.

4. Given the number of cells per cutoff, calculate the number of cells along the x- and y-axis:
 and

The number of cells along the secondary axes are not dependent on Ptot, that way approxi-
mating cubic cells.

5. Calculate the total number of cells: tnbx.

6. If tnbx is smaller than the total number of particles (nragt), increase the number of cells
along the z-axis and repeat steps 2–5; otherwise, the number of cells
along all axes is determined.

4.3.2 Domain Decomposition Algorithm

The GROMOS96P spatial domain decomposition is described next, in conjunction with the MD
algorithm as introduced in section 1.4.2, assuming message passing communication. How parti-
cles are communicated is illustrated in fig. 4.8.

Figure 4.8 GROMOS96P spatial domain decomposition. The simulation box is partitioned into
regions of equal size, the number of regions matching the number of processors. Each region is
further subdivided into slices and cells in accordance with the pairlist algorithm.

nbz Ptot=

hz bz nbz⁄=

ncpc rc hz⁄=

nbx ncpc bx⋅() rc⁄= nby ncpc by⋅() rc⁄=

tnbx nbx nby nbz⋅ ⋅=

nbz nbz Ptot+=

1,2,
3,4

5,6,
7,8

9,10,
11,12

13,14,
15,16

17,18,
19,20

0 1 2 3 4

simulation space: rectangular box

slices

regions

x

z

y

communication

charge group positions:

partial forces:

atom coordinates:

4.3 GROMOS96P Spatial Decomposition 99

Fig. 4.8 shows a rectangular simulation box decomposed along the z-axis. There are
regions and slices along the z-axis, and the number of slices (or cells) per cutoff is

. To simplify the description of the basic steps of the algorithm, a unique number of
slices Ns per region is assumed. This is not a requirement since is not necessarily an
integer number. The algorithm specification refers to those steps executed solely on the host
machine with capital letters, whereas the numbers refer to tasks which are executed on all clients
concurrently.

A If a pairlist is to be calculated in this step, the host machine sorts all charge groups spatially
and assigns them to cells, slices and regions.

B If the molecular Virial is to be calculated, determine the atomic positions relative to the cen-
tre of mass for solute molecules (1.18).

C The host distributes all atom coordinates to client processors. Each processor stores only
the coordinates of the particles which are currently associated with its region. In the case of
Virial calculation, the relative atomic positions of the solute molecules are replicated on all
regions.

1. In order to prepare the pairlist construction, calculate the charge group positions (centres of
geometry) for each region. Alternatively, charge group positions are received from the host
to avoid duplicate operations.

2. Determine the initial number of slices ns0 to communicate:
The initial number of slices are required to completely calculate the pairlist of those parti-
cles residing in the first slice of a region. Each region sends ns0 slices asynchronously to the
-z neighbour node, starting with the lowest slice sequence number. From the +z neighbour
node, ns0 slices are asynchronously received. Associated with the slices are charge group
positions.

3. Start the pairlist iteration: loop over all slices in the region.

4. The primary slice is selected: the sequence number of the primary slice is determined by
the sequence number of the first slice in the region plus the slice counter i.

5. If (last iteration), skip this step. Else, check if additional slices must be com-
municated for the next iteration. This is the case if . At most one
slice is sent and received within the loop. The slice which is sent to the -z node is deter-
mined by the index number of the first slice of the region plus an offset. This offset is

 modulo Ns, and is only valid if Ns is valid for all regions. The appropriate
asynchronous send and receive operations are initiated.

6. Search charge group neighbours within the primary slice in accordance with the algorithm
of section 4.1.3 for the rectangular box.

7. Check if the required subsequent (+z) ncpc slices are locally available. If not, terminate the
corresponding outstanding asynchronous receive communications.

8. Search the neighbours for particles residing in the primary slice in ncpc subsequent slices.

9. Increase the loop (slice) counter i, check the loop termination criterion and proceed with
step 6 if required.

10. Check if all asynchronous communications have terminated.

Ptot 5=
nbz 20=

ncpc 4=
nbz Ptot⁄

ns0 ncpc Ns– 1+=

i 0 … Ns 1–, ,=

i Ns 1–=
ncpc Ns– i 1+ +() 0>

i 1 ncpc+ +()

100 Chapter 4: The Parallel GROMOS Algorithm

11. If required, prepare the Virial calculation for all solvent molecules residing in the region;
the solute is handled on the host (step B of the algorithm).

12. The force calculation then proceeds using the local pairlist to evaluate forces only for those
charge groups which properly reside on each node. The processing sequence of the cells is
the same as for the pairlist construction. The same communication scheme applies to trans-
fer non-resident atom coordinates to and from neighbouring nodes. Consequently, the
forces must be transferred back to keep track of the pairwise identical interaction (fig. 4.8).

13. Each computational node sends atomic forces and partial energies and the Virial to the host.

D The host restores the global force array (no summation required) and sums up the energies
and Virial.

E Additional operations on the host apply in accordance with the algorithm (bonded forces,
integration, pressure and temperature scaling, file I/O, etc.)

F End of time step. If a pairlist is to be constructed in the next step, go to step A of the algo-
rithm. If no pairlist will be calculated in the next step, the particles are not redistributed,
thus, go to step B of the algorithm.

Considering the communication strategy, the presented algorithm is not a standard (ideal)
domain decomposition for a number of reasons: 1) standard domain decomposition algorithms
approximate cubic regions. With cubic regions instead of slices interprocessor communication is
reduced. 2) After each time step, all forces are collected on the host, whereas only solute forces
are absolutely required.

Compared with traditional domain decomposition approaches, the presented algorithm intro-
duces additional communication cost: within each time step, solvent coordinates are distributed
and solvent interactions are collected; in terms of GROMOS MD parameters, the additional
amount of floating point numbers (table 3.4) are communicated. For
the ThrG2 benchmark (table A.1), this is 1MB of data (single precision floating point). In return,
the presented concept offers a simplified communication scheme, since communication occurs
only along one axis. Additionally communicating the solvent back to the host has a nice side-
effect: most of the existing GROMOS code is not subject to modifications and is executed on host
only, especially the most complicated functions bonded, integration, and SHAKE (fig. 3.1). The
scalability is only slightly reduced if these function are not parallelised, since they are not very
complex in terms of computation time. In order to estimate the performance characteristics, the
domain decomposition algorithm has been employed for the RISC architecture (section 3.4.2).

The following modification of the presented algorithm would allow minimising the global
communication with GROMOS: the functions bonded and integration (fig. 3.1) are also executed
on the clients to evaluate the unconstrained velocities. Energy and Virial contributions are sent to
the host for global summation. The host then calculates temperature and pressure scaling factors
and broadcasts them to the clients. The clients apply the scaling factors to determine the con-
strained velocities and new positions. In order to SHAKE the solute, the unconstrained solute
coordinates (derived from temperature scaled velocities) are required on the host. In addition, sol-
ute coordinates are required on the host to prepare the Virial for the next time step, see equations
(1.17) and (1.18). Consequently, either the solute forces or the already integrated new uncon-
strained positions must be communicated to the host in order to SHAKE the solute and to prepare
the Virial. Otherwise, constraints dynamics cannot be supported in a parallel version.

2 ndim nvcag nram⋅ ⋅ ⋅()

4.3 GROMOS96P Spatial Decomposition 101

4.3.3 Replicated Data

Rectangular box

The replicated data decomposition broadcasts the atomic coordinates to all connected processing
nodes, and each node stores the whole set of data. Replicated data parallel algorithms are most
simple to program due to the very simple data distribution and gathering. Only minor changes are
needed to parallelise existing sequential functions, because the same global data structure may be
used. A replicated data decomposition is employed in the Net architecture (section 3.4.2). Again,
functions like bonded forces calculation, integration, scaling, etc. are performed on the host
machine. The prototype GROMOS96P implementation also employs this type of replicated data.

The first assumption that modern computer networks would provide an efficient broadcast
communication was a fallacy. As mentioned earlier, Myrinet network and IBM’s SP-2 network
have been investigated. Both networks allow only point-to-point connections over cross-bar
switches. Broadcast communications are translated by the message passing library into subse-
quent point-to-point communications. Thus, if the Myrinet is used to interconnect workstations,
the predicted maximum performance is reached with about 15-25 clients (fig. 3.7a). The SP-2
interprocessor communication is capable to establish four connections simultaneously, thereby
providing a limited low-level broadcast. The performance estimation for the SP-2 has shown that
even with this limited broadcast a good scalability is maintained with up to 12-16 computational
nodes, and maximum speed-ups of up to about 25-35 can be achieved (fig. 3.6b).

Point-to-point communication has proven to be the limiting factor if the number of processors
exceed a certain number. How the total amount of communicated data could be reduced by solely
using point-to-point connections is shortly outlined. The global data structure containing the par-
ticle coordinates is packaged into smaller units, each unit destined for a specific region. Such a
unit of coordinate data defines a completed region containing the information about the particles
actually residing in a particular region and, in addition, all positions of particles in the overlap
zone. The overlap zone is determined by the cutoff radius and has a thickness of ncpc slices. The
client processors receive their unit and restore the global data structure, replenishing the gaps
with zeros. Gaps occur for non-resident and non-replicated particles. By distributing only com-
pleted regions only data which is actually needed is replicated on each node, as opposed to the
fully replicated data approach, where all data is replicated (and communicated) on each node. For
example, the Sharc architecture (fig. 3.2d) is supposed to replicate only the overlap zone on each
DSP chip, thereby taking advantage of completed regions. The respective Mathematica model
assumes a perfect broadcast to each board and hardware supported on-board data distribution. In
contrast, the Mathematica model of the Net architecture assumes fully replicated data.

If domain decomposition techniques are applied, the overlap zone is communicated by using
an elaborated communication scheme (section 4.3.2).

Octahedron box

Domain decomposition is exceedingly difficult to apply to the octahedron simulation space. Since
there is already a significant overhead for the rectangular box, the gain with an octahedron box, if
any, is assumed to be marginal. Besides, one should keep in mind that the octahedron is primarily
used to minimise the number of particles in the simulated molecular system. Compared with the
box extent, a long cutoff will be the regular case, for which no significant savings in communica-
tions may be achieved. Moreover, the domain decomposition communication scheme requires

102 Chapter 4: The Parallel GROMOS Algorithm

data transfers (particle coordinates in the overlap zone, partial forces) to neighbouring cells which
may not be determined in an efficient manner. The identification of neighbouring cells is also
required to package the data into completed regions. Neighbour-cell searching is very expensive.
If it is executed on the host only, its long sequential execution time limits the scalability of the
parallel system. Thus neighbouring cells are searched on the clients only for regions. This must
be done either each time step in case of domain decomposition or only if a new pairlist is to be
calculated in case of replicated data. Consequently, the prototype GROMOS96P implementation
decomposes the octahedron with a fully replicated data method.

4.3.4 Load Balancing

Decomposing the rectangular box assures that nbz is an integer multiple of Ptot, resulting in Ptot
regions with equal volumes. Consequently, load balancing is perfect for homogeneous liquids
(fig. 4.9a/b). If , the total number of cells tnbx will be much greater than the number
of particles, and the pairlist algorithm slows down (fig. 4.7b), at least without any impact on the
good load balancing.

Figure 4.9 Load Balancing with fully replicated data decomposition. The values are normalised
so that the host (node 1) has the load 1. The number of pair interactions served as a basis for
assessment. All figures refer to the benchmarks ThrG2 (rect) and Thr2 (octa), both of which
decomposed into cells to illustrate the effect of irregular slice grouping in the octahe-
dron case. The cutoff is .
a) Good load balancing is assured for rectangular boxes, since the number of slices is always an
integer multiple of Ptot. If the number of slices are equal to the number of nodes, irregular slice
grouping is not possible to distribute the octahedron workload.
b) 16 slices are grouped to build four regions. A regular pattern (4,4,4,4) applied for the rectangu-
lar box, an irregular pattern (5,3,3,5) applied for the octahedron.
c) 16 slices are grouped into eight nodes following the pattern (4,2,1,1,1,1,2,4).

Ptot
3

nragt»

0

1

2

3

4

5

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

number of nodes

lo
ad rect

octa

0.4

0.6

0.8

1

1.2

1.4

1 2 3 4

number of nodes

lo
ad

0.4

0.6

0.8

1

1.2

1.4

1 2 3 4 5 6 7 8

number of nodes

a)

b) c)

16 16 16⋅ ⋅
rc 1.4nm=

4.3 GROMOS96P Spatial Decomposition 103

Using the same load balancing strategy for the truncated octahedron as for the rectangular box,
namely dividing the enclosing cube into rectangular regions of equal volumes, would result in a
heavily unbalanced workload: a central region would contain much more particles than a border
region (fig. 4.5). Apparently, this problem is easily solved: first, the number of cells is increased.
Then, the regions are compiled in a way that a border region consists of more slices than a central
one. If the grid is chosen fine enough, the octahedron share to unique region volumes is well bal-
anced out throughout all regions. Finer grids increase the total number of cells to exceed the
number of particles, and the pairlist calculation slows down drastically (section 4.1.3). Consider-
ing the Thr2 example of fig. 4.7a with a 1.4nm cutoff, the moderate speed-up of a factor 1.7 has
been achieved with only cells. Decomposing the octahedron with 20 cells per axis
increases the pairlist construction time to be worse than the brute force approach. Because the
cell-based pairlist algorithm scales very well with the number of processors, this loss of perform-
ance at least scales down as well. A well-balanced workload can be achieved if
(fig. 4.9).

Load balancing is not an issue in the case of rectangular boxes if molecular systems with sol-
vent are being simulated. For octahedron boundaries, load balancing and scalability improves as
the molecular system grows. As a rule of thumb, a good load balancing is assured if the number
of processors does not exceed the ratio of the simulation box length to the cutoff radius. In the
case when there are more processors, the current implementation selects the decomposition
parameters in a way that the performance loss due to a workload imbalance is equalized with a
faster pairlist construction.

In order to achieve a better load balancing for octahedron boxes, both pairlists (solute and sol-
vent pairlist) may be split into Ptot equal parts (interaction decomposition). Parallelising the non-
bonded computation with the interaction decomposition method divides the computational work
perfectly, since all kinds of interaction calculations are of similar complexity. Interaction decom-
position needs the pairlist to be calculated on host, thus it is not applicable to GROMOS96P
(table 3.3).

16 16 16⋅ ⋅

Ptot nbx/y/z«

104 Chapter 4: The Parallel GROMOS Algorithm

4.4 Parallel Twin–Range
The twin-range pairlist method is a common method to handle long-range forces (section 1.3.3).
In order to evaluate the nonbonded interaction with sufficient accuracy, a long cutoff radius rc has
to be used. For molecular systems, a value of at least 1.4nm seems necessary. If, for example,
water is simulated using a pairlist with a 1.4nm cutoff, each water molecule will have about 200
interacting neighbours.

The nonbonded interactions are evaluated at every simulation step using the charge group pair-
list that is generated with a short-range cutoff rc. Longer range interactions between charge
groups at a distance longer than rc and smaller than rcl are called twin-range interactions. Twin-
range interactions are evaluated less frequently, advantageously when the pairlist is recon-
structed. They are kept unchanged between these updates, thus, fluctuations of the forces beyond
rc are neglected during several steps.

Gromos evaluates the twin-range interactions using the reaction field corrected electrostatic
term and normal Van der Waals parameters in the Lennard-Jones term (1.26). It is assumed that
no excluded neighbours, no third-neighbour- or 1–4-interactions, and no intra-charge-group inter-
actions exist at these distances. In order to accomplish that, rc must not be chosen too small. The
evaluation of nonbonded forces in the twin-range needs only a subset of the functions provided
by soluForce. Therefore, twin-range calculations may be simplified in a similar manner as done
in solvSolv.

There are basically two possibilities to determine twin-range interactions in a parallel system:
1) sequentially on the host and 2) in a parallelised and distributed manner like short-range non-
bonded interactions. The first proposal would require the minimum number of changes in the
existing GROMOS96P code. The already existing function nbwith (GROMOS96) determines twin-
range interactions at the same time as the short-range pairlist is constructed. With minor changes
nbwith would be reused to evaluate the twin-range on the host without generating a short-range
pairlist. As it is the case for nbnone, nbwith applies a brute force neighbour search too. The short-
range pairlist would be constructed as usual on all computational nodes. The major drawbacks of
this solution are firstly a sequential twin-range calculation (scalability limitation), and secondly
that charge group neighbour searching is performed twice. As an advantage, a shortened cutoff
radius applies to the parallel part, leading to a faster pairlist construction, improved load balanc-
ing for octahedron boxes, and less memory demands.

The proposed parallel twin-range algorithm divides up the simulation space in accordance
with the GROMOS96P spatial domain decomposition (replicated data) with the only difference
being that the long-range cutoff is used. The parallel pairlist construction must be modified such
that an additional pairlist including the twin-range particle pairs is generated. The additional pair-
list does not separate solute and solvent interactions, thereby requiring a new parallel function to
evaluate twin-range interactions, e.g. a modified nbwith-function. In addition, the functions to
sum up partial forces and energies have to be adapted to incorporate the twin-range contributions.
The pros and cons of the parallel twin-range are very different from those mentioned above for
the sequential twin-range proposal. Currently, GROMOS96P deals twin-range interactions by
increasing the short-range cutoff up to the value of the long-range cutoff radius.

4.5 Summary 105

4.5 Summary

4.5.1 Key Results

In this chapter a systematic comparison of commonly used decomposition methods for Molecular
Dynamics algorithms has been carried out. The major results are:

• Competitive parallel MD implementations make use of spatial domain decomposition
methods. Other decomposition schemes are scarcely used.

• Domain decomposition provides excellently scalable implementations especially well
suited for large scale molecular systems. For systems of moderate size the overhead due to
the very complex communication scheme becomes the dominant factor. As a rule of thumb,
domain decomposition is the right choice if 1) more than about 50 computational nodes are
used, and 2) only if the cutoff is significantly shorter than the simulation box extent.

• The replicated data method outperforms the domain decomposition scheme on parallel
computers if only a small number of processors is used. This method is certainly the best
choice if the cutoff is rather long compared with the simulation box extent. The scalability
of a replicated data implementation is limited regardless of the communication subsystem
chosen. Scalability may be improved using an efficient broadcast mechanism instead of
point-to-point communications or by replicating not all data but only the spatial overlap
zone which is defined by the cutoff.

The results of this comparative study affected the choice of the GROMOS parallelisation tech-
nique as follows:

• A typical GROMOS simulation consists of less than 50,000 particles. The resulting simula-
tion box is not large enough in comparison with the cutoff; thus there is no profit in the
domain decomposition method.

• Global communications additionally reduce the performance of a domain decomposition.
GROMOS requires global communication in two cases: 1) if the molecular Virial is to be cal-
culated and 2) if the simulation box is a truncated octahedron.

• As a novelty an algorithm enabling parallel simulation of octahedron periodic boundaries
was developed. This algorithm assumes that particle coordinates are replicated on each
computational node.

Consequently, GROMOS96P employs the replicated data method. The cell-based parallel pairl-
ist algorithm divides the simulation space into regions. In case of a rectangular box, the regions
have equal size, thus a good load balancing is ensured. However, coupling the load balancing to
the spatial decomposition of the pairlist has two significant drawbacks: first, a good load balanc-
ing for octahedron boxes is difficult to achieve, second, the pairlist algorithm itself performs
badly if the number of processors increase.

The undoubtedly major advantage of the employed replicated data method is that parallelising
the entire GROMOS96 MD code is not required. Therefore, only the most computation time inten-
sive parts of the algorithm are parallelised, whereas complicated tasks like integration and
bonded forces calculation are executed by GROMOS96 routines on the host.

106 Chapter 4: The Parallel GROMOS Algorithm

4.5.2 Decomposition Parameter Glossary

Parameter Explanation

Ptot The total number of computational nodes or processors in the parallel system.

nbx/y/z The number of cells along a selected axis.

hx/y/z The cell extent.

rc
Regular interaction cutoff radius if the pairlist update interval is determined stat-
ically at simulation startup.

ric
Interaction cutoff if the pairlist update interval is determined dynamically at
runtime.

rs The small skin which applies to ric to determine the pairlist update interval.

rcl Long-range cutoff, , only in combination with the twin-range method.

Ns The number of slices per region.

N
Usually the total number of particles (mostly atoms) if there is no special con-
nection with GROMOS.

nragt Total number of charge groups in the molecular system.

Nc The average number of particles in a cell.

ns0 Initial number of slices to communicate if domain decomposition applies.

ncpcx/y/z The number of cells per cutoff. Within GROMOS, ncpc is equal along all axis.

tnbx The total number of cells.

Table 4.1 Survey of decomposition parameters

rcl rc>

CHAPTER 5 Specification Model
and Code

Generation

This chapter introduces a domain-specific model which is applicable to replicated data parallel
algorithms. Main ranges of application of that specification model are iterative algorithms
intended to be partially parallelised. That part of the algorithm which is subject to parallelisation
is specified as a control/data flow graph. A simple architecture model and the binding of algorith-
mic functions to hardware resources complete the specification. A code generator reads in such a
specification thereby being able to generate most of the code containing interprocessor communi-
cations automatically, e.g. the parallel scheduler. The specification model and the code generator
which are presented here follow the concept introduced in section 2.4.4.

5.1 Motivation
The parallel programming environment, introduced in section 2.4.3, was developed according to
the GROMOS96P design goals. To be consistent, this concept was applied to implement the first
hand-coded GROMOS96P prototype. This preliminary parallel version employed only synchro-
nous (blocking) point-to-point communication using the mpich1 message passing library. In
accordance with chapter 4, the MD algorithm was decomposed spatially and the fully replicated
data method was used. The parallelised part of the algorithm is embedded in the existing code as
illustrated in fig. 5.1: the white parts of the flow diagram (left) represent the initial sequential
implementation, the grey parts indicate where the new parallel code has its entry points. In addi-
tion to the parallel scheduler, an initialization function outside the main loop of the iterative algo-
rithm is required, appearing as a grey box in the flow diagram labelled as “static data
initialization”. Essentially, this function distributes static data to all allocated computational
nodes. This must be done once per program run and outside the main loop, because in contrast to
dynamic data, static data remain constant throughout all iterations.

Many design goals could be achieved with this first GROMOS96P prototype. 1) The speed-up
was in the range as predicted in section 3.4.2 for the Net architecture without broadcast. 2) Work-
ing with parameterized functions has proven to be efficient, especially the interplay of decompo-

1. mpich is a freely available, portable implementation of MPI [21], the Standard for message passing libraries.
mpich is available for a wide range of platforms from Argonne National Laboratory, which is operated by the Uni-
versity of Chicago. http://www.anl.gov/

108 Chapter 5: Specification Model and Code Generation

sition functions and parallel functions. 3) Parallel and sequential GROMOS implementations are
derived from the same source code and 4) only two well defined entry points are required in the
existing code. Nevertheless, crucial weaknesses must be pointed out:

• The parallel scheduler (fig. 5.1) is a highly complex function, including the superposition
of two different control flows, the data flow of the algorithm, function calls, and all inter-
processor communications. One control flow is that of the algorithm, the other steers the
execution in dependence on the target architecture and the function mapping.

• Many dependences occur in the parallel code because the parallel scheduler and the parallel
initialization function depend on the interface specification of parameterized functions.
These dependences are unavoidable and intentional; in return, the handling with parameter-
ized functions is significantly simplified, thereby granting the overall ease of use.

• The interface between parallel C code and the enclosing (FORTRAN) program is one of the
main source of errors, since compilers are not able check the consistency of this interface
parameter list.

Whenever a parameterized function changes its interface, or a new function is added, depend-
ences in the code become evident, making the prototype very susceptible to programming errors
and difficult to change. To overcome these problems, and for the reasons given in section 2.4.4, a
dedicated specification model and a corresponding code generator is developed. With this envi-

Figure 5.1 Proposed entry points of the parallel code. The left side depicts the block diagram of
an existing sequential implementation as white boxes. Two parallel functions (grey) are inserted:
an initialization function outside the main loop, and a parallel scheduler inside the loop which is
invoked from the sequential scheduler. The parallel scheduler invokes parameterized functions
(S2 and P functions) in dependence on the control flow, the architecture and mapping function.

AAAAAAA
AAAAAAA

AAA

AAAAA
AAAAA

AAAAA
AAAAA

AAAAAAA
AAAAAAAinitialization, setup: open files,

read data, S1 function block 1

main loop

static data initialization

S1 function block 3

end main loop

S1 function block 4
write final data, close files

AAAAAA
AAAAAAS1 function block 2

parallel scheduler, calling S2 and P functions

AAAA
h_1 h_2 h_3

stepwise migration:

AA
g

h’g’AAAA
AAAA
AAAA

AAAA
A

architecture,
mapping

AAAAAAA
AAAAAAAk’ l’ decomposition

functions

5.2 Parallel Software Concept 109

ronment it is possible to generate the most critical parts of the source code automatically, namely
the parallel scheduler and the parallel initialization function, both of which depicted grey in
fig. 5.1.

The specification model which is presented next allows to specify the parallel scheduler as a
control/data flow graph (CDFG) independently of a target architecture. The remaining manual
work includes the tasks of parameterization (stepwise migration) of sequential functions, devel-
oping decomposition functions, and the specification of the CDFG itself.

The development environment consists of three parts: specification, verification and code gen-
eration. The CDFG (fig. 5.3) combined with the hardware mapping (fig. 5.2) is called specifica-
tion (section 5.2 and section 5.3). The verification step ensures the correctness of the specification
and the availability of the resources, e.g. a communication library (section 5.4.1–section 5.4.3).
The code generator finally generates C code automatically depending on the specification and the
mapping on a specific target (section 5.4.4).

5.2 Parallel Software Concept
The domain-specific model initially has been developed to specify the parallelised part of the
GROMOS96 MD algorithm. The model may naturally be used to specify any data parallel algo-
rithms; the corresponding code generator is usable only if the targeted parallel system is running
MPI. As a precondition, a replicated data decomposition scheme must apply.

5.2.1 Architecture and Function Mapping

An architecture is a set of computational nodes or processing elements (PE) interconnected with
each other. Two types of PEs are differentiated: the host computer (H) and client machines (Cx).
An architecture always consists of one host machine and an arbitrary number of clients. As a min-
imum requirement, the host must be interconnected with each of its clients, whereas the underly-
ing network is arbitrary. Client nodes never communicate directly with each other and are
assumed to be identical. Violating this assumption, which is possibly the case if a heterogeneous
workstation cluster is used, may lead to load balancing problems unless this heterogeneity is con-
sidered in the decomposition functions. The number of client nodes to be the only parameter in an
architecture specification leads to a very simple structure superfluous to be specified explicitly.
This very simple architecture model is used for the specification model and is not compliant to
the abstract architecture introduced in section 2.2.3.

The mapping of algorithmic functions to computational resources is considerably restricted
with the goal to limit the number of degrees of freedom in view of the code generator, and to keep
the complexity of the hand-coded parallel scheduler within reasonable bounds. The binding is not
determined for each function independently, instead, function types representing groups of func-
tions are associated with computational nodes as a whole (fig. 5.2). Four different types of func-
tions are relevant for the specification model and have been introduced so far (section 2.4):

1. Possibly generated functions: static data initialization and the parallel scheduler.

110 Chapter 5: Specification Model and Code Generation

2. S1 sequential functions are exclusively executed on the host and are depicted as striped
white circles. S1 functions usually refer to existing sequential code and are not subject to
any kind of constraints. In accordance with section 2.4.3, S1 functions are invoked solely
from the sequential scheduler and are not allowed as functional nodes in the algorithm
specification, thus they cannot be called from the parallel scheduler.

3. S2 sequential functions—illustrated as grey circles—are parameterized functions following
the guidelines which are described in the next section. S2 algorithmic functions are derived
from S1 functions to be available in the specification graph (stepwise migration, fig. 5.1).
S2 decomposition functions determine the distribution of the parallel workload, hence they
are normally not derived from S1 functions but introduced as new functions. S2 functions
are called from the parallel scheduler and execute the same operation on the global repli-
cated data structure, that way providing identical output data on each PE. S2 functions are
either executed on host only, or on the same nodes as P functions.

4. P functions are parameterized functions, typically derived from S1 functions. P functions
exploit the data parallel characteristic of the domain decomposition. P functions perform
the same operation on different sets of data, that way generating different result data on
each PE. P functions are either executed only on the host, on the clients only, or on all PEs.

For each node onto which the P functions are mapped, a disjunctive set of data (region) is
determined by the decomposition functions (fig. 5.1). The regions denote the sub-domains on
which the parallel functions work. It is the programmer’s responsibilty to ensure that the parallel-
isation strategy of P functions coincide well with the decomposition functions. The algorithm
decomposition should be chosen such that parallel functions have negligible overhead in case
they are used for a sequential program compilation.

The distinction of different function types is needed to classify different functional blocks
within a specification. Communication and/or synchronisation points may be inserted only at
functional block boundaries. A restricted mapping of functions onto PEs leads to efficient code

Figure 5.2 Four different examples show how three different function types (S1, S2, P) may be
mapped onto hardware resources, with an exemplary architecture consisting of the host machine
(H) and three clients (C1, C2, C3). S1 mapping is always restricted to the host. The trivial case,
where all functions are executed solely on the host, is not shown. The restricted mapping forces
all functions which are declared as P functions to be mapped equally. The same rule applies to S2
functions.
a) Two mapping possibilities for S2 functions, if P functions are mapped to all clients except for
the host.
b) Two mapping possibilities for P functions, if S2 functions are exclusively mapped to the host.

S2 P

H C1 C2 C3

AA
AAS1 S2 P

H C1 C2 C3

AA
AAS1 S2 P

H C1 C2 C3

A
AS1 S2 P

H C1 C2 C3

AA
AAS1

a) b)

5.2 Parallel Software Concept 111

and simplifies the code generation process. The remaining mapping capabilities (illustrated in
fig. 5.2) have proven to be sufficient for our applications. The number of client PEs is preserved
as a parameter in the executable program, making a single program applicable to an arbitrary
number of clients, including zero. Because adding or removing client machines does not change
the code, the system is scalable a priori.

As a consequence of this mapping scheme two slightly different parallel schedulers are pro-
vided: a parallel scheduler running on the host (host scheduler), and a parallel scheduler running
on all clients (client scheduler). In the course of the following discussion, the term parallel sched-
ulers is still used if a certain topic concerns both host and client scheduler. Similarly, the static
data initialization is performed by two different functions, one running solely on the host sending
static data to all clients, and another running on the clients receiving the data.

5.2.2 Parameterized Functions

S2 and P functions are so-called parameterized functions and thus may appear in the specification
model. Parameterized functions must meet the function interface standard and other constraints
and requirements of the model:

• A standardised function prototype must be used (‘i’ and ‘o’ are reserved variables, the term
function denotes the name of the function):

int function(struct functioninstr *i, struct functionoutstr *o);

• The return value of type integer is zero if no error occurred, otherwise the return value sig-
nifies the corresponding error or warning number. Positive values refer to warnings, nega-
tive values denote errors.

• Parameterized functions may call standard C library functions. In addition, the files func-
tion.h and specname.h are always included. Any additional includes, for example message
passing libraries, are not allowed. The term specname designates the name of the specifica-
tion.

• The interface of a function is specified in function.h: the structures functioninstr and func-
tionoutstr are declared in this file and contain all input and output data of function. Access-
ing external data from within function without using these structs is forbidden.

• function.h must provide a comment text where input struct members are declared either
static (unchanged during program execution) or dynamic (explicitly communicated each
time the function is called). A more comprehensive description of the function interface
declaration is given in section 5.4.3.

• The include file specname.h contains function prototypes of all application specific func-
tions. These might be timer functions for profiling purposes, FORTRAN standard library
functions which do not exist in C language, and other application specific functions. Func-
tions declared in this file are implemented in specname.c.

• The include file c.h is read in from specname.h. Primarily, c.h provides the mapping of
parameterized functions to hardware resources. All global variables, if there are any, must
be defined in c.h. In addition, a number of switches for various options are set here. The

112 Chapter 5: Specification Model and Code Generation

most important is the switch determining if a parallel or sequential program is to be com-
piled. Less important options determine to what extent errors, warnings, and other informa-
tion are reported.

• There are basically two possibilities to provide special non-parameterized functions which
are accessible from parameterized functions but not from the parallel scheduler. The first
possibility, as already mentioned, is to provide arbitrary functions in specname.h and spec-
name.c. This option is advantageously chosen if the function in question is used by several
parameterized functions. Secondly, it is of course possible to declare and implement func-
tions within the source file function.c of a parameterized function. Because these additional
functions must not be accessible to other parameterized functions, they have to be declared
static.

Some further restrictions apply: pointers to functions and structs within structs are not
allowed. Also, only simple data types1 may be used in the function interface specification, and
pointers to simple data types; pointers are always treated as arrays. All the rules mentioned above
are mandatory if the code generator is used. An existing hand-coded version complies with the
same rules.

5.2.3 Control/Data Flow Graph

From within the main loop, the parallel scheduler is called (fig. 5.1), which is specified with a
CFG as in fig. 5.3a. The CDFG is a flat and directed control flow graph without loops, combined
with a textual data flow specification. An algorithm specification consists of exactly one CDFG
with dedicated single entry and exit points. The control flow graph differentiates three node types:
functional nodes, conditional branch nodes and respective join nodes. The conditional nodes
implement a standard if–endif statement. Edges between nodes represent execution dependences.
The control flow execution semantics is the same as for the CDFG introduced in section 2.2.6.
Other control structures like for loops and while statements are not supported. Task level concur-
rency is specified graphically, for example, clcgeo and pfact are task parallel functions (fig. 5.3a).
In contrast to task level concurrency, data parallelism is implicitly specified by using P functions.

The function type (S2, P) is an attribute of functional nodes. Besides the entry and exit points
of the graph, only S2 and P functional nodes may occur. Entry and exit points represent the inter-
face of the parallel scheduler. Analogously to algorithmic functions, dynamic data on these inter-
faces is accessible via the ‘i’ and ‘o’ variables. The interfaces of host and client schedulers will
probably not be identical, because the host scheduler provides both control flow variables and
data to be sent to functional nodes, whereas the client scheduler might only provide control flow
variables on the interface. The same situation arises if the control flow reaches the exit point: if all
result data is gathered on the host after each iteration, the ‘o’ struct of the client scheduler will
contain no variable declarations.

The data flow and data assignments are not specified graphically but in textual form as in
fig. 5.3b. Specifying the data dependences graphically would lead to very complex and possibly
confusing graphs, because for each assignment one edge would be needed. Since there is not an
obvious benefit from a data flow graph, data assignments are specified textually. Control flow and

1. Simple C data types: char, short, int, long, double, float.

5.2 Parallel Software Concept 113

data flow are strictly separated. Therefore, control flow variables like ‘ldopair’ may not be output
variables of predecessor algorithmic S2 or P functions but must be derived from input ‘i’ varia-
bles of the parallel scheduler. Input data for a particular functional node may be derived from any
of the connected predecessor nodes. Within one iteration step, predecessor nodes are defined as
those functional nodes from which there is a directed path of control to the current point of con-
trol. The input data assignment must be unique and data types must match. Data which is deliv-
ered to the specification via the ‘i’ variable of the host scheduler is accessible at any time on the
host, client processors first have to communicate the data, unless the data item is also on the inter-
face of the client scheduler.

Referring to fig. 5.3b, dynamic input data of the function newPair is assigned to output data of
predecessor nodes and input variables of the host scheduler (named scheduleH in fig. 5.3b). Each
function has an instance number given in round brackets. The keyword ‘Parallel’ represents the
functional attribute identifying a function to be of type P. An array is specified as pointer to a sim-
ple data type (this is not evident in the figure). Per array, two variables are required in the data
flow: the length of the array as an integer (e.g. headl), and the array pointer itself (head).

5.2.4 Memory Management

This section describes memory management concepts which are used by generated and hand-
coded parallel schedulers. First, the memory management strategy of the generated code is dis-
cussed. With the intention to improve the performance and to reduce the memory demand, the
hand-coded implementation follows a slightly modified approach. The fundamental differences
are shortly outlined.

Figure 5.3 Extract of the GROMOS96P specification, modelling the pairlist algorithm:
a) Control flow graph: a new pairlist is constructed if ‘ldopair’ is true.
b) Dynamic input data assignment of newPair (within braces) as part of the textual specification.

 ...
 newPair(1), Parallel, inputs {
 headl = parts(1).headl: head;
 head = parts(1).head;
 taill = parts(1).taill: tail;
 tail = parts(1).tail;
 xcgl = clcgeo(1).xcgl: xcg;
 xcg = clcgeo(1).xcg;
 boxl = scheduleH(0).boxl: box;
 box = scheduleH(0).box;
 nboxl = pfact(1).nboxl: nbox;
 nbox = pfact(1).nbox;
 pfact = pfact(1).pfact;
 fslice = slice(1).fslice;
 nslice = slice(1).nslice
 } -> postPair(1);
 ...

pfact

slice

newPair

clcgeo

parts

ldopair

start

postPair

a) b)

114 Chapter 5: Specification Model and Code Generation

Generated Code

Generated schedulers employ a very conservative memory management, in return, secure imple-
mentations without memory leaks are generated. Before a parameterized function is invoked, the
respective arguments are either received or copied on all nodes onto which the function is
mapped. The arguments are assigned to input variables of the function as soon as they are present
and valid. After a (possible) function call, the memory which is occupied by the input arguments
is deallocated in any case. Algorithmic functions and parallel schedulers have the duty to keep
track of memory allocation and deallocation. A parallel scheduler allocates and deallocates the
input variables of algorithmic functions. Analogously, algorithmic functions take control of their
output variables. Output variables of algorithmic functions are initialized at program startup
together with the static data initialization.

Outputs of a predecessor function are assigned to inputs of a function, with the exception of
the scheduler input. The scheduler input serves as a data source similar to the output of an algo-
rithmic function. Consequently, the scheduler output behaves like an input to a further algorith-
mic function. In case of a local array assignment, the array is always copied. First, the destination
is checked if an allocation already exists. If this is the case, the memory is freed and newly allo-
cated in order to provide the memory of the current copy operation. Simple data types are not
explicitly copied since they are assigned directly. If a data assignment requires an MPI communi-
cation, the pointer to the receive buffer is assigned to the input variable of the target function, thus
making additional copy operations superfluous. The receive buffers are always reallocated before
new data is received.

Hand–Coded Versions

The hand-coded version also differentiates between assignments of single data types and arrays.
If no communication is required, single data types are implicitly copied by direct assignment. In
case of a local array assignment, the array pointer and length specifier are copied to the input var-
iable, the array contents is not copied. If communication is required, a receive buffer must be allo-
cated, and the same concept applies like for generated code: each time an array is received, a
possibly existing former receive buffer is reallocated.

5.3 Language Specification
In order to provide a formal representation of an algorithm which has been specified in accord-
ance with the concept of the previous section, a domain-specific language has been defined. The
language includes the control flow graph (fig. 5.3a), the data flow specification (assignment state-
ments, fig. 5.3b), and the hardware mapping (fig. 5.2). The textual representation of the control
flow graph is written by hand or obtained from a CAD tool.

Within this section, only high level productions of the context-free language [65] are discussed
and connected with the concepts of section 5.2; appendix C includes the complete syntax specifi-
cation in the form of an EBNF. The top level production is the specification itself:
specList = "specification" "{" header funcList ifaceDefList declarationList

graphDef outMappingDecl "}"

A specification specList must start with the terminal symbol specification, followed by
six subsequent parts enclosed in braces.

5.3 Language Specification 115

Specification header header

Within the specification header, the names of all four generated files are declared. These are: the
parallel scheduler running on the host (host scheduler), the parallel scheduler running on all cli-
ents (client scheduler), and the two include files of the static data initialization functions. The file
names must not have file suffix.

List of all Algorithmic Functions funcList

The second part of the specification includes a list of all algorithmic functions. These are, strictly
speaking, the include file names including the search path. Again, the function names correspond
to file names and are given without suffix.

Interface Declaration of both Parallel Schedulers ifaceDefList

Data on these interfaces comprise dynamic control flow variables and the dynamic I/O data flow.
The interfaces are specified separately for the host and the client scheduler. Control flow variables
must be provided on both interfaces. Dynamic input data may be omitted on the client scheduler
interface, since MPI communications are inserted automatically to distribute the data.

A list of variable declarations is composed to a C structure very similar to the declaration of an
algorithmic function interface. If a specific variable represents a dynamic array, the variable iden-
tifier is prefixed with an asterisk. Each variable declaration of the list is followed by the additional
information determining if the variable is of type static or dynamic. A static variable is not modi-
fied within the main loop (fig. 5.1) and therefore never communicated. In contrast, dynamic vari-
ables do change every iteration and are communicated if required. This semantics of a static
variable declaration differs from that of the C language standard.

Global Parameters decalarationList

Two global parameters must be specified, represented by the terminal symbols mapping and
initSwitch, respectively. The parameter initSwitch is of type integer and controls the ini-
tialization of the input data of algorithmic functions. If set to non-zero (default), initialization is
performed each time the parallel schedulers are invoked, viz single data types are set to zero, all
memory is deallocated and the respective pointers are initialized. The enumeration parameter
mapping determines the mapping of S2 and P functions, in accordance with fig. 5.2; the enu-
merator can take four different values:

• AllonC: S2 and P on all clients, nothing on host, fig. 5.2a, left.

• AllonA: S2 and P on all computational nodes, fig. 5.2a, right.

• AllbutSonC: S solely on host, P on all clients, fig. 5.2b, left.

• AllbutSonA: S solely on host, P on all computational nodes, fig. 5.2b, right.

Graph Definition graphDef

The graph itself is specified node per node in an arbitrary sequence. The language differentiates
three node types, namely condition, endcondition, and function.

A conditional node condition requires two boolean expressions; the first is evaluated on
the host, the latter on the clients. Although user defined constants are allowed, in the general case
control flow variables are associated with those boolean expressions. Because control flow varia-
bles must be derived from the interface declaration ifaceDefList, they do not have an

116 Chapter 5: Specification Model and Code Generation

instance number. Two lists of successor nodes follow the branch conditions. The first list is proc-
essed if the boolean expression is true, the latter otherwise. Each conditional node must have a
unique instance number and a matching endcondition with the same instance number.

Each functional node function represents an algorithmic S2 or P function call, the list of
input parameters for that function (mapAssignmentList), and a list of successor nodes. First,
the name of the function is given, followed by the function type (Sequential for S2 functions,
Parallel for P functions). The production mapAssignmentList specifies the data sources
which are associated with specific input variables. One data assignment is composed as follows
(refer to the EBNF given in appendix C): the identifier of the input variable is optionally followed
by a second identifier, separated with a colon. The second identifier refers to a special collect
function. The collect function specifies how data is gathered if the current function is mapped
solely to the host, and the function providing the source data is executed on the clients or on all
nodes. After the equals sign, the data source is given, followed by an optional list lengthList,
separated with a colon. The lengthList is either empty or contains a list of input array names,
for which the current variable determines the length.

Four types of data sources are possible, namely the outputs of another algorithmic function, a
constant number, or one of the internal reserved variables mpiId and mpiNumNodes. If the
source is an output of a predecessor node, the instance number of the source node is required.
This is a regular data assignment according to the data flow of the specified algorithm. The user is
responsible assigning only valid data. If, for example, a certain branch of the control flow has not
been executed, associated data might be outdated. In this case, the implementation of the algorith-
mic function must ensure that the outputs remain valid. The variables mpiId and mpiNum-
Nodes both are MPI implementation specific and represent the local node number and the total
number of allocated computational nodes, respectively.

Definition of the Output Mapping for both Schedulers outMappingDecl

The last part of the specification determines the data which is fed to the output interface of the
parallel schedulers. Two identifiers are expected which must coincide with the names of the
schedulers (defined in header), first the host scheduler, secondly the client scheduler. For each
scheduler the output data fields, as defined in the third part of the specification (ifaceDe-
fList), are associated with outputs of algorithmic functions using a mapAssignmentList.
Mainly here collect functions will be necessary to ensure that the results are transferred correctly
to the host. The output mapping may be empty.

5.3.1 GROMOS96P Specification

The complete control flow graph of the GROMOS96P parallel algorithm and the corresponding
textual specification are to be found in appendix D.

5.4 Automated Processing 117

5.4 Automated Processing

5.4.1 Specification Parser

The scanner reads the specification and generates a sequence of tokens. If a symbol is recognised,
the respective token—an internal data type—is generated and added to the output sequence. For
example, if a number has been recognised, the token NUMBER is generated. If a character string
is not a known symbol and does not contain illegal characters, it is treated as an identifier. Some
tokens may carry attributes. For example, the attribute of the NUMBER token is the value, and
the token IDENT (identifier) has the recognised string as an attribute.

The token sequence is fed to the specification parser. The recursive descent parser checks the
syntax of the token sequence in accordance with the language specification. If the parser starts up
with a token sequence, a correct specification is assumed. For each token the parser tests if the
current production is fulfilled. The main goal, the production specList, is suspended if a non
terminal symbol is found. Instead of the suspended production, the new non terminal symbol is
explored first. This leads to a recursive algorithm: starting from the top level goal, the parser steps
down the production hierarchies.

The parser controls the whole data processing of a specification, thus calls scanner functions
as well as semantics tests.

5.4.2 Checking the Static Semantics

Once the parser has identified a syntactically correct part of a specification, different methods and
functions are invoked to ensure the consistency of the specification, to find conflicts, and to trans-
form the input data into internal data structures. If one of the checks fails, the parser aborts execu-
tion and provides an appropriate message. This section enumerates the most important semantics
analysis functions.

• If the header is successfully read, the function names of generated functions are checked
if they are disjunctive and copied to internal data types. Possibly already existing functions
are overwritten without issuing a warning.

• If the function list funcList is processed, for each function in the list it is checked if
there is an include file function.h. Then, the C code parser is activated to process the inter-
face declaration of the algorithmic function, which is specified in function.h (section 5.4.3).

• The parallel scheduler interface declaration list is checked if the names of the given sched-
ulers are consistent with those defined in the header section. It is checked whether all inter-
faces are declared. The scheduler interfaces are included in the internal graph
representation enabling them to be sources for input data assignments.

• Include files for the schedulers and static data initialization functions are generated,
because at this point interface specifications of all functions are processed. These include
files mainly consist of modified I/O interface declarations of the algorithmic functions.
Modifications concern the type-qualifiers of input variables.

118 Chapter 5: Specification Model and Code Generation

• Because the graph definition is read node per node in an arbitrary sequence, a structural
consistency check may not be performed until the complete control flow graph is read. The
tests which are executed on the complete control flow graph ensure the absence of forbid-
den control dependences. Moreover, it is tested if all specified functional nodes are part of
the graph. Data dependences are not checked against the control flow. It is therefore possi-
ble to specify a successor node of the current function as source of an input assignment. It
is only checked if the specified source data item really exists. In addition, minimal checks
apply to length specifiers of arrays including only the verification of the correct data type.
Because not yet implemented, it is not tested whether the referenced data item is indeed an
array, and if that array is really assigned.

• It should be noticed that providing a collect function or a lengthList is syntactically
optional. An array with missing length specifier is accepted without issuing a warning. If
the collect function specifier is missing in a specification, the appropriate code to communi-
cate data to the host is not generated.

• Analogous to data assignments of algorithmic functions, the processing of the output map-
ping of the schedulers (funcList) aborts if a non existing source data item is referenced.

5.4.3 Processing the Interface Declaration of Functional Nodes

Parameterized functions may not access global data structures, hence external data must be read
or written via the function interface, which is specified in the function.h include file. The only
exception are global constants which are defined in the file c.h. For example, the GROMOS speci-
fication defines an integer constant Decomposition denoting the axis along which the simulation
box is decomposed.

The specification parser invokes a dedicated C code parser [59] to process the interface speci-
fication of a parameterized function. An interface specification consists of two parts:

• The declaration of two static structs: functioninstr and functionoutstr. The ‘static’ (storage
class) struct declaration limits the scope of that object to the rest of the source file being
compiled. All struct members of functioninstr must be declared ‘const’ (type-qualifier),
because the input data of function may not be altered within the function body.

• A special comment text is identified if the first non-space type character of the comment is a
dollar sign. The special comment in each function.h file includes the information which is
required to distinguish static and dynamic input variables of functioninstr [59].

The file function.h is exclusively included by the file containing the implementation of func-
tion. However, the interface declaration of all parameterized functions must also be available to
the parallel scheduler in order to assign dynamic variables. Simply including all function.h files in
the parallel scheduler would not help, because respective input variables are declared ‘const’ thus
are not modifiable.

The specification parser collects the information of all functional interfaces and generates spe-
cific include files for the parallel scheduler and static data initialization, containing the I/O struct
declarations of all parameterized functions. Declarations of output structures are simply copied,
whereas input struct members are partially modified: in case the include file of the parallel sched-

5.5 Summary 119

uler is generated, ‘const’ type-qualifiers are removed for all dynamic input variables. The same
procedure applies for static input variables if the include file of the static data initialization func-
tion is generated.

5.4.4 Code Generation

Once a specification has been successfully parsed, an internal data structure is available including
the control flow graph, the data assignments of the data flow, and the interfaces of all the involved
parameterized functions. Since the include files have already been built while parsing, the
remaining task of code generation concerns the parallel schedulers. The employed memory man-
agement concept (section 5.2.4) simplifies the code generation process significantly, in return, the
memory demand of generated code inflates, and copying large arrays may increase the overall
computation time of an implementation.

The code generator considers the mapping of parameterized functions to computational nodes
as well as the function type (S2, P) in order to determine the computational node(s) onto which a
function is executed. For each data assignment the code generator first has to determine if the
assignment is local or remote. If it is remote, MPI communications are inserted; if it is local, a
copy operation is inserted. In order to ensure that successive MPI-sends to the same destination
are received in the correct order, the communications are numbered continuously by using MPI
tags [21]. In the opposite case data is gathered on the host, thus a collect function determines how
the global data structure is to be restored. This function is called as many times as there are cli-
ents in the system, and solely from the host scheduler. The collect function executes a user speci-
fied binary function and provides an array on its output which is copied to the parameterized
destination function. A binary function accepts two arguments as input, performs the defined
associative operation and provides the result on the output. The function prototype of the collect
function is chosen compliant to the MPI standard, hence a number of predefined MPI reduce
functions may be used.

Generated code is compiled with a standard C compiler, the application is linked using a
standard C or FORTRAN linker. This procedure has been described in section 2.4.3.

5.5 Summary
In this chapter, a specification model for data parallel algorithms and an appropriate C code gen-
erator have been developed. The presented programming environment and the respective tools are
especially best suited for iterative algorithms but may be applied to any replicated data parallel
algorithm with the goal to simplify parallel programming and to increase its reliability. In order to
employ the new model, the parallel part of the algorithm must be separated from the master appli-
cation and specified with the presented model.

This novel development environment for data parallel algorithms comprises the following
achievements:

• The introduced domain-specific specification model allows the user to formally describe
data parallel algorithms as a control/data flow graph. A language has been developed in
order to represent such a graphical specification in textual form.

120 Chapter 5: Specification Model and Code Generation

• A toolset consisting of a specification parser, a dedicated C code parser and the code gener-
ator does process the algorithm specification and the I/O interfaces of all functions refer-
enced in the control flow graph.

• The code generator is able to generate a parallel scheduler taking into account the control
flow of the algorithm and the parallel target architecture. All needed interprocessor commu-
nication is generated automatically.

• Before the main loop of an iterative algorithm is entered, the static data of parallel functions
is distributed to the clients. In order to support the coding of the initialization functions,
include files containing the declarations of all static data are generated.

The presented specification model and its realisation within the parallel development environ-
ment is naturally restricted to the algorithm class for which it has been designed. Therefore, the
data parallel algorithm must employ the replicated data decomposition method. In order to reduce
the complexity of the code generator implementation, its functionality has been limited to the
essentials. Firstly, task level concurrency is ignored: the code generator builds the execution
sequence of two parallel tasks in the same order as they are read by the specification parser. Sec-
ondly, the generated code employs an inefficient but secure memory management thus requiring
much temporary memory. Finally, the environment does not guarantee a correct specification
although the semantics of the control/data flow graph is well defined.

The major consequences for the MD algorithm designer may be summarized as follows:

• The user is working with an abstract model of the algorithm, thus the presentation of the
algorithm is clearly apparent and not dependent on the target platform. Hardware depend-
ences are strictly separated from the algorithm specification. The toolset also handles the
communications between algorithmic functions and processors.

• Algorithmic functions as part of a specification are used in sequential and parallel pro-
grams. The algorithm designer provides only these algorithmic functions and is relieved
from keeping track of data and code dependences.

• Due to the lack of semantic tests a faulty specification is not necessarily recognised when
the code is generated. This problem is alleviated because in most cases the code of faulty
specifications provokes compile errors.

• The interface between generated parallel C code and the embracing FORTRAN program
continues to be one of the main error sources.

CHAPTER 6 Performance
Comparison

The performance of three different parallel GROMOS96P versions is evaluated and compared with
GROMOS96 profiling results of section 3.2. First, the differences of the three versions are pointed
out, followed by the definition of the performance metrics. Section 6.3 comprises a detailed com-
pilation of the measurements. The investigated parallel platforms are shortly described in section
6.3.1.

6.1 GROMOS Implementations
The first GROMOS96P prototype was implemented with simple synchronous communication
using the mpich message passing library based on the MPI standard (Message Passing Interface,
[21]). After some performance bottlenecks have been pointed out, the communication scheme
was changed. The current hand-coded version now obeys an asynchronous communication
scheme with optional barrier synchronisation.

6.1.1 Hand–Coded Asynchronous MPI Implementation

The current implementation distributes the data with non-blocking point-to-point communica-
tions. MPI reduce functions are used for collective communications at the end of a time step. For
example, a collect communication is required if the output of a P function (assumed to be exe-
cuted on all nodes) is assigned to the input of a S2 function (assumed to be executed on host
only). In case of the GROMOS96P algorithm, only one S2 function may cause such a communica-
tion, namely prpxrSolu (refer to the GROMOS algorithm specification in the appendix, fig. D.1).

Barrier Synchronisation

Due to the fact that S2 and P functions are not necessarily mapped equally (fig. 5.2), communica-
tion and/or synchronisation may be required at certain points within the control flow specifica-
tion. These points are referred to as barrier synchronisation points and are defined by functional
blocks. Functional nodes interconnected directly by the control flow may be grouped together to
build a functional block if 1) all functions are of the same type, e.g. S2 2) all functions in the
block have the same set of possible predecessor nodes outside the block. In this context, a direct
control flow interconnection between two functional nodes may cross a conditional branch or join

122 Chapter 6: Performance Comparison

node. Interprocessor communication possibly occurs at points where the control flow penetrates
functional block boundaries. Similarly, optional barrier synchronisation points are inserted if a
control flow edge enters a functional block.

Whether the barrier synchronisation is to be enabled or not must be decided at compile time.
Regardless of the setting of the barrier-switch (appendix B.2), but in dependence on the data flow,
implicit synchronisation may occur at barrier synchronisation points: if a data communication is
of type collect, data is possibly sent from the clients to the host, synchronising all nodes even
with a disabled barrier.

The input of the GROMOS function prpxrSolu is derived exclusively from host scheduler thus
implicit synchronisation never occurs. Consequently, if the barrier synchronisation option is disa-
bled, all schedulers are running completely asynchronous throughout the parallelised part of the
algorithm. In order to measure the runtime differences of the clients with respect to the host, a
synchronisation of all nodes is enforced at the end of the parallel scheduler, immediately before
the collective communication.

The hand-coded programs are referenced to as promd.pa and promd.ps representing the ver-
sion without and with barrier synchronisation, respectively.

6.1.2 Generated Synchronous MPI Implementation

The generated version differs from the hand-coded version in that only blocking synchronous
point-to-point communication is used. Additional barrier synchronisations may not be specified.
Moreover, the generated version employs a different memory management of dynamic data flow
variables (section 5.2.4). The generated version is referenced to as promd.pg.

6.1.3 Sequential Versions

Two types of sequential versions are separated: 1) the original GROMOS96 programs promd.32
and promd.64 representing the single and double precision version and 2) the GROMOS96P ver-
sion, which is easily derived from the hand-coded source code of the parallel version since spe-
cial keywords have been introduced to identify parallel codes. The sequential GROMOS96P
program makes use of exactly the same algorithmic functions as the parallel does. In section 6.3.2
it is shown that only a moderate performance gain is to be expected of such a dedicated sequential
GROMOS96P version.

6.2 Performance Metrics
As a precondition, the same function mapping is used throughout: all S2 and P functions are exe-
cuted on all computational nodes.

In order to measure the execution time of parallel functions timer functions providing similar
features like a stop watch (start-stop, reset) have been used. The timers are based on operating
system- and MPI-time functions providing execution times in different resolutions: the MPI-
timer provides the time as a floating point number in units of seconds; the system-timer delivers
an integer value, either in units of seconds or in units of ten microseconds.

6.2 Performance Metrics 123

Timer functions are exclusively used by the host machine thus determining execution times of
functions running on the clients is not possible. To profile a certain algorithmic function which is
called from the parallel host scheduler, a timer is started before the function is called and stopped
immediately after the function returns. The total time which is spent within the main loop of the
algorithm is determined by measuring that time on the host. In case of GROMOS, this is done in
subroutine runmd.f (section 3.2.2).

Table 6.1 summarizes the measured values and gives a short description. Function names refer
to algorithmic functions of the GROMOS specification graph (fig. D.1).

Function Explanation

solute Accumulated execution time of soluForce on the host.

solvent Accumulated execution time of solvSolv on the host.

pairlist
Accumulated execution time of the pairlist calculation on the host, including the
functions clcgeo, pfact, parts, slice, newPair, postPair.

integration Accumulated execution time of the integrator (mdleap, table 3.2).

sync

All clients are synchronised before the host initiates the collective communications.
The sync timer is started as soon the host reaches the synchronisation point and is
stopped if the slowest client has reached the synchronisation point. This synchroni-
sation point is mandatory (section 6.1.1) and additional to barrier synchronisation.
This time must be (almost) zero for the program promd.pg since generated code is
based on synchronous communication.

main The total time spent within the main loop.

rest

This time is the difference between main and the sum of all accumulated functional
execution times described above and sync:

(6.1)

Consequently, rest comprises of the execution times of 1) all other algorithmic
functions within the main loop, including bonded forces, the Virial preparation, etc.
2) all communications including barrier synchronisation (if enabled) and idle times
possibly induced by load imbalances.

deviation

main is measured with two different timer functions both providing a time in units
of seconds (MPI timer and operating system timer). The deviation-time is the dif-
ference between these two main-times and may serve as a rough criterion of assess-
ment of the reliability of measured times.

Table 6.1 Performance metrics: accumulated execution times of different algorithmic functions,
the total time spent within the main loop (main), the accumulated time lost due to synchronisation
(sync), and the derived quantities rest and deviation.

rest main solute solvent pairlist integration sync+ + + +()–=

124 Chapter 6: Performance Comparison

6.3 Results

6.3.1 Test Environment

Two performance benchmarks which are referenced to as thr2 and thrG2 are used. The bench-
marks each represent a certain molecular system and a simulation parameter set specified in sec-
tion 3.2.1 and appendix A.

In the course of the following discussion, three parallel computing systems are investigated to
determine the delivered performance (particular machines are described in appendix B):

1. A Sun Solaris workstation cluster consisting of 1-5 SunUltra10 is interconnected with
FastEthernet. The mpich message passing library is used.

2. The heterogeneous workstation cluster consists of a SGI-Octane workstation as host
machine connecting 1-4 Alpha-workstations running DecUnix. The clients are connected
with the host by a switched Myrinet network. The mpich message passing library is used
with a standard device driver using protocol stacks.

3. IBM SP-2, 1-44 nodes.

6.3.2 Comparison of the Execution Time

Table 6.2 provides a survey of execution times of all GROMOS versions running on one computa-
tional node.

In the following, the new parallel GROMOS versions are referenced only with their suffix, e.g.
pa44_14 denotes a simulation with the program promd.pa, executed on 44 computational nodes
applying a 1.4nm cutoff. The results of table 6.2 are shortly discussed:

• Despite the parallelisation overhead GROMOS96P versions are faster than GROMOS96. This
is due to the new pairlist algorithm replacing the brute force approach of GROMOS96.

• The execution time is not necessarily increased by performing double precision floating
point arithmetic (SGI Octane, Alpha 21164). This fact represents the general trend in the
development of new general purpose microprocessors and should also be considered if
computational software is developed.

GROMOS SunUltra10 SunUltra30 SGI Octane Alpha 21164 SP-2

96: promd.32 1815 2653 2193 2106 3044

96: promd.64 2035 3109 2193 2106 3632

96P: promd.pa 1595 2384 2145 2008 3047

96P: promd.ps 1771 2543 2156 2006 2971

96P: promd.pg 1660 2569 2165 1931 3475

Table 6.2 Single processor execution times of 100 thrG2 steps on different platforms, times are
given in units of seconds.

6.3 Results 125

• A dedicated sequential version of GROMOS96P could easily be derived from the hand-
coded versions since special keywords have been introduced to identify parallel codes. This
is not necessary at all because firstly all GROMOS96P versions outperform the sequential
GROMOS96 and secondly a dedicated sequential GROMOS96P version has shown only a
small gain of about 5%.

6.3.3 Exploring the Scalability on the SP-2

The following performance tests were done in order to asses the quality of GROMOS96P: 1) the
delivered performance of the hand-coded version is determined in dependence on the barrier syn-
chronisation option 2) the scalability of parallelised functions is investigated and 3) speed-ups are
calculated with respect to a real world Molecular Dynamics simulation.

Profiling results of the programs promd.pa and promd.ps are presented in fig. 6.1 for 1-4 proc-
essors. This comparison—principally concerning the barrier synchronisation technique—allows
to conclude the following:

• The scalability of parallelised functions (solute, solvent, pairlist) is nearly ideal for a small
number of processors (fig. 6.1).

• Without barrier synchronisation (fig. 6.1a), the host spends approximately the same amount
of time to wait for the clients reaching the (enforced) synchronisation point as the host has
been taken to perform the local calculations (6.2):

Figure 6.1 GROMOS96P hand-coded version running the thrG2 benchmark on the SP-2 with 1-4
computational nodes.
a) Asynchronous data communication without barrier synchronisation (section 6.1.1).
b) Asynchronous data communication with barrier synchronisation.

0

500

1000

1500

2000

2500

3000

3500

pa1 pa2 pa3 pa4

se
co

nd
s

deviation
sync
rest
integration
pairlist
solvent
solute

0

500

1000

1500

2000

2500

3000

3500

ps1 ps2 ps3 ps4

se
co

nd
s

deviation
sync
rest
integration
pairlist
solvent
solute

a) b)

126 Chapter 6: Performance Comparison

(6.2)

To explain equation (6.2), the SP-2 communication subsystem obviously does not start an
asynchronous data transmission until the host reaches its synchronisation point. This inex-
plicable behaviour reduces the reachable speed-up of promd.pa by a factor of two.

• The share of communication time to the overall execution time increases as the number of
processors increases. This is visible in fig. 6.1b only, since communication times are hidden
if barrier synchronisation is disabled.

• Consequently, the large scale studies on the SP-2 (fig. 6.2 and fig. 6.3) are carried out with
enabled barrier synchronisation.

• A short cutoff decreases the number of interaction calculations per processor, whereas the
communication due remains the same because of the replicated data decomposition. This is
illustrated in fig. 6.2a showing results with 0.8nm and 1.4nm cutoffs, respectively.

Figure 6.2 The GROMOS96P hand-coded version running thrG2 on the SP-2 with a large number
of processors identifies the performance-limiting factors: the share of communications and inte-
gration.
a) Communication overheads on the SP-2: the performance loss due to communication is inde-
pendent of the cutoff radius.
b) Scalability of parallel functions: solvent-solvent interaction calculation and pairlist construc-
tion (rectangular box, cutoff 1.4nm). The speed-up is calculated as the execution time of the
respective function on one node divided by the time to process one region (section 4.3) on the
host.

sync solute solvent pairlist+ +≈

0

50

100

150

200

250

300

ps
40

_1
4

ps
44

_1
4

ps
40

_0
8

ps
44

_0
8

se
co

nd
s

deviation
sync
rest
integration
pairlist
solvent
solute

10

14

18

22

26

30

34

38

42

16 20 24 28 32 36 40 44

nodes

sp
ee

d-
up

solvent
pairlist

b)
a)

6.3 Results 127

• The scalability of parallel functions is almost ideal up to 40 nodes and more (fig. 6.2b, sol-
vent), except for the pairlist algorithm. In consistence with previous findings, the pairlist
algorithm is most efficient if the number of grid cells approximates the number of particles
in the system (section 4.1.3). Considering the thrG2 benchmark executed on 44 nodes
(fig. 6.2b), more than 85,000 grid cells are opposed to 12,246 particles, resulting in many
empty cells and thus a bad efficiency of the pairlist algorithm.

• Fig. 6.2b and fig. 6.3 show that the scalability is not limited by the algorithmic overhead of
parallelised functions but by the execution time of the sequential part of the program and
communication (3.1). The remaining sequential part of the program consists not only of
integration but also of some codes within the main loop (bonded forces, SHAKE, etc.)
which contribute to rest. The amount due to these codes depends on simulation-specific
options and is approximately half of the integration execution time in the present case.

• By using the performance metrics introduced in section 6.2, speed-up calculations for sol-
ute would be distorted due to density fluctuations of solute charge groups. Therefore, the
speed-ups for solute are not provided in fig. 6.2b.

• Communication is the limiting factor if the number of processors increases. This is consist-
ent with the assumptions made in the performance estimation section 3.4.2 namely disre-
garding the algorithmic parallelisation overheads.

• The speed-ups reached by different parallel GROMOS versions (fig. 6.3) do approximate the
predictions carried out in section 3.4.2, refer also to fig. 3.7a. Although the behaviour of the
SP-2 communication subsystem is somehow unpredictable if asynchronous communication
is used (pa_14 and ps_14 in fig. 6.3), respective implementations always outperform the
synchronous alternative. More thorough investigations of this communication issue must be
a subject of ongoing work.

Figure 6.3 GROMOS96P speed-ups: thrG2 benchmark on the SP-2.

7

8

9

10

11

12

13

14

15

16

17

16 20 24 28 32 36 40 44

number of nodes

sp
ee

d-
up pa_14

ps_14
pg_14

128 Chapter 6: Performance Comparison

6.3.4 Workstation Cluster

The performance and communication behaviour of two different workstation clusters with five
machines each are compared.

• The SunUltra10 cluster has been tested in an office environment. Fig. 6.4b visualises the
influence of the synchronisation method which is obviously of minor importance (com-
pared with the SP-2). A better performance is not achieved by omitting synchronisation.

• The SGI/Alpha cluster communicates over a dedicated Myrinet network. The influence of
the synchronisation method is negligible. Experimental results allow the conclusion that the
communication subsystem is able to perform blocking communication only.

Figure 6.4 thrG2 benchmark running on the SunUltra10 workstation cluster (FastEthernet).
a) Execution time of single functions and communication dues without barrier synchronisation.
b) Comparison of communication times in dependence on the barrier synchronisation. The time
comm is that part of rest representing the communication share only.

Parallel
GROMOS

Speed-up in Dependence on the Number of Clients

1 2 3 4

SGI/Alpha
promd.pa 1.8 2.7 3.5 4.1

promd.ps 1.8 2.7 3.4 4.1

SunUltra10
promd.pa 1.6 2.6 3.5 3.9

promd.ps 1.9 2.8 3.6 4.2

Table 6.3 GRMOS96P Speed-ups on different workstation clusters, running the thrG2 bench-
mark. Considering small workstation clusters, the achieved overall performance is the same for
both networks investigated: a dedicated Myrinet and FastEthernet in an office environment.

0

200

400

600

800

1000

1200

1400

1600

pa1 pa2 pa3 pa4 pa5

se
co

nd
s

deviation
sync
rest
integration
pairlist
solvent
solute

0

10

20

30

40

50

60

pa2 ps2 pa3 ps3 pa4 ps4 pa5 ps5

se
co

n
d
s

sync
comm

a) b)

CHAPTER 7 Conclusions

7.1 Fundamental Results
The goal of the present thesis was to compare and improve different design space exploration
methods to find the optimal parallel architecture, a programming model for a given Molecular
Dynamics (MD) algorithm, and to verify the quality of these methods by one concrete implemen-
tation. Essential results are:

• The usefulness of system synthesis using an Evolutionary Algorithm (EA) to find suitable
implementations for a given parallel algorithm strongly depends on the decomposition
scheme of that algorithm. It has shown that EA-based design space exploration is not advis-
able for a data parallel algorithm due to its lack of sufficient task level concurrency.

• Existing parallel computation models like the PRAM or logP model have shown serious
weaknesses in modelling parallel architectures on a higher level of abstraction. Thus the
logP model has been adapted in order to cope with the communication scheme of multiple
processors based on message passing.

• Analytical performance estimation of possible target architectures is based on the parallel
computation model and generic functional models of the considered algorithm. Perform-
ance estimations, as have been executed within the frame of this thesis, allow to quickly
assess design alternatives, each consisting of a certain parallel architecture combined with
the algorithm model applying different MD parameter sets. As a result, dedicated hardware
approaches have proven to be the first choice if only the delivered performance is to be con-
sidered.

• However, if the emphasis is on using a finished specialised hardware product for MD simu-
lation studies, the design of such a parallel computer is difficult to justify. The most difficult
constraint to meet in a hardware project is the time constraint. With the power of micro-
processors roughly doubling every two years, a parallel design may well be out of date by
the time its construction is completed and, unless some easy migration path is envisaged in
the design, the software written specifically for the machine becomes useless. Conse-
quently, the focus of research must be on the question how to provide most efficient soft-
ware solutions independently of the underlying hardware, taking account of possible future
hardware extensions.

130 Chapter 7: Conclusions

• Standardised message passing libraries like MPI are generally used to handle interproces-
sor communication. MPI offers an abstracted communication interface which is used in the
same manner on all supported architectures. Similar to parallel computing models, parallel
software development also moves to higher levels of abstraction with one of the goals being
the synthesis of parallel programs from behavioural specifications.

Initially developed as a part of the MD programming environment, a domain-specific lan-
guage may be used for any kind of replicated data parallel algorithms. The appropriate code
generator is capable to handle all interprocessor communications and has been successfully
tested for the MD algorithm. In addition to that, the user is relieved from keeping track of
data and code dependences in parallel implementations.

• The search for an adequate decomposition strategy for the GROMOS MD simulation pack-
age has been proven to be rather difficult. A profound study has been carried out in order to
come to a design decision, pointing out the replicated data method to be the only solution
compliant to all GROMOS features. The main advantages of replicated data decomposition
are: 1) the possibility of automated processing and 2) the most simple parallel program-
ming. In return, however, the scalability will be limited due to communication overheads.
The currently available parallel GROMOS prototype scales well up to about 20 computa-
tional nodes and reaches its maximum performance with about 30-40 nodes.

7.2 Future Perspectives
Based on this work, promising areas for future work and research may be:

• Extending the parallel programming environment by an enhanced specification model cop-
ing with a different decomposition paradigm. A broadened code generator functionality
would then enable automated processing of other than the replicated data decomposition
scheme, thereby requiring additional communication capabilities made available to the
code generator, for example point-to-point communications between all computational
nodes for a domain decomposition.

• Experimental results on different parallel architectures have shown a varying behaviour of
the communication subsystems if asynchronous message passing communication is used.
For certain architectures this is expressed by extremely long communication times far off
the optimum. Thus it might be interesting to

1. investigate the network infrastructure of these architectures and

2. enrich the specification language by additional attributes enabling the user to control
the generation of communication codes. Additional attributes would allow to selec-
tively choose between synchronous, asynchronous or broadcast communications.

• The parallel GROMOS implementation model may be refined: the spatial decomposition
algorithm would be subject to optimisation by decoupling the pairlist construction from
load balancing. In addition, the twin-range pairlist method should be incorporated in the
parallel code.

Appendices

A Benchmark Description
Two types of benchmarks are separated: performance benchmarks and molecular systems for
code validation. Performance benchmarks are used to assess the performance of the parallel soft-
ware against the initial sequential GROMOS96 distribution. Validation examples have been care-
fully chosen with the goal that as much of the modified code as possible is executed in order to
expose possible programming errors.

Performance benchmarks

Both performance benchmarks consist of the same solute molecule (Thrombin) and the same sol-
vent (water). They only differ in that the simulation box of one benchmark is a truncated octahe-
dron (Thr2),whereas the other is a rectangular box (ThrG2). As an option, the solute may be
simulated without water (Thr1), that is in vacuum without periodic boundaries (table A.1). If not
otherwise indicated, the simulations are run with the following settings:

• 100 time steps in three dimensions and with double precision floating point arithmetic.

• The SHAKE algorithm is used to handle constraints and the Virial is calculated.

• Final coordinates and energies are written to files.

• print block: 49 49 0

• write block: 49 0 0 49 0 1

• a pairlist is constructed every five steps, with a cutoff of 1.4nm, without twin-range.

With the configuration described in appendix B, the ThrG2/promd.64 benchmark occupies 34MB
of the main memory.

Molecular Systems for Code Validation

Most settings of the validation examples Penta and Bucky are the same (table A.2): the Virial is
calculated, all bonds are shaken. A pairlist is constructed every five steps, with a cutoff of 1.4nm,
without twin-range interactions. The print block is set to: 200/200/0. Penta and Bucky differenti-
ate in the following:

132 Appendices

• Penta (Perturbation example: growing a soft cavity into water): 25,000 time steps are
required to observe and verify the perturbation effect. Initial shake and centre of mass
motion removal from initial configuration is disabled. A pressure coupling is applied.

write block: 0 0 0 50 50 1

• Bucky (eight bucky C60 balls in water): 12,500 time steps are simulated.

write block: 250 0 0 250 0 1

Number of Particles
Truncated Octahedron Rectangular Box

with Water (Thr2) without Water (Thr1) with Water (ThrG2)

solute atoms 3,078 3,078 3,078

solvent atoms 16,281 0 32,883

total (atoms) 19,359 3,078 35,961

solute charge groups 1,285 1,285 1,285

solvent charge groups 5,427 0 10,961

solute molecules 1 1 1

total (charge groups) 6,712 1,285 12,246

simulation box size:
, [nm]

7.44

Table A.1 Benchmark systems

Number of Particles
Rectangular Box

Bucky Penta

solute atoms 480 5

solvent atoms 19,776 2,775

total (atoms) 20,256 2,780

solute charge groups 480 3

solvent charge groups 6,592 925

solute molecules 8 1

total (charge groups) 7,072 928

simulation box size:
, [nm]

Table A.2 Validation systems

x y z⋅ ⋅ 6.95 7.20 7.42⋅ ⋅

x y z⋅ ⋅ 5.62 5.95 6.09⋅ ⋅ 2.87 2.92 3.28⋅ ⋅

Appendices 133

B Platforms and Compilation

B.1 Reference machines

• SunUltra30: 296MHz CPU with integrated FPU, primary cache 16KB instruction plus
16KB data on-chip, 2MB L2 cache off-chip, 640MB main memory, SunOs 5.5.1 in multi-
user mode. Compiler: Sun f77 4.0. Network connection: FastEthernet. For compilation, the
following flags applied:
FFLAGS = -pg -native -xildoff -O4 -libmil -dalign -unroll=4 -r8 -depend
CFLAGS = -native -pg

• SunUltra10: 440MHz CPU with integrated FPU, primary cache 16KB instruction plus
16KB data on-chip, 2MB L2 cache off-chip, 512MB main memory, SunOs 5.5.1 in multi-
user mode. Compiler: Sun f77 4.0. Network connection: FastEthernet. Compilation: see
SunUltra30.

• IBM SP–2: distributed-memory message-passing machine. 64 computational nodes: 4
frames with 16 thin nodes each. One control workstation, two frontend systems, 200GB
disk subsystem.

Nodes: 160MHz, POWER2 Super Chip, 4.5GB internal disk, 256MB memory, switch
adapter. For compilation, the following flags applied:
FFLAGS = -O4 -qEXTNAME -qMAXMEM=4096
CFLAGS = -O4 -Q=100 -qARCH=pwr2 -qMAXMEM=4096 -qTUNE=pwr2 -qUNROLL=4

• SGI Octane: 295MHz R10000 single processor, 64KB primary cache (32KB data, 32KB
instruction), 2MB secondary cache, 128MB main memory. Network connection: FastEther-
net, Myrinet. For compilation, the following flags applied:
FFLAGS = -align64 -xildoff -LNO:Ou_max=4
CFLAGS = -align64 -xildoff -LNO:Ou_max=4

• Alpha workstations: 500MHz Alpha processor 21164, 2MB off-chip L3 cache, 128MB
main memory. Network connection: FastEthernet, Myrinet. For compilation, the following
flags applied:
FFLAGS = -fast -u -nofor_main
CFLAGS = -fast -u -unroll 4

• Myrinet network infrastructure: 1) dual 8-port SAN switch, thus at most 14 workstations
might be interconnected by bridging ports A and B on the switch. 2) 32Bit/33MHz PCI to
Myrinet SAN adapter, 1MB cache.

134 Appendices

B.2 Compiling Parallel GROMOS

Switches

The file c.h includes global constants and switches to specify the type (sequential, parallel with
barrier sync., etc.) and behaviour (e.g. verbose message passing mode) of the binary executable.
Modifications on these settings require recompilation. The major options are shortly described,
starting with the default settings for maximum performance (all checks disabled, parallel version
with barrier sync.):

• JNBRANGE_CHK: no. Enables additional array range checks during pairlist construction.

• SORT_JNBV: no. If enabled, the pairlist entries are sorted by increasing particle sequence
number.

• RANGE_CHK: no. Enables array range checks.

• ALLOC_CHK: no. If enabled: return values of malloc are checked.

• MORE_SYNC: yes. Barrier sync. switch

• USE_MPI: yes. Determines the inclusion of the message passing library.

• VERBBOSE_MPI: no. If enabled: prints out all MPI communications to stderr.

• PRTIM: yes. If enabled: timing information is printed to stderr.

Versions

• promd.ps: This program is the barrier sync hand-coded parallel version. The settings in file
c.h differ from the default as follows:

-

• promd.pa: This program is the hand-coded parallel version without barrier sync. The set-
tings in file c.h differ from the default as follows:

MORE_SYNC: no
USE_MPI: yes

• promd.pg: This program contains generated code (chapter 5). All communications are
blocking and synchronous. Neither broadcast nor collective communication are used. The
code generator ignores the switches.

• promd.64/promd.32: These programs are based on GROMOS96 fortran source code with the
exception of some timing functions written in C. The dot-suffix indicates single (.32) or
double (.64) precision floating point arithmetic. Common block constants are set such that
all benchmarks can be executed without recompiling.

Support Tools

• transform the pairlist to be GROMOS96 compliant. Export/import the pairlist, compare two
pairlists.

Appendices 135

C EBNF of the Specification Language

specList = "specification" "{" header funcList ifaceDefList declarationList
 graphDef outMappingDecl "}".

header = "header" "{" fileDefSequence "}".
 fileDefSequence = fileDef {";" [fileDef] }.
 fileDef = CSchedDef | HSchedDef | HInitDef | CInitDef.
 CSchedDef = "CoprocScheduler" "=" ident.
 HSchedDef = "HostScheduler" "=" ident.
 HInitDef = "initHostStatic" "=" ident.
 CInitDef = "initCoprocStatic" "=" ident.

funcList = "functions" "=" "{" string {";" [string] } "}".

ifaceDefList = "interfaces" "{" ifaceDef {";" [ifaceDef] } "}".
 ifaceDef = ident "{" inputDef outputDef "}".
 inputDef = "inputs" ifVarDeclSeq.
 outputDef = "outputs" ifVarDeclSeq.
 ifVarDeclSeq = "{" [ifVarDecl {";" ifVarDecl}] "}".
 ifVarDecl = VarDecl "," class.
 class = "dynamic" | "static".

declarationList = "declarations" "{" [declaration] {";" [declaration] } "}".
 declaration = mappingDecl | initSwitch.
 mappingDecl = "mapping" "=" ("AllonC" | "AllbutSonC" |
 "AllonA" | "AllbutSonA").
 initSwitch = "init_Dynamic_data" "=" BoolValue.

graphDef = "graph" graphElementList.
 graphElementList = "{" graphElement {";" [graphElement] } "}".
 graphElement = condition | endCondition | function
 condition = condStmt "," boolExp "," boolExp ":" stmtList ":" stmtList.
 boolExp = BoolValue | ident ["." ident].
 endCondition = endcStmt [arrow].
 arrow = "-" ">" stmtList.
 function = funcStmt "," funcType "," inputMapping [arrow].
 funcType = "Host" | "Coprocessor" | "Sequential" | "Parallel".
 inputMapping = "inputs" mapAssignmentList.
 mapAssignmentList = "{" [mapAssignment] {";" [mapAssignment] } "}".
 mapAssignment = ident [":" ident] "=" mapSource [lengthList].
 mapSource = (number | "mpiId" | "mpiNumNodes" | source)
 lengthList = ":" ident { "," ident}.
 source = ident [instNum "." ident].

stmtList = stmt { "," stmt}
 stmt = condStmt | endcStmt | funcStmt.
 condStmt = "cond" instNum.
 endcStmt = "endc" instNum.
 funcStmt = ident instNum.
 instNum = "(" number ")".

outMappingDecl = "outputMapping" "{" ident mapAssignmentList
 ident mapAssignmentList "}".

BoolValue = "true" | "false".

varDecl = varType (simpleVarDecl | arrayDecl).
 varType = ident.
 simpleVarDecl = ident.
 arrayDecl = "*" ident.

string = """ {ident | number | specChar} """.
 specChar = die fuer eine Pfadangabe verwendbaren Sonderzeichen

ident = letter {letter | digit | "_"}.
 letter = all characters (small and capital)
 digit = all numbers from 0 to 9

136 Appendices

Appendices 137

D GROMOS96P Specification

D.1 Control Flow Graph

Figure D.1 Complete GROMOS96P control flow specifiaction.

pfact

slice

newPair

clcgeo

parts

ldopair

start

traxco

postPair

ldoxr

ldosolu

prpxr-
Solu

ldosolv

addxr

ldononb

ldosolu

solu-
Force

ldosolv

addhforce

addhener

traxco

end

prpxr-
Solv

solv-
Solv

138 Appendices

D.2 Control/Data Flow Specification

// Gromos96P specification: /md/work/GromosP/Gromos_spec.txt
specification {
 header {
 hostScheduler = scheduleH;
 coprocScheduler = scheduleP;
 initHostStatic = initStaticH;
 initCoprocStatic = initStaticP;
 }

The parallel scheduler running on the host (host scheduler) is named scheduleH, the parallel
scheduler running on all clients (client scheduler) is named scheduleP; similarly, initStaticH is
the name for the initialization function on the host and initStaticP that for the initialization func-
tion running on the clients. The giving of names is arbitrary.
 functions = {"pfact"; "slice"; "clcgeo"; "parts"; "newpair; "postpair";
 "prpxrSolv"; "prpxrSolu"; "addxr"; "soluForce"; "solvSolv";
 "addhforce"; "addhener"; "traxco_1"; "traxco_2"}
 interfaces {
 scheduleH {
 inputs {
 float *xcoord, dynamic;
 int xcoordl, static;
 float *box, dynamic;
 int boxl, static
 int ldopair, dynamic;
 int ldosolu, static;
 int ldosolv, static;
 int ldoxr, static;
 }
 outputs {
 float *force, dynamic;
 int forcel, dynamic;
 float *vir, dynamic;
 int virl, dynamic;
 float *epel, dynamic;
 int epell, dynamic;
 float *eprf, dynamic;
 int eprfl, dynamic;
 float *eprc, dynamic;
 int seprcl, dynamic;
 float *seplj, dynamic;
 int sepljl, dynamic;
 float *dedlam, dynamic;
 int dedlaml, dynamic;
 float *dedmu, dynamic;
 int dedmul, dynamic;
 }
 };
 scheduleP {
 inputs {
 int ldopair, dynamic;
 int ldosolu, static;
 int ldosolv, static;
 int ldoxr, static;
 }
 outputs {
 }
 }
 }

The GROMOS specification declares control flow variables as static, as well as the lengths of both
coordinates and box-size arrays. The dynamic data flow consists of atomic coordinates and the
simulation box size on the input; on the output atomic forces, energies and the molecular Virial is
provided. Note that only control flow variables appear on the interface of scheduleP. These must
be communicated to the clients before generated code is called. In case of GROMOS, control flow
variables do not change during a simulation thus have to be communicated advantageously out-
side the main loop only once; this task is not part of the specification.

Appendices 139

 declarations {
 mapping = AllbutSonC;
 init_Dynamic_data = false;
 }
 graph {
 traxco_1(1), Sequential, inputs {
 x = scheduleH(0).xcoord;
 xl = scheduleH(0).xcoordl: xcoord;
 dir = 1;
 } -> cond(1);
 cond(1), scheduleH.ldonot, scheduleP.ldonot: endc(1): clcgeo(1), pfact(1);
 clcgeo(1), Sequential, inputs {
 xcoordl = traxco.xl: x;
 xcoord = traxco.x;
 } -> parts(1);
 pfact(1), Sequential, inputs {
 boxl = scheduleH(0).boxl: box;
 box = scheduleH(0).box;
 } -> parts(1), slice(1);
 slice(1), Sequential, inputs {
 nboxl = pfact(1).nboxl: nbox;
 nbox = pfact(1).nbox;
 } -> newPair(1);
 parts(1), Sequential, inputs {
 xcgl = clcgeo(1).xcgl: xcg;
 xcg = clcgeo(1).xcg;
 boxl = scheduleH(0).boxl: box;
 box = scheduleH(0).box;
 pfact = pfact(1).pfact;
 nboxl = pfact(1).nboxl: nbox;
 nbox = pfact(1).nbox;
 } -> newPair(1);
 newPair(1), Parallel, inputs {
 headl = parts(1).headl: head;
 head = parts(1).head;
 taill = parts(1).taill: tail;
 tail = parts(1).tail;
 xcgl = clcgeo(1).xcgl: xcg;
 xcg = clcgeo(1).xcg;
 boxl = scheduleH(0).boxl: box;
 box = scheduleH(0).box;
 nboxl = pfact(1).nboxl: nbox;
 nbox = pfact(1).nbox;
 pfact = pfact(1).pfact;
 fslice = slice(1).fslice;
 nslice = slice(1).nslice;
 } -> postPair(1);
 postPair(1), Parallel, inputs {
 inbl = newPair.inbl: inb;
 inb = newPair.inb;
 jnbl = newPair.jnbl: jnb;
 jnb = newPair.jnb;
 headl = parts(1).headl: head;
 head = parts(1).head;
 chainl= parts(1).taill: tail;
 chain = parts(1).tail;
 nboxl = pfact(1).nboxl: nbox;
 nbox = pfact(1).nbox;
 pfact = pfact(1).pfact;
 fslice = slice(1).fslice;
 nslice = slice(1).nslice;
 } -> endc(1);
 endc(1) -> cond(2);
 cond(2), scheduleH.ldoxr, scheduleP.ldoxr: endc(2): cond(3), cond(4);
 cond(3), scheduleH.ldosolu, scheduleP.ldosolu: endc(3): prpxrSolu;
 cond(4), scheduleH.ldosolv, scheduleP.ldosolv: endc(4): prpxrSolv;
 prpxrSolu(1), Sequential, inputs {
 xcoords = scheduleH(0).xcoord;
 xcoordsl = scheduleH(0).xcoordl: xcoord;
 nboxl = pfact(1).nboxl: nbox;
 nbox = pfact(1).nbox;
 } -> endc(3);
 prpxrSolv(1), Parallel, inputs {
 headl = parts(1).headl: head;
 head = parts(1).head;
 taill = parts(1).taill: tail;

140 Appendices

 tail = parts(1).tail;
 xcoord = scheduleH(0).xcoord;
 xcoordl = scheduleH(0).xcoordl: xcoord;
 nboxl = pfact(1).nboxl: nbox;
 nbox = pfact(1).nbox;
 pfact = pfact(1).pfact;
 fslice = slice(1).fslice;
 nslice = slice(1).nslice;
 } -> endc(4);
 endc(3) -> addxr(1);
 endc(4) -> addxr(1);
 addrxr(1), Parallel, inputs {
 xrsl = prpxrSolu.xrsl: xrs;
 xrs = prpxrSolu.xrs;
 xrvl = prpxrSolv.xrvl: xrv;
 xrv = prpxrSolv.xrv;
 } -> endc(2);
 endc(2) -> cond(5);
 cond(5), scheduleH.ldononb, scheduleP.ldononb: endc(5): cond(6), cond(7);
 cond(6), scheduleH.ldosolu, scheduleP.ldosolu: endc(6): soluForce;
 cond(7), scheduleH.ldosolv, scheduleP.ldosolv: endc(7): solvSolv;
 soluForce(1), Parallel, inputs {
 headl = parts(1).headl: head;
 head = parts(1).head;
 chainl = parts(1).taill: tail;
 chain = parts(1).tail;
 xcoordl = traxco.xl: x;
 xcoord = traxco.x;
 nboxl = pfact(1).nboxl: nbox;
 nbox = pfact(1).nbox;
 pfact = pfact(1).pfact;
 fslice = slice(1).fslice;
 nslice = slice(1).nslice;
 xrl = addxr.xrl: xr;
 xr = addxr.xr;
 boxl = scheduleH(0).boxl: box;
 box = scheduleH(0).box;
 inbsl = postPair.inbsl: inbs;
 inbs = postPair.inbs;
 jnbsl = postPair.jnbsl: jnbs;
 jnbs = postPair.jnbs;
 rmu = ScheduleH(0).rmuloc;
 rlam = *p_rlam;
 } -> endc(6);
 solvSolv(1), Parallel, inputs {
 inbvl = postPair.inbvl: inbv;
 inbv = postPair.inbv;
 jnbvl = postPair.jnbvl: jnbv;
 jnbv = postPair.jnbv;
 xcoordl = traxco.xl: x;
 xcoord = traxco.x;
 xrvl = prpxrSolv.xrvl: xrv;
 xrv = prpxrSolv.xrv;
 boxl = scheduleH(0).boxl: box;
 box = scheduleH(0).box;
 headl = parts(1).headl: head;
 head = parts(1).head;
 chainl = parts(1).taill: tail;
 chain = parts(1).tail;
 nboxl = pfact(1).nboxl: nbox;
 nbox = pfact(1).nbox;
 fslice = slice(1).fslice;
 nslice = slice(1).nslice;
 } -> endc(7);
 endc(6) -> addhforce(1);
 endc(7) -> addhforce(1);
 addhforce(1), Parallel, inputs {
 soluforce = soluForce(1).f;
 soluforcel = soluForce(1).fl: soluforce;
 soluvir = soluForce(1).vir;
 soluvirl = soluForce(1).virl: soluvir;
 solvforce = solvSolv(1).f;
 solvforcel = solvSolv(1).fl: solvforce;
 solvvir = solvSolv(1).vir;
 solvvirl = solvSolv(1).virl: solvvir;
 ldosolu = scheduleH(0).ldosolu;

Appendices 141

 ldosolv = scheduleH(0).ldosolv;
 } -> addhener(1);
 addhener(1), Parallel, inputs {
 sepel = soluForce(1).eel;
 sepell = soluForce(1).eell: sepel;
 seprf = soluForce(1).erf;
 seprfl = soluForce(1).erfl: seprf;
 seprc = soluForce(1).erc;
 seprcl = soluForce(1).ercl: seprc;
 seplj = soluForce(1).elj;
 sepljl = soluForce(1).eljl: seplj;
 vepel; = solvSolv(1).eel;
 vepell = solvSolv(1).eell: vepel;
 veprf = solvSolv(1).erf;
 veprfl = solvSolv(1).erfl: veprf;
 veprc = solvSolv(1).erc;
 veprcl = solvSolv(1).ercl: veprc;
 veplj = solvSolv(1).elj;
 vepljl = solvSolv(1).eljl: veplj;
 el = soluForce(1).eglel;
 rf = soluForce(1).eglrf;
 rc = soluForce(1).eglrc;
 lj = soluForce(1).egllj;
 el34 = soluForce(1).eg34el;
 rf34 = soluForce(1).eg34el;
 rc34 = soluForce(1).eg34el;
 lj34; = soluForce(1).eg34el;
 ldosolv = scheduleH(0).ldosolu;
 ldosolu = scheduleH(0).ldosolv;
 } -> endc(5);
 endc(5) -> traxco_2(1);
 traxco_2(1), Sequential, inputs {
 x: collect = addhforce(1).gforce;
 xl = addhforce(1).gforcel: x;
 dir = 0;
 } -> endc(2);
 endc(1);
 } // end graph
 outputMapping {
 scheduleH {
 force: collect = traxco_2(1).x;
 forcel = traxco_2(1).xl: force;
 vir: collect = addhforce(1).gvir;
 virl = addhforce(1).gvirl: vir;
 epel: collect = addhener(1).gepel;
 epell = addhener(1).gepell: epel;
 eprf: collect = addhener(1).geprf;
 eprfl = addhener(1).geprfl: eprf;
 eprc: collect = addhener(1).geprc;
 seprcl = addhener(1).gercl: eprc;
 seplj: collect = addhener(1).gelj;
 sepljl = addhener(1).geljl: eplj;
 dedlam: collect = addhener(1).gdedlam;
 dedlaml = addhener(1).gdedlaml: dedlam;
 dedmu: collect = addhener(1).gdedmu;
 dedmul = addhener(1).gdedmul: dedmu;
 }
 scheduleP {
 }
 }
} // end specification

The GROMOS specification makes use of the collect function principally at the end of the specifi-
cation, because partial forces and energies are summed up on the host to reconstruct the global
data structure. The output mapping of scheduleP remains empty, since no result data are used on
the clients. For a different decomposition scheme, e.g. domain decomposition, result data would
be required on the clients as well.

142 Appendices

Bibliography

[1] Allen, M.P. and D.J. Tildesley: Computer Simulation of Liquids. Oxford University Press,
(1987)

[2] Analog Devices Inc.: Sharc DSP Microcomputer ADSP-21160 Preliminary Technical Data.
One Technology Way, Norwood MA, USA, (1998)

[3] Analog Devices Inc.: ADSP-21000 Family. C Tools Manual. One Technology Way, Nor-
wood MA, USA, (1998)

[4] Belina, F.; D. Hogrefe and A. Sarma: SDL with Applications from Protocol Specifications.
Prentice-Hall, (1991)

[5] Bekker, H: Molecular Dynamics Simulation Methods Revised. PhD thesis, Rijksuniversiteit
Groningen, (1996)

[6] Billeter, S.: Quantum dynamical simulation of non-adiabatic proton transfers in aqueous
solution: methodology, molecular models and applications. PhD thesis, Eidgenössische
Technische Hochschule Zürich, Diss. ETH no. 12751, (1998)

[7] Blickle, T: Theory of Evolutionary Algorithms and Application to System Synthesis. PhD
thesis, Eidgenössische Technische Hochschule Zürich, Diss. ETH no. 11894, (1997)

[8] Case, D.A.; D:A. Pearlman; J.W. Caldwell; T.E. Cheatham III; W.S. Ross; C.L. Simmer-
ling; T.A. Darden; K.M. Merz; R.V. Stanton; A.L. Cheng; J.J. Vincent; M. Crowley; D.M.
Ferguson; R.J. Radmer; G.L. Seibel; U.C. Singh; P.K. Weiner and P.A. Kollman: AMBER 5.
University of California, San Francisco, (1997)

[9] Cassandras, C.G.: Discrete Event Systems: Modeling and Performance Analysis. Aksen
Associates Incorporated Publishers, (1993)

[10] Esser, R: An Object Oriented Petri Net Approach to Embedded System Design. PhD thesis,
Eidgenössische Technische Hochschule Zürich, Diss. ETH no. 11869, (1997)

[11] Haberlandt, R.; S. Fritzsche; G. Peinel and K. Heinzinger: Molekulardynamik, Grundlagen
und Anwendungen. Vieweg Lehrbuch Physik, (1995)

[12] Hirst, D.M: A Computational Approach to Chemistry. Blackwell Scientific Publications,
(1990)

144 Bibliography

[13] Hockney, R.W. and J.W. Eastwood: Computer Simulation using Particles. IOP publishing
Ltd., (1988)

[14] Klein, R: Algorithmische Geometrie. Addison Wesley, (1997).

[15] Gajski, D.D; F. Vahid; S. Narayan and Jie Gong: Specification and Design of Embedded
Systems. Prentice Hall, (1994)

[16] Gajski, D.; N. Dutt; A. Wu and S. Lin: High-Level Synthesis and System Design. Kluwer
Academic Publishers, (1992)

[17] Gupta, R.K: Co-Synthesis of Hardware and Software for Digital Embedded Systems. Klu-
wer Academic Publishers, (1995)

[18] Harel, D. and M. Politi: Modeling Reactive Systems with Statecharts: The Statemate
Approach. i-Logix inc. (1997)

[19] Hoare, C.A.R.: Communicating Sequential Processes. Prentice-Hall International, Engle-
wood Cliffs, (1985)

[20] Kneubühl, F.K.: Repetitorium der Physik. Teubner Studienbücher Physik, 1994

[21] Pachero, P.S.:Parallel Programming with MPI. Morgan Kaufmann Publishers Inc, San
Francisco, CA, (1997)

[22] Scott, W.R.P.: Molecular Dynamics Simulation of Biomolecules: Software Engineering,
Parallelisation and Methodology. PhD thesis, Eidgenössische Technische Hochschule
Zürich, Diss. ETH no. 12603, (1998)

[23] Thomas D. and P. Moorby: The Verilog Hardware Description Language. Kluwer, (1991)

[24] Wolfram, S.: The MATHEMATICA Book. Cambridge University Press, Third Edition, (1996)

[25] Silberschatz, A.: Operating Systems Concepts. Addison-Wesley, Reading, MA. (1994)

[26] van Gunsteren, W.F.; S.R. Billeter; A.A. Eising; P.H. Hünenberger; P. Krüger; A.E. Mark;
W.R.P. Scott and I.G. Tironi: Biomolecular Simulation: The GROMOS™96 Manual and
User Guide. Hochschulverlag vdf AG an der ETH Zürich, Switzerland, (1996)

[27] Alexandrov, A; M. F. Ionescu; K. E. Schauser and C. Scheiman: LogGP: Incorporating
Long Messages into the LogP model. One step closer towards a realistic model for parallel
computation. Tech Report TRCS95, Department of Cimputer Science, University of Cali-
fornia Santa Barbara, http://www.cs.ucsb.edu/, (1995)

[28] Banicescu, I. and Rong Lu: Experiences with Fractiling in N-Body Simulations. Proceed-
ings of High Performance Computing ‘98, pp. 121–126, (1998)

[29] Bekker, H.; H.J.C. Berendsen: GROMACS: A parallel computer for molecular dynamics
simulation. Conference proceedings, Physics Computing ‘92, (1992)

[30] Berendsen, H.J.C; D. van der Spoel and R. van Drunen: GROMACS: A message-passing
parallel molecular dynamics implementation. Computer Physics Communication 91, pp.
43-56, (1995)

Bibliography 145

[31] Berendsen, H.J.C. and J Mavri: Quantum dynamics simulation of a small quantum system
embedded in a classical environment. In: Quantum mechanical Simulation Methods for
studying Biological Systems, Proceedings of Les Houches Workshop, Springer-Verlag, pp.
157–179, (1996)

[32] Billeter, S.R and W.F. van Gunsteren: A modular molecular dynamics/quantum dynamics
program for non-adiabtic proton transfers in solution. Computer Physics Communication
107, pp. 61-97, (1997)

[33] Boden, N.J.; D. Cohen; R.E.Felderman; A.E.Kulawik; C.L. Seitz; J.N. Seitzovic and Wen-
King Su: Myrinet: A Gigabit per Lecond Local Area Network. IEEE Micro, vol.15, no. 1,
pp. 29-36, (1995)

[34] Brooks, B.R; R.E. Bruccoleri; B.D. Olafson; D.J. States; S. Swaminathan and M. Karplus:
CHARMM: A Program for Macromolecular Energy, Minimization, and Dynamics Calcula-
tions. Journal of Computational Chemistry, no. 4, pp. 187-217, (1983)

[35] Car, R and M. Parrinello: Unified Approach for Molecular Dynamics and Density Func-
tional Theory. Phys. Rev. Lett. 55, 2471 (1986)

[36] Clark, T.W.; R.v. Hanxleden; J.A. McCammon and L.R. Scott: Parallelising Molecular
Dynamics using Spatial Decomposition. Proceedings of the Scalable High Performance
Computing Conference ‘94, Knoxville, TN, (1994)

[37] Culler, D; R.M. Karp; D. Patterson; A. Sahay; K.E. Schauser; E.E. Santos; R. Subramonian
and T. von Eicken: LogP: Towards a Realistic Model of Parallel Computation. In proceed-
ings of the 4th ACM SIGPLAN Symposium on Principles and Practice of Parallel Pro-
gramming, San Diego CA, (1993)

[38] Everaers, R and K. Kremer: A fast grid search algorithm for molecular dynamics simula-
tions with short-range interactions. Computer Physics Communication 81, pp. 19–55,
(1994)

[39] Fortune, S. and J.C. Wyllie: Parallelism in random access machines. In proceedings of the
10th Annual Symposium on Theory of Computing, (1978)

[40] Fukushige, T.; M. Taiji; J. Makino; T. Ebisuzaki and D. Sugimoto: A Highly-parallelised
Special-purpose Computer for Many-body Simulations with an Arbitrary Central Force:
MD-GRAPE. The Astrophysical Journal, no. 468, pp. 51–61

[41] Gerber, M. and T. Gössi: Automatic Parallelisation of GROMOS96™ Molecular Dynamics
Simulation Package for Distributed Memory Environments. Proceedings of High Perform-
ance Computing ‘99, pp. 25–30, (1999)

[42] Gerber, M: A new Gromos™ Benchmark on SunUltra30/60, DEC Alpha21164, IBM
RS/6000 SP. Internal Paper, http://www.tik.ee.ethz.ch/~md

[43] Gerber, M and T. Gössi: Project HAM: Hardware Moved Molecules, Annual Report 1997.
TIK-Report Nr. 38, Computer Engineering and Networks Laboratory, ETH Zürich, (1998)

[44] Gerber, M. and T. Gössi: Parallel Coprocessor Architectures for Molecular Dynamics Sim-
ulation: A Case Study in Design Space Exploration. Proceedings of the 1998 IEEE Interna-
tional Symposium on Circuits and Systems ISCAS98, (1998)

146 Bibliography

[45] Gössi, T: Computer Platforms for Molecular Dynamics Simulation. PhD thesis, Eidgenös-
sische Technische Hochschule Zürich, (expected 2000)

[46] IEEE: IEEE Standard VHDL Language Reference Manual, Std. 1076. IEEE Press, New
York, (1987)

[47] Kufrin, R. and S. Subramaniam: UHGROMOS at the National Centre for Supercomputing
Applications, (1998)

[48] Lee, E.A. and D.G. Messerschmitt: Synchronous Dataflow. Proceedings of the IEEE, 75(9):
1235–1245, (1987)

[49] Lomdahl, P.S. and D.M. Beazley: Multi-Million Particle Molecular Dynamics on MPPs,
Second International Workshop, PARA95, Lyngby, Denmark, (1995)

[50] Lomdahl, P.S.; P. Tamayo; N. Grønbech-Jensen and D.M. Beazley: 50 GFlops Molecular
Dynamics on the Connection Machine 5. Proceedings of Supercomputing ’93, IEEE Com-
puter Society, pp. 520–527, (1993)

[51] Luty, B.A.; M.E. Davis; I.G. Tironi and W.F. van Gunsteren: A Comparison of Particle-Par-
ticle, Particle-Mesh and Ewald Methods for calculating electrostatic Interactions in peri-
odic Molecular Systems. Molecular Simulation, vol. 14, pp. 11–20, (1994)

[52] Makino, J.: Stellar Dynamics on 200 Tflops Special-Purpose Computers: Grape-6. Interna-
tional Symposium on Supercomputing, (1997)

[53] Mojtabaeezamani, G.: SP POWER3 SMP Node System Architecture. IBM white paper,
(1999)

[54] Müller-Plathe, F.; W. Scott; and W.F. van Gunsteren: PARALLACS: a benchmark for paral-
lel molecular dynamics. Computer Physics Communication, no. 384, pp. 102–114, (1994)

[55] Nyland, L.; J. Prins; R.H. Yun; J. Hermans; H.C. Kum and L. Wang: Achieving Scalable
Parallel Molecular Dynamics Using Dynamic Spatial Domain Decomposition Techniques.
Journal of Parallel and Distributed Computing, no. 47, pp. 125–138, (1997)

[56] Pant, A.: A High Performance MPI Implementation on the NTSC VIA Cluster. National
Center for Supercomputing Applications (NCSA), University of Ilinois at Urbana-Cham-
paign, (1999)

[57] Pearlman, D.A.; D.A. Case; J.W. Caldwell; W.S. Ross; T.E. Cheatham III; S. DeBolt; D.
Ferguson; G. Seibel and P. Kollman: AMBER, a package of computer programs for apply-
ing molecular mechanics, normal mode analysis, molecular dynamics and free energy cal-
culations to simulate the structural and energetic properties of molecules. Comp. Phys.
Communication, no. 91, pp. 1-41, (1995).

[58] Roccatano, D.; R. Bizzari; G. Chillemi; N. Sanna and A. di Nola: Development of a Paral-
lel Molecular Dynamics Code on SIMD Computers: Algorithm for use of a Pair List Crite-
rion. Journal of Computational Chemistry, vol. 19, no. 7, pp. 685–694, (1998)

[59] Ruf, L and T. Strösslin: Molekülsimulation aif IBM RS 6000 SP. Semester thesis, Computer
Engineering and Networks Lab (TIK), Eidgenössische Technische Hochschule Zürich
(ETH), (1999)

Bibliography 147

[60] Scott, W.R.P.; P.H. Hünenberger; I.G. Tironi; A.E. Mark; S.R. Billeter; J. Fennen; A.E.
Torda; T. Huber; P. Krüger and W.F. van Gunsteren: The GROMOS Biomolecular Simulation
Program. Journal of Physical Chemistry A, no. 103, submitted

[61] Sivasubramiam, A.; A. Singla; U. Ramachandran and H. Venkateswaran: An Application-
Driven Study of Parallel System Overheads and Network Bandwidth Requirements. IEEE
Transactions on parallel and distributed systems, vol. 10, no. 3, 193–210, (1999)

[62] Taylor, V.E.; R. L. Stevens and K. E. Arnold: Parallel Molecular Dynamics: Implications
for Massively Parallel Machines. Journal of Parallel and Distributed Computing, no. 45,
pp. 166–175, (1997)

[63] Toyoda, S.; H. Miyagawa; K. Kitamura; T. Amisaki; E. Hashimoto; H. Ikeda; A. Kusumi
and N. Miyakawa: Development of MD Engine: High-Speed Accelerator with Parallel
Processor Design for Molecular Dynamics Simulations. Journal of Computational Chemis-
try, vol. 20, no. 2, pp. 185–199, (1999)

[64] van Gunsteren, W.F.; H.J.C. Berendsen; F: Colonna; D: Perahia; J.P. Hollenberg and D.
Lellouch: On Searching Neighbours in Computer Simulation of Macromolecular Systems.
Journal of Computational Chemistry, vol. 5, no. 3, pp. 272–279, (1984)

[65] Wirth, N: Compilerbau. Teubner Studienbücher Informatik, (1986)

148 Bibliography

Curriculum Vitae

Personal

Name: Martin Gerber

Date of Birth: 15th December 1969

Place of Birth: Liestal, Switzerland

Citizen of: Langnau i.E., Switzerland

Education

Primary and Secondary School in Pratteln, Switzerland

1988 Matura Typus C, Gymnasium Liestal

1994 Dipl. El.-Ing. ETH

1994–1996 Research assistant in the research group of Prof. Dr. A. Kündig in the
Computer Engineering and Networks Laboratory at the ETH Zürich

1996–1999 Ph.D. student in the research group of Prof. Dr. L. Thiele in the Computer
Engineering and Networks Laboratory at the ETH Zürich

