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GAbout 25 per cent of streets arene-ways
ValérieGagnonspokesperson for the city of Montreal



Navigating in Zurich
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Formal Model

w Given a strongly connected directed gragh O
¢ Alld edges haveon-negative weights
¢ Alle nodes have anique ID

w A searcher starts from some node

¢ With unlimited memory and computational power
¢ Has to explore the graph

w A graph is called explored, if the searcher Wiaged alle nodesand
returnedto the starting node

w When the searcher arrives at a node, she knalWsutgoing edges
Including theircostand thelD of the nodeat the end of the edges

cf. [Kalyanasundarar& Pruhs1994,Megowet. al. 2011]



How good is a tour, how good is a strategy?

w Cost of a tour: Sum of traversed edge weights

Competitive ratios for:

w atour’Y

w deterministic algorithms: | AD

w randomized algorithms: | AQ



Applications of Graph Exploration

w One of the fundamental problems of robotics
cf. [Burgardet al. 2000, Fleischer &rippen2005]

w Exploring the state space of a finite automaton
cf. [Brass et al. 2009]

w A model for learning
cf. [Deng & Papadimitriou 1999]



Some Related Work

w Offlinee Asymmetric Traveling Salesmaoblem
¢ Approximation ratio of | | &£[Feige& Singh 2007]
¢ Randomizedd | 1¢@Q 11dey[Asadpouret al. 2010

Undirected graph exploration: Directed Case
w General case) | |&JJRosenkrantet al. 1977]

w Lower boundc® - [Dobrev& Y NI f&aVidrkodi2012]

w Planar graph ¢Kalyanasundaram& Pruhs1994] g €

w Genusatmost p o ¢ JMegowet al. 2011]

w Unweighted ¢ (I8A8k, -, [Miyazaki et al. 2009])

w Does randomization help? factor of 4 at most



Exploring with a Greedy Algorithm

w Achievesa competitive ratio of

w Proof sketch:

C
C
C

Greedy useg p paths to new nodes and then returns
The greedy patld from U to a not yet visited nodé is a shortest path

Let"Y be anopt. Tourinducinga cyclicorderingof all ¢ nodes in'Gwith the
tour consisting of segments.

Thepath0 has by definition at most the cost of the whole part of the
tour "Y which consists of at most p segments.

Therefore, the cost of each of tesegments
in “Yhas to be used at most p times for the
upper cost bound of the greedy algorithm.



Exploring with a Greedy AlgorithglUnweightedCase

w Achieves a competitive ratio of - -

w Proof sketch:
¢ Thecostto reachthe first newnodeisp, thenat most¢, thenat mostoz X
¢ If we sumthis up, we getanupperboundof

p ¢ 08 (¢ ¢ (€ p E p
v €
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¢ Thecostof an optimal touris at leaste.

P



Lower Bounds fobeterministicOnlineAlgorithms
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w No better competitive ratio tham IS possible.

w Unweightedcase: No better competitive ratio than - —is possible.

w Both results areight.



Lower Bounds foRandomizednlineAlgorithms

w Nobetter competitive ratio than- is possible

w Proof sketch:

¢ When being atanode ,withp "Q - ¢, for the first time, then the
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¢ The cost of an optimal tour is 1.

w Unweightedcase:No better competitive ratio thar - —is possible.



Variations of the Model

w Randomized starting node?
w Choosing best result from all starting nodes?

w Possible solution: Duplicate the graphs, connect their starting nodes

w No better competitive ratio possible than

Z — (deterministic online algorithms)

Z — (randomizedonline algorithms)



Variations of the Model

w What if the searcher also sees incoming edges?

decreases lower bound decreases lower bound
by a factor of less than 2 by a factor of less than 1.5

w What if the searcher does not see the IDs of the nodes at the end of
outgoing edges, but knows the IDs of outgoing and incoming edges?

¢ Greedy algorithm still works with same ratio (all nodes have been visited if
all edges have been seen as incoming and outgoing edges)

¢ Lower bound examples also still work



Searching for a Node

Deterministic Randomized
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w A greedy algorithm has a competitive ratioef —N it &€



Adding Geometry

w searcher knows coordinates of nodes
w graph is Euclidean & planar



Adding Geometry



