Synchronization with Guarantees

Lennart Meier
Computer Engineering and Networks Laboratory, ETH Zurich

Goal and Motivation in the Context of Ad-Hoc Networks

Goal: Find efficient algorithms that provide tight and deterministic time bounds in ad-hoc networks

Use of synchronization
- fusion of distributed sensor data
- coordination among distributed actuators
- energy-efficient communication

Peculiarities of ad-hoc networks
- no configuration or infrastructure
- stable connectivity cannot be assumed
- energy is a scarce resource

Advantages of guaranteed bounds
- unambiguous combination of time information
- guaranteed data-fusion results
- fail-safe state if bounds drift too far apart

Results

Scenario

Network of heterogeneous nodes

GPS receiver
NTP server

Model

Corresponding event chart

Path-based analysis

Basic principle

Duration 1800s, 50 nodes in a square with edge length x
- each node has constant clock drift $p \in [−100ppm, 100ppm]$,
- nodes communicate with all reachable neighbors c times
- x source events occur at randomly chosen times and nodes
- we are interested in the average gain of using backward paths

<table>
<thead>
<tr>
<th>x</th>
<th>c</th>
<th>average # of comm</th>
<th>average gain</th>
</tr>
</thead>
<tbody>
<tr>
<td>10000</td>
<td>10</td>
<td>523268</td>
<td>26.3%</td>
</tr>
<tr>
<td>10000</td>
<td>100</td>
<td>51348</td>
<td>18.9%</td>
</tr>
<tr>
<td>10000</td>
<td>1000</td>
<td>9503</td>
<td>2.3%</td>
</tr>
<tr>
<td>10000</td>
<td>20</td>
<td>156808</td>
<td>27.3%</td>
</tr>
<tr>
<td>10000</td>
<td>40</td>
<td>640263</td>
<td>56.6%</td>
</tr>
<tr>
<td>10000</td>
<td>100</td>
<td>1003579</td>
<td>29.6%</td>
</tr>
<tr>
<td>10000</td>
<td>250</td>
<td>37709</td>
<td>1.7%</td>
</tr>
<tr>
<td>10000</td>
<td>1000</td>
<td>509.46</td>
<td>19.1%</td>
</tr>
</tbody>
</table>

Simulation

Path-based analysis

Work in Progress

- investigate whether the improved algorithm is generally optimal
- extend simulation framework: varying drifts, node mobility, and communication patterns
- adapt simulation framework to internal synchronization
- show worst-case optimality of simple algorithm for internal synchronization and find generally optimal algorithm
- implement and compare the algorithms on the BNode platform

Related Work