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Abstract. Understanding the self-regulatory mechanisms controlling
the spatial and temporal structure of multicellular organisms represents
one of the major challenges in molecular biology. In the context of plants,
shoot apical meristems (SAMs), which are populations of dividing, undif-
ferentiated cells that generate organs at the tips of stems and branches
throughout the life of a plant, are of particular interest and currently
studied intensively. Here, one key goal is to identify the genetic regu-
latory network organizing the structure of a SAM and generating the
corresponding spatial gene expression patterns.

This paper addresses one step in the design of SAM models based on
ordinary differential equations (ODEs): parameter estimation for spatial
pattern formation. We assume that the topology of the genetic regula-
tory network is given, while the parameters of an ODE system need to
be determined such that a particular stable pattern over the SAM cell
population emerges. To this end, we propose an evolutionary algorithm-
based approach and investigate different ways to improve the efficiency of
the search process. Preliminary results are presented for the Brusselator,
a well-known reaction-diffusion system.

1 Motivation

Ordinary differential equations (ODEs) represent a common approach to model
genetic regulatory networks [1]. Such models are on the one hand used to quan-
titatively understand the interactions of multiple genes controlling specific cel-
lular processes and on the other hand applied to make predictions about the cell
behavior. One important and challenging problem in this context is the deter-
mination of the model parameters that lead to the desired temporal dynamics.
For single cell networks, there has been a lot of work on parameter estimation
using analytical as well as heuristic methods [13]; in particular, several studies
make use of evolutionary algorithms to find suitable parameter settings [8,9,11].

This paper considers a slightly different problem where the focus is on mul-
ticellular systems, in particular the shoot apical meristems (SAMs) in the plant
Arabidopsis thaliana. The main goal is to identify an ODE system that is capa-
ble of producing an (experimentally observed) spatial gene expression pattern
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across the cell population, assuming that gene products can cross cell borders
via diffusion. Starting with a given set of gene interactions in terms of an ODE
system, we address the problem of model parameter determination for such a
spatial scenario. In comparison to previous studies on parameter estimation,
there are several differences with respect to the scenario under investigation:

– Instead of a single cell, multiple interacting cells are considered which re-
quires a prespecified spatial cell structure and a cell interaction model;

– Instead of achieving a particular temporal behavior, we are interested in
obtaining a stable, i.e., non-oscillating system state in which a particular
gene expression pattern emerges over the spatial cell structure;

– Instead of considering absolute gene product concentrations as target values,
the gene expression patterns are rather defined qualitatively since quantita-
tive measurements in space are scarcely available.

It is an open question of how to efficiently search for model parameters in such a
scenario and how to formalize spatial patterns in terms of an objective function.

In the following, we present a preliminary study for this problem where a more
general goal is taken as a basis: we do not assume a given target pattern, but
aim at finding parameter settings that produce arbitrary, non-chaotic patterns.
We first propose a general modeling framework which allows to simulate genetic
regulatory networks within multicellular systems. Secondly, for a simple reaction-
diffusion system with two genes that has been part of a previously published
model for the shoot apical meristem by Jönsson et al. [6], we investigate the issue
of parameter estimation. To this end, we introduce and apply an evolutionary
approach based on the Covariance Matrix Adaption Evolution Strategy (CMA-
ES) [3,4] and investigate different ways to improve the efficiency of the search.

2 Background

2.1 The Shoot Apical Meristem (SAM)

A shoot apical meristem (SAM) consists of multiple dividing, undifferentiated
cells and is located at the tips of stems or branches of a plant. It is responsible
for generating organs throughout the life of a plant and determines the number,
type and position of the resulting lateral organs. A SAM has a particular internal
organization that is preserved through its existence and its position at the tip of
the stem or a branch remains fixed, although the plant is growing. Therefore, a
fundamental question in meristem research is what this structure looks like and
how it is maintained.

In various experimental studies, a number of genes and gene interactions have
been identified that are involved in the organization of a SAM. At the heart
of preserving the organization and functioning of a SAM is a negative feed-
back loop with two critical elements, the transcription factor gene WUS and the
CLAVATA (CLV) genes, which encode components of a ligand/receptor complex.
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Fig. 1. A sketch of the SAM summarizing the known structural constituents and show-
ing the WUS-CLV feedback loop. In the middle of the model, the organizing center is
located. Directly on top of this domain the triangular shaped CLV stem cell domain
begins and stretches up to the outermost cell layers L1 and L2. This setup remains
stable throughout the life of the plant. During growth, cells from the CLV stem cell
area move laterally, differentiate and thereby contribute to the plants growth. In regu-
lating the maintenance of this spatial pattern the WUS-CLV feedback loop indicated
by (1) and (2) plays a central role. Starting from the organizing center it promotes its
own growth and the regeneration of the CLV domain (1) which lost cells due to dif-
ferentiation. To prevent the system from over stimulating growth in CLV domain and
organizing center, in turn CLV3 produced in the topmost layers of the CLV domain
(L1, L2) gives negative feedback to the WUS organizing center (2). As a result of this
interplay both, CLV domain and organizing center can maintain a stable size.

This negative-feedback loop elegantly corrects transient aberrations in stem-cell
number. Besides these relatively well-characterized regulators, a range of other
elements has been identified. In many cases their function in the meristem is
unclear and, so far, there is no overall picture of the genetic regulatory networks
in a SAM. Fig. 1 schematically summarizes the main constituents of a SAM that
are currently known.

A current limitation in meristem research is the resolution of the measure-
ments. Ideally, for each gene the gene product concentration within each cell
of the meristem separately would be known, but it is obvious that such type
of measurements are utopian for the near future. For this reason, data-driven
modeling approaches where genetic regulatory networks are inferred from quan-
titative data are currently infeasible. Instead, a knowledge-driven approach is
pursued where the topology of the network is determined by hand based on
previous knowledge, and novel hypotheses are tested by slightly modifying the
existing network and validating it with regard to phenotypic data.
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2.2 Pattern Formation

One approach to study the regulation mechanisms enabling plants to maintain
these spatial SAM patterns is to use reaction-diffusion systems, a well under-
stood system to produce spatial patterns in general, dating back to work by
Turing [12]. He investigated the influence of diffusion as a spatial component on
systems described by coupled non-linear differential equations. In contrast to the
predominant opinion, he found out that systems which converge to a homoge-
neous steady state without diffusion can be perturbed in such a way that they
form either spatially stable patterns over time or temporally stable patterns in
the spatial domain. Using similar systems many pattern forming dynamics in
sea shells [7], development of animals like hydra [2] or drosophila [5] have been
investigated.

In the context of SAM modeling, Jönsson et al. [6] employed reaction-diffusion
systems to simulate the domain formation and maintenance in the SAM. In their
work, the authors used a two dimensional model only considering the WUS-CLV
feedback loop extended by an additional activator substance; the reported results
in simulating phenotypic observations in SAM development and maintenance
are promising. As to model parameter determination, their model consisted only
of few constituents and therefore it was possible to tune the parameters by
hand. Considering the fact that these systems are sensitive to either start condi-
tions and parameters like coupling constants, degradation rates and production
rates, it is likely that tuning more complex models by hand becomes intractable.
Therefore we here present a method which, using a model similar to the one
from Jönsson et al., (1) optimizes parameters of the system in such a way that
spatial patterns are formed and (2) thereby can be used to explore the pattern
formation capabilities of that given setup.

3 A SAM Modeling Framework

In the following, we present a modeling framework for multicellular systems in
general and SAMs in particular that serves two goals: hypothesis testing and
hypothesis exploration. On the one hand, it should be testable whether a given
system of interacting factors can form certain spatial patterns by finding the
necessary parameter settings and simulating the system. On the other hand,
based on the parameter optimization, predictions on the possible patterns of
novel interactions resulting from novel intracellular and intercellular interactions
shall be made.

3.1 Model Structure

The model proposed here is defined by the following core components:

Cells: The model consists of spatially discrete units, the cells. They are used
as autonomous units. We assume that all cells are similar to each other in
design, in particular regarding the underlying genetic regulatory network,
and only differ in their states.
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Gene products: The state of a cell vi is characterized by the concentrations
of the gene products produced in the cell. The gene product concentrations
are represented by a real valued vector. The term ’gene product’ in this case
not only refers the the product but has to be understood synonymous for
gene products, gene expression levels and all processes on the way from gene
to gene product. Since there exists a mapping between expression levels and
the resulting amount of gene products, the gene product concentrations are
representing the gene expression levels.

Cell structure: The cells are grouped according to a spatial neighborhood
defining which cells share common cell surface areas. In this model only a
two dimensional horizontal cut through the SAM is considered. We assume
that the cells are hexagonal and the cell plane is arranged in rings around a
central cell. A schematic picture of the plane is given in Fig. 2. Internally the
cell neighborhood is represented by a graph G(V, E) consisting of a set of
cells V . Contacts or interaction pathways between the cells are represented
by edges ei,j ∈ E between two cells vi and vj .

Cell communication: To form spatial heterogeneous patterns, spatial interac-
tions, namely diffusion, between the constituting components are mandatory.
In this model diffusive interactions are possible along the edges between the
cells. Therefore implicitly zero flux boundary conditions are used on the
boundaries of the cell plane.

The framework is implemented in Java and for the graph representation the
JUNG library is used.

3.2 Model Dynamics

During the simulation process the states of the cells change according to (1)
intracellular interaction between genes or gene products and (2) the intercellular
diffusion. In a formal description the state change of a cell vi follows a transition
function δ(qi, N(vi)) depending on the current state qi of the cell and the states
of its interaction partners given by the neighboring vertices N(vi). Each iteration
in the simulation corresponds to calculating the transitions made for every cell
based on the status quo.

The reaction equations describing the intracellular interactions can easily be
transformed to ordinary differential equations, using the reaction rates from
the reaction equations as parameters. The time course of ODE systems can
be simulated by numerical integration. Since the intracellular interactions are
already represented by ODEs, it is convenient to express the diffusion by ODEs
as well. The used ODE approximation for diffusion is given in Eq. 1,

dxi,j

dt
=

∑

k∈N(vi)

Dj(xk,j − xi,j) (1)

where xi,j is the concentration of gene product j in cell vi, N(vi) encompasses
all cells in contact with vi, and Dj is the diffusion constant for the type of gene
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Fig. 2. Activator inhibitor patterns resulting from the Brusselator reaction-diffusion
system for two different parameter sets on two dimensional cell planes with a hexag-
onal lattice. Each vertex represents a cell, each edge indicates an interaction pathway
between cells. The cells are colored according to the concentrations of a single gene
product. The activator patterns are shown in the left column and the corresponding
inhibitor patterns in the right column. Gene product concentration levels are relative
and range from low (light color) to high (dark color). The first row shows the patterns
simulated using the parameters recorded by Jönsson et al. [6] and the second row shows
patterns resulting from parameter optimization using our framework. The difference
in size of the patches with high activator concentrations between both parameter sets
stems from the difference in the activator diffusion constant DA. For the optimized
parameter set it is smaller and therefore the activator peaks are more local.

product. For our two dimensional meristem simulations, the system is integrated
for 5000 steps using a fourth order Runge Kutta integrator with fixed step size
Δt = 0.1.

Additionally to reaction rates and diffusion constants, the starting conditions
or initial gene product concentrations can be considered as a third group of
parameters. Due to the non-linearity of the considered system, already slight
changes in any of the parameter settings can result in drastic changes in the
system behavior whilst the system can be highly robust with respect to other
variations. To illustrate this fact, in Fig. 3 two simulation runs of a one di-
mensional reaction-diffusion system with slightly varying parameter settings are
shown. This system, namely the Brusselator, was introduced in 1968 by Pri-
gogine and Lefever [10] and ranges among the best studied reaction-diffusion
systems. It is defined by the two equations:
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Fig. 3. Two simulations using the Brusselator activator (solid lines) inhihibitor (dashed
lines) reaction-diffusion system with similar parameters but one. One diffusion constant
(Db) is changed from 0.69 (a) to 0.7 (b) which results in a state change of the system
from spatial homogeneous to spatial heterogeneous waves for both gene products. The
other parameter settings were: a = 0.1, b = 0.2, β = 0.1, c = 0.1, Da = 0.1.

dA

dt
= a − (b + β)A + cA2B + Da∇2A (2)

dB

dt
= bA − cA2B + Db∇2B (3)

3.3 A Clavata-Wuschel Model

As mentioned in Section 2.1, the feedback loop between CLV produced in the L1
layer and WUS produced in the organizing center is one of the key regulation
mechanisms for maintaining a stable SAM. Jönsson et al. [6] simulated this feed-
back loop complemented by a an activator inhibitor reaction-diffusion system.
They decided to use the Brusselator model explained in Sec. 3.2 for this task and
following this suggestion we use the same system for this study. With help of this
system, Jönsson and coworkers were able to reproduce similar pattern formation
for the considered horizontal cut through the SAM when compared to the in
vivo SAM either unperturbed or after laser ablation of the WUS producing or-
ganizing center (cf. Fig. 1). Since in our study we are only interested in pattern
formation in general, we reduce their model to the Brusselator equations.

4 Model Parameter Estimation

This study is concerned with investigating ways to optimize parameters for the
SAM model based on reaction-diffusion systems. The considered optimization
problem can be summarized by the following design parameters:
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– Search space X ⊆ R
n, for the Brusselator n = 6,

– objective space Z = R,
– objective function f(x) : R

n → R evaluating the resulting patterns for the
given parameter set considering the two aspects (1) stability of the pattern
over time and (2) significance of the heterogeneity of the resulting pattern.

In the following, we present two types of objective functions used during op-
timization with the Covariance Matrix Adaption Evolution Strategy (CMA-ES)
developed by Hansen and Ostermeier in 1996 [3,4] – a state of the art stochastic
optimization method already successfully applied to several real valued opti-
mization problems. The first type of objective functions is designed to avoid
using any domain knowledge. Therefore it represents a baseline approach for
optimizing reaction-diffusion systems. Secondly, we consider a set of methods to
incorporate domain knowledge into the objective function in order to improve
the quality of the patterns found.

4.1 Baseline Approach

Method. For the baseline approach we used both spatial heterogeneous gene
product concentration distribution and convergence of the gene product concen-
trations over time and aggregated them into a single objective f(x) as follows:

f(x) =
∑

i∈gp

(max(δt − Δsi , 0) + Δti) , (4)

where gp are all gene products, Δsi is the maximal difference in gene product
i measured over all cells at the end of the simulation and δt is a threshold
value which is used to decide if a given spatial heterogeneity is significant. For
our simulations δt = 0.5 was used. Δti is the largest change in gene product
concentration i in the last integration step. The first term in the fitness function
can be seen as a penalty term on parameter settings that fail to generate a stable
pattern. In effect, the second term penalizes settings for which the simulation
does not converge within the given number of integration steps.

Results. Using the described fitness function we made eleven optimization runs
using the CMA-ES. Due to runtime constraint, one optimization run took up to 4
hours, for each variant only eleven runs were conducted. The used (4, 9)CMA-ES
parameter values are given in Tab. 1 and the results are shown in Fig. 4.

The undertaken optimization runs failed to converge to an optimum within
1000 objective function evaluations. After investigating which parts of the para-
meter space had been explored during the optimization runs, it turned out that
only 3 percent of the tested settings had relations between the activator diffusion
constant Da and the diffusion constant of the inhibitor Db of Da

db
≤ 1

7 . Although
it is known from literature that pattern formation using reaction-diffusion sys-
tems only takes place if for the relation of the diffusion constants Da

db
≤ 1

7 holds,
the idea behind this base approach was to avoid using domain knowledge and
thereby testing the feasibility of our parameter optimization approach on general
ODE systems.
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Table 1. Parameter settings for CMA-ES

Parameter Value
Initial ODE Parameters [a, b, β, c, Da, Db] [0.45, 0.45, 0.45, 0.45, 0.8, 0.8]

Initial Standard deviation [0.25, 0.25, 0.25, 0.25, 0.7, 0.7]
for the Parameters

Maximal Number of Objective function Evaluations 1000

Fig. 4. The results of all conducted runs are shown in boxplots. ’baseline’ refers to
the first variant not incorporating any domain knowledge, ’interval small’ and ’interval
medium’ both refer to the variant were the optimization process operated on a pre-
defined search interval, ’target’ refers to the variant where the domain knowledge was
integrated by guiding the search to the vicinity of a known solution, ’target, emph. on
diff.’ denotes the runs using a target setting with an emphasize on the diffusion relation
and finally ’constraint’ refers to the variant where knowledge about the dependency of
the diffusion constants was used.

4.2 Integration of Domain Knowledge

Method. Considering the difficulties in optimizing the parameters without do-
main knowledge, we decided to include domain knowledge into the optimization
process. We tested three different approaches:

1. Restricting the initial search interval of the CMA to a smaller interval which
is known or suspected to contain good parameter settings,

2. introducing a term pointing to a region that it is known to be good and
thereby generating bias towards this region,

3. constraining the parameters considering known dependencies between para-
meters like the relation between diffusion constants.

The first approach is trying to increase the probability of identifying a good
solution by simply regarding a smaller search space.

Since a study using a sampling grid on the diffusion constants and fixing all
other parameters showed that the fitness landscape for the screened part of the
parameter space consists of mainly two plateaus, a small sink containing the
pattern forming settings and a large plateau of settings for which the system
converges to a spatially homogeneous state (cf. Fig. 5), we introduced the latter
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Fig. 5. Slice of the fitness landscape resulting from the objective function given in
Eq. 4: For this slice only two of the six parameters of the Brusselator reaction-diffusion
system (cp. Eq. 3) are considered, namely the diffusion constants DA and DB . They
were sampled in the interval [0.05, 1.95] using 0.05 steps while the other parameters are
fixed. It can be seen that only for small activator diffusion constants there are pattern
forming sets and therefore for most of the tested settings no pattern formation takes
place. Further on it can be seen that the transition between pattern forming settings
and non-pattern forming settings is ridge like.

two approaches. Both aiming at reshaping the fitness landscapes to become easier
to optimize. By integrating new terms in the fitness function, higher plateaus
are slightly inclined to point at pattern forming parameter regions. The second
approach to this end uses a term penalizing distance to a known promising
region. The resulting objective function reads as follows:

f(x) =

{∑
i∈gp(max(δt − Δsi , 0) + Δti) + ‖x − xt‖ if ‖x − xt‖ > δd,∑
i∈gp(max(δt − Δsi , 0) + Δti) else,

(5)

where xt is the target parameter vector and δd is a minimal length of the differ-
ence vector of x and xt.

The third approach follows a more general idea: It exploits the knowledge
about the necessary relation between the two diffusion constants DA and DB.
Whenever the relation between both constants exceeds a threshold of 0.1, the
actual relation is added to the function value. In effect, the search space is
constraint and the resulting objective function reads as follows:

f(x) =

{∑
i∈gp(max(δt − Δsi , 0) + Δti) + DA

DB
if DA

DB
> 0.1,

∑
i∈gp(max(δt − Δsi , 0) + Δti) else.

(6)

Results. For all mentioned approaches we did eleven optimizations runs each.
Using the two different interval sizes around a parameter set found using the op-
timization framework (a = 0.3, b = 0.05, β = 0.05, c = 0.25, DA = 0.075, DB =
1.525) and σ settings for the corresponding search distribution in the CMA-ES
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of σ ∈ {0.1, 0.3}, for the small σ reproducibly good solutions were found whereas
already for the medium σ the results became significantly worse. Therefore the
successes have to be contributed to the small size of the explored search space
rather than to an effective optimization.

Using the parameter vector (a = 0.1, b = 0.2, β = 0.1, c = 0.1, DA = 0.1, DB =
1.5) as a target vector generating search direction towards a good region in para-
meter space (for the CMA-ES the parameter settings in Tab. 1 were used), the
obtained results were reasonable but still the runs did not converge to a setting
with an objective value below 1 ∗ 10−14, the convergence threshold used by the
CMA-ES. This can be attributed to the fact that by taking the euclidean distance
between the parameter vector describing the desired parameter vector and the ac-
tual parameter vector, all parameters equally contribute to the distance between
the two vectors. Since DA is an important parameter that is measured in smaller
scale than the other parameters, its contribution to the search direction is over-
powered by the others and the generated signal is blurred. And in fact, emphasiz-
ing the diffusion relation improved the convergence.

Coping with this problem brings us to our last approach. Here a desired
minimal relation of DA

DB
= 0.1 is used as a constraint (for the CMA-ES the

parameter settings in Tab. 1 were used). Compared to all other approaches,
it was only outperformed by the approach searching in a small already known
region. Schematic pictures of the resulting patterns are given in Fig. 2. When
again looking at the number of evaluated settings having a suitable diffusion
constant relation, it turned out that for this last setup more than 50 percent
were sufficiently small. The results for all approaches are shown in Fig. 4.

5 Conclusions

In this paper, we have studied the problem of parameter estimation for ODE
models of genetic regulatory networks in order to generate spatial gene expression
patterns over a population of cells. We have tested variants from two types of
objective functions, one abandoning all domain knowledge and three objective
functions integrating domain knowledge in different ways.

Already for small systems like the considered Brusselator with six parameters,
the first approach failed to identify suitable parameter settings. A naive varia-
tion of this method drastically restricting the search space to a region known
to be promising in principle failed as well. Only for very small parts of the de-
cision space it was possible to identify good solutions, indicating that no real
optimization took place but mere sampling.

The last two variants produced promising results. Both have in common that
the search process is guided towards a region of in principle good solutions. Fol-
lowing this direction both approaches succeeded in identifying good parameter
sets. The two variants are (1) using a single point which is known to be good as
an attractor for the search process and (2) using knowledge about dependencies
between parameters to guide the search process, with variant (2) producing the
better results and therefore beeing the method of choice for the given problem.
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Additionally, it might be interesting to combine the used approaches and thereby
further improve the method.

As key results of this study it can be concluded that on the one hand side opti-
mization on the given problem domain without having additional domain knowl-
edge seems to be intractable. If domain knowledge becomes available on the other
hand there are strategies allowing to identify good solutions to the problem.

This study only represents preliminary work. The focus of our work is on
dealing with more complex networks both when considering the number of in-
volved species and the number of cells in the simulated system. Additionally it
is planned to expand the model to three dimensional setups. For these systems
we are not only interested in the mere pattern formation but in the formation
of specific patterns visible in our real world target Arabidopsis thaliana.
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