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Abstract—Decentralized exchanges (DEXes) have introduced
an innovative trading mechanism, where it is not necessary to
match buy-orders and sell-orders to execute a trade. DEXes
execute each trade individually, and the exchange rate is au-
tomatically determined by the ratio of assets reserved in the
market. Therefore, apart from trading, financial players can also
act as liquidity providers. Liquidity providers earn transaction
fees of trades executed in DEXes. Although liquidity providers are
essential for the functionality of DEXes, their behavior remains
largely unstudied.

In this paper, we aim to understand how liquidity providers
react to market information. Further, we analyze the returns and
risks associated with providing liquidity in DEXes. We measure
the operations of liquidity providers on Uniswap and analyze
how they determine their investment strategy based on market
changes. We also reveal the returns and risks of investments
in different trading pair categories, i.e., stable pairs, normal
pairs, and exotic pairs. Further, we investigate the movement
of liquidity between trading pools. To the best of our knowledge,
this is the first work that systematically studies the behavior of
liquidity providers in DEXes.

I. INTRODUCTION

Traditionally, trading is executed on centralized exchanges
(CEXes), using the limit order book mechanism. With this
mechanism, each seller is matched with a buyer for a trade. In
the crypto-space, when traders want to exchange Ether (ETH)
with Bitcoin (BTC) through a CEX, they have to transfer
their ETH to the account of the centralized operator, submit
their sell orders of ETH, wait for matching corresponding buy
orders of ETH, and then withdraw the incoming BTC from
the market operators after the execution of their orders. This
process is both a cumbersome and risky process as the CEX
temporarily holds the funds.

Recently, an alternative in the form of decentralized ex-
changes (DEXes) surfaced. Currently, DEXes are popular in
cryptocurrency markets. Eventually, fiat currencies, stocks, or
other commodities might trade on DEXes as well. So under-
standing DEXes may be crucial beyond just cryptocurrency
applications.

DEXes are smart contracts running on a blockchain. In
contrast to the limit order book mechanism, traders do not need
to be matched to a trading partner with opposite intentions. In
a DEX, trades are completed immediately when the orders are
recorded on the blockchain.

Uniswap is the most popular DEX. As an example, consider
trades between BTC and ETH. The Uniswap platform offers a

smart contract (liquidity pool) with locked-in funds for these
two cryptocurrencies. When a trader wants to exchange ETH
for BTC, the trader only needs to send their ETH to the smart
contract. The smart contract will then immediately send the
appropriate amount of BTC back to the trader, while the ETH
sent by the trader will be locked in the smart contract. The
exchange rate is primarily determined by the ratio of BTC
to ETH stored in the smart contract. The BTC and ETH in
the smart contract are providing the liquidity for the trades
between BTC and ETH on Uniswap.

In a DEX pool, liquidity is provided by liquidity providers.
These liquidity providers lock their cryptocurrencies into the
corresponding liquidity pools. DEXes generally charge a per-
centage transaction fee for each trade executed on the platform.
Liquidity providers share transactions fees in proportion to
their liquidity contributions. Therefore, with the emergence
of DEXes, users have new investment opportunities in the
cryptocurrency ecosystem: they can offer their assets in DEXes
as liquidity and benefit from transaction fees.

Many questions emerge: How many different pools are
liquidity providers invested in? What are the expected earnings
from transaction fees? How do liquidity providers react to
market forces? Do liquidity providers redistribute their assets?
As DEXes are an emerging phenomenon that might cross over
to other markets beyond cryptocurrencies, it is interesting to
understand the motives of liquidity providers.

In this paper, we quantitatively measure the behavior of
liquidity providers. We collect data from Uniswap, the most
popular DEX in the cryptocurrency ecosystem. With this data,
we study liquidity provider strategies, returns, and risks. First,
we analyze the distribution of liquidity providers in Uniswap,
examining the creation of liquidity pools, the distribution of
liquidity, and the participation of liquidity providers in these
pools. Although Uniswap allows users to create liquidity pools
between any pair of tokens, more than 80% of liquidity pools
include ETH, and six popular tokens dominate the market.
Moreover, more than 60% liquidity is locked in the top 24
pools. Cryptocurrency holders act restrained concerning these
new investments: approximately 70% of providers reserve
their liquidity in a single pool. However, these seemingly
conservative liquidity providers contribute more than 50%
of the liquidity in the most popular pools. This observation
indicates that individual providers, as opposed to professional
market makers, control the liquidity of DEXes. In examining



the addition and removal of liquidity day by day, we find that
the market change of liquidity is relatively stable, i.e., the
correlation between the number of injections and withdrawals
is 0.922.

To understand the behavior of liquidity providers, we study
the risks and returns they face across three different pool cate-
gories introduced by Uniswap: stable, normal, and exotic. We
find that while stable and normal pairs may provide attractive
investment opportunities for liquidity providers depending on
the individual risk tolerance and return expectations, the ex-
otic pools investigated do not. Those demonstrated extremely
negative returns accompanied by high risk.

Liquidity providers do not frequently move their assets
across different pools, seemingly indifferent to price changes
or other market indicators. However, we observe that many
traders redistribute their liquidity when given the additional
benefits of liquidity mining on top of transaction fees. We,
thus, study what external factors are influencing the behavior
of liquidity providers.

This paper makes the following contributions. First, we
conduct a systematic investigation on the liquidity providers in
Uniswap to outline the participants of users in such emerging
trading activities. Second, we classify three categories of
liquidity pools and analyze the investment returns and risks of
liquidity providers in those pools. We present the variability
of investment strategies for different types of liquidity pools.
Finally, we demonstrate the movement of liquidity around the
entire DEX and show the significant influence of external fac-
tors on liquidity providers, such as liquidity mining activities.

II. BACKGROUND AND RELATED WORK

A. Decentralized exchanges

Decentralized exchanges (DEXes) run as smart contracts
on the blockchain and generally allow automatic trading of
cryptocurrencies by an algorithm using liquidity provided in
liquidity pools. Most DEXes adopt a similar automated market
maker (AMM) mechanism as Uniswap, the largest DEX.
Uniswap allows for the creation of liquidity pools between
any pair of crypto tokens. Individual liquidity providers deposit
both tokens at equal value in the pool, and these funds allow
traders to swap the respective tokens. In the process, traders
pay a relative transaction fee. The fee is then disrupted pro-rata
amongst the pool’s liquidity providers.

The exchange rate offered to a trader is determined by
the smart contract. Uniswap uses the constant product market
maker, i.e., the algorithm ensures that the product of the two
pool reserves remains constant. Consider the liquidity pool
between token A and token B, A 
 B, with respective
reserves at and bt at time t. A trader wishing to exchange
δa tokens A at time t will receive δb tokens B, where

δb =
bt(1− f)δa

at + (1− f)δa
,

and f is the transaction fee. The fee is charged on the input
amount and is currently 0.3% in the case of Uniswap. This
fee is distributed to liquidity providers.

B. Liquidity in DEXes

This paper aims to study liquidity providers in DEXes
quantitatively. In this section, we review previous work in two
categories: quantitative studies of market behavior in DEXes,
and theoretical studies on liquidity providers in DEXes.

Since all transaction information is broadcast through the
blockchain network and all transactions in DEXes are public
to all market participants, researchers can study the mar-
ket behavior of traders in cryptocurrency ecosystems. Chen
et al. [1] provide a basic view of the ERC20 tokens on
Ethereum. They visualize how cryptocurrencies are created,
held, and transferred by traders. Other works explore more
detailed behavior of traders in the markets. Daian et al. [2]
measures front-running trades on DEXes. Because of the
transparency and latency of DEXes transactions, traders can
observe profitable transactions before their execution and
front-run these orders with higher fees to front-run the target
victim. Such behaviors result in a high miner-extractable value,
which brings systemic consensus-layer vulnerabilities. Torres
et al. [3] and Qin et al. [4] quantify the revenue of traders
who conduct a combination of front-running and back-running
transactions, i.e., sandwich attacks [5], demonstrating that
normal transactions are vulnerable to arbitrageurs. Wang et
al. [6] study another arbitrage behavior, i.e., cyclic arbitrages
(triangular arbitrages) in Uniswap, which profits traders with
price differences across different trading pools. They claim that
implementing transactions with private smart contracts is more
resilient to front-running attacks than directly calling public
functions of DEXes smart contracts. Although previous studies
have provided an in-depth understanding of traders in the
cryptocurrency ecosystems, they mainly focus on the behavior
of normal traders. The novel trading option of providing
liquidity on DEXes has not been well studied. Therefore, this
paper aims to fill the existing research gap and inspire more
work in this direction.

A separate line of work has analyzed the returns of liquidity
providers theoretically with microstructure models. Evans [7]
studies the returns of liquidity providers when there is no
transaction fee charged and claims that it is better to invest
in constant-mix portfolios than providing liquidity. Moreover,
Evans et al. [8] develop a framework for determining the
optimal transaction fees for AMM DEXes and show that
providing liquidity to DEXes is preferable to all alternative
trading strategies as fees approach zero. Aoyagi [9] conducts
a game-theoretical analysis between liquidity providers and
traders to estimate the returns of liquidity providers in DEXes.
These studies have ideal assumptions on information delivery
and price fluctuations of assets, which do not coincide with
the real scenarios. Moreover, they have not considered how
liquidity providers choose between different trading pools.
To the best of our knowledge, none of the previous studies
have empirically analyzed the trading behavior of liquidity
providers in real DEXes. To better understand the new trading
option in DEXes, we measure liquidity provider behavior in
Uniswap and study how they react to market indicators, which



will inspire better theoretical models for analyzing liquidity
providers in DEXes.

III. DATA DESCRIPTION

We analyze Uniswap data to measure the liquidity provider
behavior on the platform and to understand the influence of
market factors on their trading strategies. Currently, there are
three Uniswap versions, V1, V2, and V3. Uniswap V2 was
launched on 4 May 2020 and succeeded by Uniswap V3 on
5 May 2021 and was the predominant market throughout the
past year. Thus, we study Uniswap V2 as an example in this
paper as it provides us with the biggest data set. Furthermore,
other DEXes, e.g., Sushiswap, have similar mechanisms as
Uniswap V2.

To collect data, we develop and launch a modified version
of go-ethereum client, which exports all transactions executed
on Uniswap V2. Further details concerning the mechanism of
DEXes and related data extraction of the go-ethereum client
can be found in Appendix A. We collect all transactions
recorded on Ethereum from block 10000835 (where Uniswap
V2 has been deployed, on 4 May 2020) to block 11709847
(on 23 January 2021)1.

To further evaluate the behavior of liquidity providers and its
dependence on pool characteristics on Uniswap, we require the
price of each cryptocurrency in a common currency – US$ in
our case. As many cryptocurrencies do not have a market price,
we first compute the price of each cryptocurrency studied in
ETH. This data is obtained from the common pool with ETH
of the cryptocurrency in question. Such a pool exists for most
cryptocurrencies and we assume the prices to be accurate, as
they would offer arbitrage opportunities otherwise. The ETH
price then allows us to calculate the value of each token in
US$ historical data for the ETH price in US$ from coinbase2.

IV. LIQUIDITY DYNAMICS IN DEXES

In this section, we provide an overview of liquidity pools
on Uniswap. Unlike traditional centralized exchanges where
only the cryptocurrencies permitted by operators can be traded
on the platforms, DEXes allow any Ethereum users to create
trading pools between any pair of tokens. As shown in
Figure 1, the number of liquidity pools increases quickly with
the emergence of Uniswap and continues to rise at a rate
of over 100 per day until November 2020. After that, the
daily growth of liquidity pools has gradually slowed down
and keeps at a rate of 50 pools per day by the end of January
2021. In total, we find 29,235 available liquidity pools, which
involve 25,231 cryptocurrencies, while 22,828 tokens only
have a single trading pool. The most popular token is ETH,
24,011 tokens share a liquidity pool with ETH. Except for
ETH, the most popular cryptocurrencies are USDT (1321),
USDC (627), DAI (542), UNI (270), and WBTC (148). These
tokens are either stable coins whose value is anchored at $1
or tokens with high value. Until 23 January 2021, Uniswap

1Block data is available at https://www.ethereum.org/
2https://www.coinbase.com/
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Figure 1: Number of liquidity pools on Uniswap from 4 May
2020 to 23 January 2021. The orange line represents the
number of all liquidity pools on Uniswap, while the black
line shows the number of daily emerging pools.

Figure 2: Distribution of liquidity in Uniswap on 23 January
2021.

has reserved more than $2.5 billion and more than 60% of
liquidity is located in the top 24 popular pools (Figure 2).

Apart from the distribution of liquidity pools, we also
measure the participation of liquidity providers in Uniswap.
Although some traders may use several addresses to provide
liquidity on Uniswap, more than 82% of Ethereum users only
control a single account [10]. Therefore, in this paper, we
consider each address as a single liquidity provider. In total,
we find 183,823 addresses add liquidity to liquidity pools on
Uniswap, while 107,352 of them keep reserving their tokens
in Uniswap by 23 January 2021 (Figure 3). Initially, most
liquidity providers reserve their money only in one liquidity
pool, and the average number of pools they participate in is
less than 1.4 until September 2020. Later on, during October
and November, liquidity providers are interested in more pools,
as we see the average number of pools providers are involved
in increases to 1.8.

As shown in Figure 4, the distribution of the number of
liquidity pools that each liquidity provider participates in
follows the power law. The largest providers participate in
120 pools, and more than 96.5% of the accounts reserve their
money in no more than five pools.

We notice that most liquidity providers only participate
in a single pool (Figure 3). This pattern also holds for the
largest Uniswap liquidity pools. We see that more than 70%
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Figure 3: The number of liquidity providers over time. The
black line demonstrates the number of providers that only
participate in one pool. The colorful dotted line is the num-
ber of active liquidity providers in Uniswap, and the color
indicates the average number of pools that liquidity providers
participate.
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Figure 4: Distribution of the number of liquidity pools that
each liquidity provider participates in. About 10,000 only
participate in a single pool (top left), and some providers
participate in many pools (bottom right).

of providers reserve their cryptocurrency assets only in one
of them. Further, only a few providers spread their assets
across more than ten pools (Figure 5a). Liquidity providers
that reserve their cryptocurrency assets only in one pool have
taken a serious role in the DEXes ecosystem, as they provide
more than half liquidity in these popular pools (Figure 5b).
This fact suggests that DEXes are not controlled by oligopoly
and professional market makers but that ordinary users con-
tribute the most to the operation of the decentralized market
mechanism.

During the nine analyzed months, liquidity providers have
gradually added and removed liquidity from different pools,
while they reserve their tokens 1,011,524 times on Uniswap
(Figure 6a) and withdraw them for 527,429 times (Figure 6b).
We find that the day-by-day correlation between the number
of liquidity injections and liquidity withdrawals is very high
(0.992), indicating that the market size is growing steadily.
Moreover, in terms of days, the market behaviors of liquidity
providers are relatively consistent. Almost half of the liquidity
operations from August to September take place in the most
popular pools. However, these pools become less active from
October onwards. On the one hand, we may consider the
liquidity in these popular pools to become stable after five
months of the development. On the other hand, this fact also

(a) Number of liquidity providers per pool. The DAI-WETH pool has
more than 6,000 individual liquidity providers. More than 4,000 of
them only contributed to this one (1) pool. The other colors represent
providers which are providing liquidity to more than one (2,3,...) pool.

(b) Total liquidity per pool. The biggest pool is USDC-WETH with
more than 200,000 ETH liquidity. About 125,000 ETH is funded by
liquidity providers which only contributed to this one (1) pool. The
other colors represent providers which are providing liquidity to more
than one (2,3,...) pool.

Figure 5: Liquidity providers and liquidity per pool.

indicates a rapid change of interests in the liquidity pools of
investors in the cryptocurrency ecosystems.

We have specified 12 pools with the most liquidity injections
and withdrawals in Figure 6a and Figure 6b. As most liquidity
operations occur in these pools, the patterns of liquidity
changes in these pools can represent the trading behavior of
liquidity providers in DEXes well. For instance, we observe
apparent differences between the three types of liquidity pools:
normal, stable, and exotic.

In the normal liquidity pools, both cryptocurrencies traded
are established currencies, such as USDC 
 WETH ,
WBTC 
 WETH , and DAI 
 WETH . These cryp-
tocurrencies are recognized in the cryptocurrency ecosystems.
To support trades between these cryptocurrencies, the liquidity
in the pools is relatively high (Figure 2). Although the price
of normal tokens may fluctuate, the price trend is relatively
stable and in line with the development of the cryptocurrency
ecosystem.



(a) Number of mint events per month executed in different liquidity
pools in Uniswap. In September 2020 there were more then 300,000
mint events in total.

(b) Number of burn events per month executed in different liquidity
pools in Uniswap. In September 2020 there were more then 140,000
burn events.

Figure 6: Mint and burn events.

In stable pools, both tokens traded in the pool are stable
coins, such as USDC 
 USDT and DAI 
 USDC.
The price fluctuations of stable coins are negligible. Thus, the
market environment has little impact on stable pool liquidity
providers. Since the price of stable coins generally remains
constant, liquidity providers earn profits by charging transac-
tion fees.

The remaining pools are referred to as exotic pools. In such
pools, the price of one trading token is extremely volatile.
The price of these tokens changed by more than a hundred
times during our measuring period. As we show in Figure 2,
although many liquidity operations have been applied on
these pools, they are not part of the high liquidity value by
23 January 2021, as little liquidity remains in the pool –
for example, YAM, MOON, and KIMCHI. For these exotic
cryptocurrencies, liquidity providers take more risks because
of their dramatic price fluctuations. When the price of the
exotic tokens changes drastically, the other coin they have
reserved in the pool may be emptied instantly by other traders.

Given the significant differences of these three kinds of
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Figure 7: Evolution of cumulative returns, fees and imperma-
nent loss over four months for stable pairs. Stable pairs do not
suffer from impermanent loss.

pools, we infer that the distribution of liquidity providers,
their trading strategies, and the investment return across these
three categories differ. Therefore, we measure the activities of
liquidity providers in these pools separately and analyze how
they react to market changes.

V. RETURNS AND RISKS OF PROVIDING LIQUIDITY

Evans et al. [7] suggest that the returns of providing liquidity
are lower than investing in the constant-mix portfolios if the
transaction fee is zero. However, in reality, liquidity providers
can benefit from their contribution to the liquidity pools
through strictly positive transaction fees, which results in
different returns and risks compared to the previous theoretical
analysis. To better understand liquidity providers’ motiva-
tion in DEXes, we compare the return received by liquidity
providers to holding the respective assets according to the
given token ratio during the initial liquidity injection.

The return of a liquidity provider between time t1 and t2
in percent is given as

returnt1→t2 = 100 · investt2 − holdt2
holdt2

,

where investt, which is the current value in US$ of the
liquidity placed in the pool at time t and holdt is the value in
US$ of the constant-mix portfolio at time t.
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Figure 8: Evolution of cumulative returns, fees and imper-
manent loss over four months for normal pairs. A liquidity
provider funding LINK-WETH in November, and pulling out
in January would have suffered a loss, since the accumulated
fees do not make up for the impermanent loss.

This return is positively influenced by the fees collected
from trades performed in the pool and negatively impacted
by the impermanent loss, otherwise referred to as divergence
loss. Consider a liquidity pool A 
 B between token A and
B, where the amount of A in A
 B at time t is denoted as
at and the amount of B in A
 B at time t is denoted as bt.
The fees collected between time t1 and t2 as a percentage of
the liquidity are given as,

feest1→t2 = 100 ·

(
1−

√
kt1√
kt2

)
,

where kt = at · bt [11]. The impermanent loss, on the
other hand, describes the risk for liquidity providers of seeing
the value of their reserved tokens decrease in comparison to
holding the assets. This occurs with any price change in the
pool. More precisely, the impermanent loss between t1 and t2
is given as,

impermanent losst1→t2 = 100 ·

2 ·
√

pt2
pt1

1 +
pt2
pt1

− 1

 ,
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Figure 9: Evolution of cumulative returns, fees and imperma-
nent loss over four months for exotic pairs. The fees should
be much higher considering the risk of impermanent loss.

where pt = bt
at

, is the ratio between tokens in the pool at
time t [12]. Due to the impermanent loss, reserving of tokens
runs the risk of under-performing a buy and hold strategy of
a constant-mix portfolio.

The returns and the impermanent loss may vary greatly
across the different liquidity pool categories, namely normal
pools, stable pools, and exotic pools. Thus, to provide a
comprehensive understanding of returns and risks of provid-
ing liquidity in Uniswap, we analyze them separately. We
look at nine pools in detail - three of each kind (stable
pairs: USDC
 USDT, DAI
USDT, and DAI
USDC; nor-
mal pairs: UNI
WETH, LINK
WETH, DPI
WETH; ex-
otic pairs: MOON
WETH, KIMCHI
SUSHI, KIMCHI

WETH)3. We choose pools through a combination of size
and variety. When analyzing the data, we observe the same
four-month period between the end of September 2020 and
the end of January 2021, i.e., the time during which all nine
sample pools were active. Further, when looking at daily
returns, we consider the average daily return, computed from
the average reserves ratio in the pool, as opposed to the closing
daily return to mitigate the effects of short-term in-balances

3In picking pools, we excluded liquidity mining pools (i.e., WETH
USDT,
WETH
USDC, WETH
DAI, and WETH
WBTC), as the influence of the
liquidity mining program clearly presents itself in the data.



0.00 0.05 0.10 0.15 0.20 0.25
Daily Fees [%]

0.00

0.05

0.10

0.15

0.20
Fe

e 
Di

st
rib

ut
io

n

USDC-USDT ( = 0.03%)
DAI-USDC ( = 0.03%)

DAI-USDT ( = 0.04%)

(a) stable pairs

0.00 0.05 0.10 0.15 0.20 0.25
Daily Fees [%]

0.00

0.05

0.10

0.15

0.20

Fe
e 

Di
st

rib
ut

io
n

UNI-WETH ( = 0.07%)
DPI-WETH ( = 0.03%)

LINK-WETH ( = 0.07%)

(b) normal pairs

0.00 0.05 0.10 0.15 0.20 0.25
Daily Fees [%]

0.00

0.05

0.10

0.15

0.20

Fe
e 

Di
st

rib
ut

io
n

MOON-WETH ( = 0.06%)
KIMCHI-WETH ( = 0.06%)

KIMCHI-SUSHI ( = 0.02%)

(c) exotic pairs

Figure 10: Daily percentage fees of sample pairs in three
categories over a four month period. The histograms are
normalized, i.e., the sum of the bar heights of each data set
are equal to one. µ are the average daily fees in percent.

in pool reserves. Such imbalances occasionally occur after
trades that are large in comparison to the pool reserves. Due
to the influence of the impermanent loss on the returns, the
inaccurate price ratio causes starkly negative returns. However,
these temporary imbalances recover quickly as other trades see
an arbitrage opportunity due to the inaccurate price ratio. We
further note that percentage returns we extract, correspond to
the realized returns of any liquidity provider in the respective
pool during the analyzed period.

In Figures 7, 8 and 9, we show the evolution of the return,
fees and impermanent loss of stable pools, normal pools, and
exotic pools over time, respectively. Each of the three stable
coins (USDT, USDC, and DAI) tracks the US$. Thus, the ratio
between each pair is close to one at all times, and impermanent
loss plays a subordinate role in determining the returns and
is negligible. Rather, the fees received through trades in
the pool dominate the return. This dependency is apparent
from the almost overlaying curves for return and fees shown
across all three pairs shown in Figure 7. Moreover, due to
negligible price fluctuations and continuous collection of fees,
liquidity providers in stable pools can expect positive returns
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Figure 11: Daily percentage returns of sample pairs in three
categories over a four month period. The histograms are
normalized, i.e., the sum of the bar heights of each data set
are equal to one. µ are the average daily returns in percent.

independent of the time of the liquidity injection. Therefore,
providing liquidity in stable pools appears almost risk-free
with consistent and stable revenue. Despite the comparatively
high fees, users appear to exchange stable coins over Uniswap.

The influence of the impermanent loss on the profits of
liquidity providers becomes more apparent for the two other
types of pools – normal and exotic. For normal pairs (Fig-
ure 8), the cumulative return fluctuates below and above zero,
influenced both by the ever-changing impermanent loss and
the steadily increasing fees collected. Finally, we observe even
starker domination of the impermanent loss for the return rate
in Figure 9. Due to the high price volatility characteristic for
exotic pairs, we observe impermanent losses of around 70%
over a four-month period, which the collected fees cannot
compensate – leading to deeply red returns.

Figure 10 illustrates the fee distribution observed in the
nine sample pools. While we can detect differences in the
distributions of the fees collected in the various pools, there is
no apparent pattern between the different types of pools. The
fees collected by liquidity providers appear to depend more
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(a) Average daily returns and their volatility for nine sample pools.
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(b) Average daily returns and their 5% CVaR for nine sample pools.

Figure 12: Risk and return analysis of nine sample pools. Providing liquidity for exotic tokens is beyond just risky.

on the specific pair than on whether the pair is stable, normal,
or exotic.

Turning to the return rate observed in our sample pools,
Figure 11, we clearly observe patterns between the three differ-
ent types of pools. Due to the previously observed negligible
influence of impermanent loss on the profits expected in stable
pairs, the daily returns in stable pools are rarely, if ever, nega-
tive – Figure 11a. Thus, all have positive daily average returns
of around 0.03%. For the normal pairs, Figure 11b, we observe
significantly higher volatility in the returns, accompanied by
both higher (0.04% for LINK 
WETH) and lower (0.00%
for DPI 
 WETH) daily returns than previously seen for
the stable pairs. Finally, the exotic pairs seen in Figure 11c are
characterized by even larger return volatility and very negative
daily returns (-0.76% for KIMCHI 
 SUSHI).

To summarize the risks and returns associated with pro-
viding liquidity, we turn to Figure 12. We use historical data
to compare the daily mean returns to both the volatility and
conditional value at risk (CVaR) of the returns.

Figure 12a plots the daily mean returns observed in each
sample pool against the volatility. Generally, more volatile
returns present greater risks to investors. The three exotic
pairs both have the highest volatility and the lowest average
return associated with them – making them an unattractive
investment. Stable and normal pairs exhibit similar behavior,
except for DPI 
 WETH , which presents significantly
smaller returns than the other five pools.

We further analyze the risks and returns of the nine pools,
and we plot the daily mean returns observed in each sample
pool against the daily CVaR in Figure 12b. CVaR (sometimes
referred to as expected shortfall) is a coherent risk measure
that represents the average worst-case scenario commonly used

to quantify the risks of an investment. More precisely, CVaR
at 5% level is the expected return on an investment in the
worst 5% of cases [13]. CVAR has succeeded volatility and
value at risk (VaR) in becoming the most frequently used
risk measure [14]. While volatility is also affected by higher
than average returns, VaR is blind to the size of the losses.
Analyzing Figure 12b allows us to extract further patterns
emerging between the three different kinds of pools that are in
line with our previous observations. The three exotic pairs have
the highest risk, measured through the CVaR, and the lowest
average return associated with them. Exotic pairs make an
inefficient investment to liquidity providers, as all three exotic
pairs are dominated, i.e., higher return and lower risk, by
each of the remaining pairs. The difference between stable and
normal pairs becomes more apparent when comparing return
and CVaR. While the DPI 
 WETH pair is dominated
by all stable pairs, the remaining two normal pairs are not.
LINK 
 WETH and UNI 
 WETH exhibit higher
returns than at least the majority of stable pairs, but with
that also carry higher risks. All three stable pairs are very
similar in terms of risk and return, with DAI 
 USDT
having a slight edge over the others in return. Stable and
normal pairs may provide attractive opportunities for liquidity
providers depending on their individual risk tolerance and
return expectations, their difference becoming more apparent
when analyzing tail behavior.

VI. MOVEMENT BETWEEN LIQUIDITY POOLS

As profits and risks associated with providing liquidity
vary widely across different pools, we analyze how users
redistribute their investments across different pools, i.e., how
they move their assets from one pool to another. We investigate



USDC
 USDT DAI
 USDT DAI
 USDC

Volume 0.82 0.80 0.82
Price token 0 0.09 0.03 0.09
Price token 1 0.09 0.07 0.13

(a) stable pairs
UNI
 WETH DPI
 WETH LINK
 WETH

Volume 0.00 0.14 0.48
Price token 0 -0.31 -0.29 0.71
Price token 1 -0.36 -0.16 0.67

(b) normal pairs
MOON
 WETH KIMCHI
 WETH KIMCHI
 SUSHI

Volume 0.01 -0.20 -0.05
Price token 0 0.31 -0.50 0.08
Price token 1 -0.11 0.51 -0.05

(c) exotic pairs

Table I: Correlation between the liquidity in the pool and
various pool characteristics. The correlations are recorded for
daily data.

the movement of liquidity providers with the goal of better
understanding their motivations.

In Table I we record the correlation between the pool liquid-
ity and other pool characteristics, namely volume, and token
prices in US$. The correlations are calculated for daily data.
For all stable pairs, Table Ia, volume correlates highly with
pool liquidity. This strong correlation is expected, as liquidity
provider’s returns in stable pools are directly related to the
fees accumulated (Figure 7), which are in turn proportional
to the volume. The high correlation between liquidity and
trading volume indicates the dynamic balance of the liquidity
providers in the market. When the trading volume increases,
liquidity providers will earn more fees, then the high return
attracts more liquidity into the pools. Symmetrically, when the
trading volume decreases, liquidity will withdraw their funds
from the pools, allowing the remaining liquidity providers to
earn sufficient benefits again. Thus, the correlation between
liquidity and trading volume appears natural. We see that
liquidity tracks volume in stable pools in Figure 13a, where
the daily volume and liquidity are visualized for USDC 

USDT .

The data shown in Table Ib for normal pairs and Table Ic
for exotic pairs reveals a less obvious picture. The liquidity
in all but one of the normal and exotic pairs appears largely
uncorrelated with the volume – LINK 
WETH being the
exception. Figure 13b shows that while liquidity and volume
are somewhat correlated for the LINK 
 WETH pair,
the link between them is not as apparent as for the stable
pairs. In the remaining pools, an example is shown with
KIMCHI 
 SUSHI in Figure 13c, liquidity and volume
are uncorrelated. The lack of correlation might partially be
due to generally low volume and low liquidity but could also
stem from the less predictable returns in normal and exotic
pairs. Thus, liquidity providers might pay less attention to the
volume when adding or removing liquidity. In general, the
price of the tokens appears uncorrelated with the liquidity.
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Figure 13: Volume and liquidity in three sample pools.

While we do not necessarily expect a strong correlation, the
token price influences the liquidity providers’ returns via the
impermanent loss. Thus, liquidity providers do not seem to
react to price changes, indicating that either they hope for the
ratio to recover to previous value or they are insensitive to the
effects of the impermanent loss.

We further look at the movement of liquidity between pools.
When observing liquidity movements, we consider the entire
data set. We record a movement if the same address removes
liquidity from one pool and adds liquidity to another pool
within 6000 blocks – roughly a day. Further, we restrict our
analysis to the pools with the most liquidity movements (mint
and burn events) in the following and only consider pools with
more than 5000 liquidity movements.

In Figure 14 we plot a colormap of the movement between
the 72 pools most active pools. We order the pools smallest to
largest by their average size, i.e., liquidity in the pool, since
their creation. For better visibility, all values are capped at 500.
We immediately draw three conclusions from Figure 14. First,
the movements of liquidity in Uniswap are rare. Additionally,
the matrix appears symmetric. In other words, if providers
move liquidity from one pool to another, there also seem to
be providers that move liquidity in the opposite direction at
similar numbers. Lastly, the number of movements increases,
especially for the six largest pools. Otherwise, movements
do not appear to correlate with the pool size. The ordered



To

Fr
om

   size   

   
siz

e 
  

500+

0

100

200

300

400

Figure 14: The number of directional movements between the
72 most active pools visualized as an adjacency matrix. The
pools are ordered by their average size, i.e., liquidity in the
pool, on 23 January 2021. The order list can be found in
Appendix B. We cap the number of movements at 500 for
better visibility.

pool pair with the most movements is DAI 
 WETH →
WETH 
 SURF with a total of 13389 movements. We
count less than 3500 movements for all remaining ordered
pairs.

When looking at the data of some ordered pool pairs with
many movements in more detail, we observe the emergence
of two patterns in Figure 15. While movements between
DAI 
 WETH → WETH 
 SURF all occur within
a rather short period and appear to be driven by an indi-
vidual event, the movements we observe between USDT 

WETH → USDC 
 WETH and USDC 
 WETH →
DAI 
WETH happen over a longer period. However, even
though we observe different patterns, movements appear to
relate mostly to liquidity mining. The single spike in between
DAI 
 WETH → WETH 
 SURF (Figure 15a)
coincides with the time at which liquidity mining for SURF
started in the WETH 
 SURF pair4. Further, the movement
between the USDT 
 WETH → USDC 
 WETH and
USDC 
 WETH → DAI 
 WETH reaches its peaks
around the UNI liquidity mining period, 18 September 2020 to
17 November 20205. In conclusion, the movement of liquidity
does not appear too common among liquidity providers unless
driven by external motivations, such as liquidity mining.

VII. CONCLUSION

This paper addresses three fundamental problems in under-
standing liquidity providers in DEXes: Who provides liquidity
in DEXes? What are the returns and risks of providing
liquidity? How do liquidity providers react to market changes?

4https://www.reddit.com/r/CryptoMoonShots/comments/jivadf/surf finance/
5https://uniswap.org/blog/uni/
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Figure 15: Directional liquidity movements and volume for a
set of ordered pool pairs.

Our analysis suggests that users of cryptocurrency ecosys-
tems have gradually become interested in providing liquidity
in DEXes. However, users still act with caution – preferring to
participate in few liquidity pools. We find that the returns and
losses of providing liquidity in different types of pools vary
a lot. Stable pools enable a seemingly risk-free and profitable
investment opportunity compared to constant-mix portfolios.
Providing liquidity in exotic pools, on the other hand, appears
to perform much worse than the corresponding constant-mix
portfolios. Reacting to the unique return opportunities and
risks, liquidity providers perform different trading strategies
across pool categories: they respond to trading volume changes
in stable pools and pay less attention to market changes of
normal and exotic pools. Besides market indicators, liquidity
providers are also motivated by external market factors, i.e.,
liquidity mining activities, to redistribute their liquidity invest-
ments.

In this paper, we extend the research scope of liquidity
provider behavior in DEXes from theoretical analysis to em-
pirical studies. By studying the behaviors of liquidity providers
on the Uniswap market, our work provides a comprehensive
insight into the new trading options in the cryptocurrency
ecosystems for users. More, it inspires future work aimed to
better understand DEXes market mechanisms.
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APPENDIX A
DEX MECHANISM AND DATA EXTRACTION

In this section, we introduce the DEXes mechanism on the
Ethereum blockchain and the details of the data extraction.

A. Ethereum Blockchain and ERC20 Standard

Most DEXes run on Ethereum: a public blockchain plat-
form, which supports Turing complete smart contracts. Com-
pared to earlier blockchain systems, such as Bitcoin, Ethereum
provides a decentralized virtual machine, the Ethereum Virtual
Machine (EVM), to execute smart contract code. A smart
contract is a set of programs written in high-level languages,
e.g., Solidity. These programs will be compiled into executable
byte-code. After the creation of the smart contract, the exe-
cutable byte-code will be stored in an independent database
of the blockchain. Any Ethereum users can invoke functions
defined in a smart contract.

Ethereum supports three kinds of transactions: a simple
transaction, where the recipient is another address (account)
to transfer the native currency, ETH; a smart contract creation
transaction, without recipient is the null to create a new smart
contract; a smart contract execution transaction, where the
recipient is a smart contract address to execute a specific
function of that contract.

When a transaction is included in a block by a miner, the
operation corresponding to the message takes effect. The miner
who creates the block modifies the state of corresponding
accounts based on the messages. Each step of the miner’s

operation consumes a certain amount of gas, and the amount
of gas consumed in each block is capped. Users need to
specify a gas price for the operation execution when sending
transactions. The fee paid by the initiator of a transaction to
miners is determined by the amount of gas consumed and
the gas price (gas fee = gas price × gas consumption). The
miner will include a receipt of the executed transactions in
Ethereum blocks as well, including the information on whether
the transaction has been executed successfully, the gas fee, the
identity of the transaction and the block, and other information
generated during the execution.

Based on the support of the smart contract, users can create
cryptocurrency other than ETH on Ethereum. These smart
contracts have to follow some standards; the most widely used
standard is the ERC20 standard, which requires an approve
function and a transferFrom function. When an address
(account) addra calls the function approve(addrb, v), then
the address addrb can transfer at most v tokens in total
from addra to other accounts. After this approval, addrb can
transfer v′ tokens from addra to another account addrc by
calling the function transferFrom(addra, addrc, v′),
where

∑
v′ ≤ v.

B. DEXes

DEXes are smart contracts on Ethereum. Users send mes-
sages to a DEX address to invoke functions for perform-
ing market operations. DEXes support these operations: cre-
ate the trading (liquidity) pool between a pair of tokens,
adding/removing liquidity, and exchanging tokens. We take
Uniswap as an example to present these operations.

1) Creating Liquidity Pools: In Uniswap, exchanges be-
tween two tokens are conducted through a liquidity pool,
i.e., a smart contract that keeps the pair of tokens. There are
two participants involved in the market: the liquidity provider
and the trader. Providers reserve their tokens in the liquidity
pool, while traders exchange their tokens with the liquidity
pool. Because providers contribute to the market liquidity, they
benefit from the transaction fees incurred with transactions in
DEXes.

Assume we have two tokens A and B, and we want to
create a liquidity pool between A and B on Uniswap. We first
send a smart contract execution transaction with the ERC20
smart contract address of A and B to the Uniswap to claim the
creation of the liquidity pool A
 B. The smart contract will
then check whether the pool between A and B exists according
to the addresses of two tokens. If not, Uniswap smart contract
will create a new liquidity pool A 
 B, i.e., a new smart
contract reserving these two tokens.

2) Adding/Removing Liquidity: After creating the liquidity
pool between A and B, liquidity providers can add a token pair
to the liquidity pool. Liquidity providers need to approve the
Uniswap address to transfer their A token and B token from
their address to the liquidity pool address. When a Uniswap
contract receives a liquidity providers call to add liquidity, it
will invoke the transferFrom function in ERC20 contracts

https://pintail.medium.com/uniswap-a-good-deal-for-liquidity-providers-104c0b6816f2
https://pintail.medium.com/uniswap-a-good-deal-for-liquidity-providers-104c0b6816f2


to transfer tokens from the provider’s address to the liquidity
pool address.

If there are no tokens reserved in the liquidity pool, users
can supply any amount of A and B to the liquidity pool, and
the pool will return liquidity tokens as proof of the deposit. If
the amounts of A and B provided by the providers are a and
b, respectively, then the provider will get λ =

√
a× b liquidity

tokens. Meanwhile, the total supply of liquidity tokens of A

B pool is Λ =

√
a× b.

With a of token A and b of token B already in the liquidity
pool, a provider can reserve δa of its asset A and δb of its
asset B in the liquidity pool simultaneously, where δa

δb
= a

b .
Then they will earn δλ = δa

a liquidity tokens for the A 
 B
and the total supply of liquidity tokens becomes Λ = λ+ δλ.

Providers can also remove their tokens from the liquidity
pool. The amount of tokens providers can redeem is related to
the amount of liquidity tokens they own. Assume a provider
has δλ liquidity tokens of the liquidity pool A 
 B and the
total supply of liquidity tokens is λ. The provider can withdraw
δa of A and δb of B from the A 
 B pool with δ′λ ≤ δλ
liquidity token, where δa

a = δb
b =

δ′λ
λ . The δ′λ of liquidity

tokens will be burned (destroyed) after they redeem the money
and the total supply of liquidity tokens becomes Λ = λ− δ′λ.

3) Exchanging Assets: In Uniswap, tokens are not ex-
changed between two traders but between a trader and the
liquidity pool. The exchange of assets is realized in two steps.
First, the traders sends their tokens to the liquidity pool.
Second, the liquidity pool computes the exchange rate and
returns the targeted token to the traders.

Assume traders wants to exchange δa of A for B token and
the liquidity of A and B are a and b. They first need to let the
Uniswap address get the approval for transferring his A token
to other accounts. After receiving the exchange order from the
traders, the Uniswap contract transfers δa of A to the liquidity
pool address and returns δb of B back to the traders.

The following equation always holds during the exchange:
a · b = (a + δa · r1) · (b − δb

r2
), where r1 and r2 denote the

transaction fee ratio in asset A and B respectively. In Uniswap,
r1 = 0.997 and r2 = 1, which indicates that the transaction
fee is equal to 3‰·δa. The remaining liquidity in the pool
equals to (a + δa, b − r1·r2·b·δa

a+r1·δa ) and the amount of liquidity
tokens does not change.

C. Data Extraction

The addresses of liquidity pool smart contacts are stored
in the UniswapV2Factory contract. Our modified go-etherum
client queries this contract to get the contract addresses and
token pairs of 29,235 available trading pools until 23 January
2021. Then, we find 21,830,282 transactions interacting with
these liquidity pools as Uniswap trades and filter those con-
taining Mint and Burn events, representing adding liquidity,
and removing liquidity, respectively.

In each Mint event, liquidity tokens of the liquidity pool
will be generated by the liquidity pool smart contract and
then transferred from the 0 address to the address of liquidity
providers. Similarly, in each Burn event, liquidity providers

transfer their liquidity tokens to the 0 address. Moreover, some
traders may exchange liquidity tokens in other transactions,
while liquidity pools will generate Transfer events to record
such liquidity token movements. With the information of Mint,
Burn, and Transfer events, we compute the balance of liquidity
tokens of liquidity providers in each pool.

APPENDIX B
ORDERED LIST OF PAIRS

Pair Liquidity [ETH]

YAM-yDAI+yUSDC+yUSDT+yTUSD 1.428872
WETH-ZZZ 1.485706
USDC-LUA 1.751875
XSP-WETH 14.462280
WETH-YFIG 17.151782
MOON-WETH 18.254465
EDC-WETH 23.734045
WETH-SASHIMI 23.880723
ORB-WETH 40.352911
MAGGOT-ROT 42.561145
WETH-ROT 44.211202
KIMCHI-WETH 60.737109
KIMCHI-SUSHI 62.282785
NAMI-WETH 64.820192
DAI-ZAI 71.726004
SAKE-WETH 116.067252
YAM-yyDAI+yUSDC+yUSDT+yTUSD 125.538101
sUSD-$BASED 129.872536
DRC-WETH 258.590228
BNSD-WETH 262.181825
STA-WETH 369.155391
FARM-USDC 371.331104
CIBS-WETH 413.760214
DAI-ONC 674.910787
DOKI-WETH 738.239800
LEND-WETH 751.000403
BAND-WETH 761.538398
sUSD-WETH 774.386045
YFL-WETH 852.991518
WETH-SHROOM 1045.601330
CREAM-WETH 1149.861260
ESD-USDC 1176.263457
BASE-WETH 1200.543511
SAV3-WETH 1380.415120
USDC-DSD 1548.107930
BID-WETH 1671.099336
UMA-WETH 1799.774446
SAND-WETH 1863.114363
SUSHI-WETH 2287.350792
WETH-SURF 2587.357197
YFIM-WETH 2668.451593
XIO-WETH 2783.801616
KP3R-WETH 2825.997391
REN-WETH 3455.682119
COMP-WETH 3554.598169
MTA-WETH 3995.430011
WETH-CRV 4134.174818
MPH-WETH 4168.733445
DAI-BAS 4631.640805
STAKE-WETH 5209.986423
ORN-WETH 6125.185442
POLS-WETH 6741.259787
XOR-WETH 7473.624516
YFI-WETH 8580.269632



PICKLE-WETH 9027.224902
SNX-WETH 11902.224024
LON-WETH 15406.317841
MKR-WETH 16361.398631
BOND-USDC 18248.992687
WETH-AMPL 20063.122512
WBTC-BADGER 21483.810705
BAC-DAI 24813.984020
ibETH-ALPHA 26909.981701
USDC-USDT 29094.132246
DPI-WETH 37782.513858
CORE-WETH 38506.273571
LINK-WETH 71021.684491
WETH-USDT 127760.291154
DAI-WETH 130139.207443
UNI-WETH 141314.373502
WBTC-WETH 165777.023010
USDC-WETH 213969.777843

Table II: Order list of pairs for Figure 14. The pairs are ordered
by their liquidity on 23 January 2021.
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