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Filler Related Work

Work in Progress

• investigate whether the improved al-
gorithm is generally optimal

• extend simulation framework: varying
drifts, node mobility, and communica-
tion patterns

• adapt simulation framework to inter-
nal synchronization

• show worst-case optimality of simple
algorithm for internal synchronization
and find generally optimal algorithm

• implement and compare the algorithms
on the BTnode platform

Simulation

• duration 1800 seconds, 50 nodes in a square with edge length x

• each node has constant clock drift ρ ∈R [−100ppm,100ppm]
•nodes communicate with all reachable neighbors c times
• s source events occur at randomly chosen times and nodes
•we are interested in the average gain of using backward paths

x s c range average # of comm. average gain
10000 10 100 5000 157268 26.3 %
10000 10 100 2500 51348 18.9 %
10000 10 100 1000 9503 2.3 %
10000 40 100 5000 156808 27.3 %
10000 10 400 5000 640263 50.6 %
10000 10 400 2500 203879 29.6 %
10000 10 400 1000 37709 1.7 %
1000 10 100 250 50946 19.1 %

Early source event
Using backward path yields
reduction of uncertainty be-
tween 0 and 100 %, depend-
ing on the drift difference

Late source event
No reduction of uncertainty
by using backward paths

Basic principle
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• intersecting intervals is
worst-case optimal

•worst case = equal drifts
• including backward paths

can lead to improvements
in the general case

• conjecture: this is optimal
in the general case

• analysis is also applicable
to internal synchronization
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Corresponding event chart

Scenario
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Filler Results

Advantages of guaranteed bounds
•unambiguous combination of time information
•guaranteed data-fusion results
• fail-safe state if bounds drift too far apart

Peculiarities of ad-hoc networks
•no configuration or infrastructure

• stable connectivity cannot be assumed
• energy is a scarce resource

Use of synchronization
• fusion of distributed sensor data
• coordination among distributed actuators
• energy-efficient communication

Deterministic time bounds on the real time tNetwork of heterogeneous nodes
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Goal: Find efficient algorithms that provide tight and deterministic time bounds in ad-hoc networks

Filler Goal and Motivation in the Context of Ad-Hoc Networks
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