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Abstract—Kahn process networks are a popular program-
ming model for programming multi-core systems. They ensure
determinacy of applications by restricting processes to separate
memory regions, only allowing communication over FIFO chan-
nels. However, many modern multi-core platforms concentrate on
shared memory as a means of communication and data exchange.
In this work, we present a concept for deterministic memory
sharing in Kahn process networks. It allows to take advantage of
shared memory data exchange mechanisms on such platforms
while still preserving determinacy. We show how any Kahn
process network can be transformed to use deterministic memory
sharing by giving a set of transformations that can be applied
selectively, only looking at one process at a time. We demonstrate
how these techniques can be applied to an ultrasound image
reconstruction algorithm. For an implementation on a test system,
our technique yields significantly better performance combined
with a drastically smaller memory footprint.

I. INTRODUCTION

Multi-processor systems have been widely accepted as the
only possibility of keeping up with the increasing demands
for computation power, especially coming from multimedia
applications. Yet, programming these systems is an intricate
task. The danger of races, glitches, deadlocks or other syn-
chronisation problems is always present.

The Kahn Process Network (KPN) programming model [1]
avoids these issues by limiting the communication possibilities
of each core. Essentially, a KPN is a directed graph, the nodes
of which are called processes and the edges of which are called
channels. A process is an independently working thread, which
is only allowed to access its local memory. Communication
between processes has to be done through the channels. A
channel is a First-In-First-Out (FIFO) buffer that takes tokens
from its source and and releases them to its destination. While
a write operation (putting tokens on a channel) is always
possible, a read operation (receiving tokens from an incoming
channel) will block the process until tokens are present in the
channel. The process is not allowed to check if a channel is
filled with tokens or not. It is known, due to Kahn [1], that
KPNs are always determinate, i.e., the tokens sent over the
channels only depend on the functionality of the processes, but
not on scheduling or other execution parameters. This makes
them suitable for modelling highly parallelisable applications
on multi-core architectures.

While KPNs can be thought of as advocating message
passing to correctly manage concurrency, the current trend
in hardware platforms, especially in the embedded domain,
goes into another direction. Many of the modern multi-
core platforms (e.g. STHORM, Kalray MPPA, TI Freescale
or ARM Multicore) count on shared memory architectures
for data exchange. These platforms minimise the latency
of accessing shared memory using hardware features such
as crossbar communication, multi-banked memory modules,
and hierarchical cache architectures. Applications with high
communication demands need to make use of these features
in order to attain maximum efficiency on such platforms.
Traditional KPNs, however, explicitly do not allow this. It
would thus be desirable to combine the determinacy of KPNs
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and the improved performance of memory sharing on modern
multi-core architectures.

In this paper, we propose a set of transformations that
enable use of shared memory communication patterns without
affecting the determinacy of KPNs. We call this Deterministic
Memory Sharing (DMS). There are four primary features
of DMS. First, we propose transformations to convert any
standard channel of a KPN to allow a memory block to
be shared between the producer and consumer processes of
the channel. Second, we propose transformations to allow
multiple processes to concurrently read from a shared memory
block. We formalise the intricate conditions under which
such concurrent reads can be allowed. Third, we propose
using memory blocks for in-place modifications and direct
re-transmissions. Fourth, motivated by streaming applications
which expose data parallelism, we propose dividing a memory
block into smaller sub-blocks, which can be concurrently read
from and written to by different processes. In addition, we
propose the insertion of recycling channels which significantly
reduce the cost of allocation and deallocation of the shared
memory blocks by allowing reuse of memory blocks once they
are not used by any process. All the transformations mentioned
above have been conceived such that they can be employed
selectively to transform a standard KPN into a DMS-enabled
KPN, sequentially and only looking at one process at a time.
We show that applying each set of transformations preserves
the determinacy of the KPN, by construction.

We illustrate DMS with an ultrasound image reconstruction
algorithm, which is representative of most streaming applica-
tions: There is a large communication overhead, and explicit
data and task parallelism. We show that a subset of our pro-
posed transformations can be employed to correctly transform
the KPN model of the algorithm. We implement the original
KPN, the transformed DMS-enabled KPN, and a windowed-
FIFO-based KPN [2], using the DAL framework [3], on the
Intel Xeon Phi processor. With extensive experimental tests we
conclude that sharing memory enables a higher throughput of
the application, while using a smaller memory footprint.

The remainder of the paper is structured as follows: In
the next section, related work is reviewed. In Section III,
the ultrasound image reconstruction algorithm is presented
in detail. In Section IV, the basic ideas of memory sharing
in KPNs and how this can be done deterministically will
be explained. In Section V, these ideas are formalised. In
Section VI, transformations will be given for existing KPNs
to apply these ideas and to optimise the resulting networks.
In Section VII, the correctness of these transformations will
be shown. In Section VIII, the ultrasound imaging algorithm
is revisited and it is demonstrated how the transformations
from the section before can be applied to it. Section IX will
show how the concept can be implemented in C code. Finally,
experimental results are presented in Section X.

II. RELATED WORK
The memory related publications in process networks can
be divided into three groups. The first group regards channel
capacities (i.e. the amount of tokens the actual implementations



of the individual KPN channels can hold), usually trying
to minimise the memory footprint via these capacities. The
second group tries to further reduce the memory footprint by
reusing the same memory for multiple channels. A third group
finally tries to avoid unnecessary copying overhead rather than
looking at the memory consumption.

In the first group, which regards channel capacities, one
idea is to start with small channel capacities, dynamically
increasing them as required [4], [S]. Another approach is to
entirely eliminate certain channels by automatically merging
processes where appropriate [6]. For networks with regular
patterns, such as synchronous dataflow [7] or cyclo-static
dataflow [8], the minimal channel capacities can be calculated
at design time. There are a number of approaches which try
to further reduce these minimal capacities for special cases of
these dataflow graphs [9], [10] or performing special analyses
[11].

All the methods mentioned so far are complementary to our
work; we assume these optimisations, if required, to have been
carried out prior to applying the transformations presented
here.

Another work on channel capacities, however focusing on
their relation to application performance, is [12]. While this
relation is regarded as a trade-off there (more memory for
better performance), we can reduce the memory footprint of
an application and achieve a better performance at the same
time.

In the second group, which reuses buffers for multiple
channels, [13] tries to minimise the memory footprint of
synchronous dataflow graphs. While greatly reducing memory
requirements, this only works for single-core systems and
with pre-determined schedules. It is not discussed if this
technique could be applied to multi-core systems; however,
that endeavour would yield the danger of massively inhibiting
parallelism, thereby losing performance.

[14] uses a global memory manager. Processes can obtain
buffers through the memory manager from so-called pools. The
programming model used there is not compatible to KPNs,
though; in fact, it is non-deterministic. Also, it is the task
of the programmer to decide which pool to obtain buffers
from or how many buffers these pools should be provided
with. In this work, we show how a deterministic, DMS-
enabled application can be obtained from any KPN by applying
simple transformations. No complicated synchronisation or
buffer allocation decisions have to be taken care of by the
programmer.

In [15], the SDF model is extended with a sort of global
buffers for keeping track of common global states such as
sampling frequency or gain in a multimedia stream. The
motivation of this work are synchronisation purposes; memory
footprint or performance are not taken into account.

The papers from the third group do, although often achiev-
ing it, not primarily target a low memory footprint. Their main
idea is rather to boost the application performance by avoiding
unnecessary copying overhead. In [2], this is done by using
so-called windowed FIFOs, which can replace the standard
FIFOs in KPN channels. Instead of copying the tokens from a
sender or to a receiver process, a windowed FIFO provides
these processes with a shared memory region (a window)
they can directly write to or read from. Managing the access
to this window, appropriately, ensures that processes do not
overwrite unread data or do not read stale data. This saves a
certain amount of copying overhead between two processes;
still, when the data has to be passed on to a third process,
copying cannot be avoided.

A more general approach is discussed in [16]. The idea
there is that processes can allocate memory blocks, and then

send tokens representing these blocks over the channels. The
token gives a process the permission to access the corres-
ponding memory block. Further, processes can send read-only
copies of tokens to multiple receivers. However, it is not clearly
mentioned whether the data in these memory blocks can be
edited in-place and then sent on to another process. Also, the
notion of block allocation and deallocation is only abstractly
defined; using memory allocation functions provided by an
operating system would be rather slow for regular allocation
as part of a data streaming process network.

In this paper, we generalise the concepts from the third
group of works mentioned here and we discuss several imple-
mentation details. We show simple transformations allowing
to turn a traditional KPN into one using shared memory, still
staying deterministic. Also, we introduce new techniques, such
as recycling channels and memory sub-blocks. Furthermore,
formalise the concept of in-place editing in KPNs and show
how it can be implemented.

III. THE IMAGE RECONSTRUCTION ALGORITHM

In this section, the ultrasound image reconstruction al-
gorithm we use for our experiments will be described in detail.
It will be shown what it does and how it can be implemented
as a KPN.

The different hardware variants, methods, reconstruction
algorithms and parameters of ultrasound imaging are as man-
ifold as the applications in medicine and in other domains. In
this paper, we will limit ourselves to one single configuration,
which we implement in different ways. First, we will explain
the general principle of ultrasound imaging. Then, we will give
details about the individual steps to be performed during image
reconstruction. Finally, we will show how the whole algorithm
can be implemented efficiently.

A. Principles behind ultrasound imaging

In the medical domain, one typically uses sound waves
with a frequency of 1 to 50 MHz, which are simplifyingly
assumed to travel at constant speed through human tissue. At
every boundary of materials with different physical properties,
transmission, absorption and reflection occur. The latter effect
is taken advantage of for ultrasound imaging.

The tool for obtaining the images is called a probe and,
in our case, is an array of linearly arranged piezoelectric
crystals called fransducers. A transducer changes its shape
when subjected to an external voltage and can therefore be
used to generate sound waves. Conversely, when changing
its shape due to mechanical pressure (like sound waves), it
produces a voltage which can be measured.

The image capturing process now works as follows. First, a
plain wave signal is sent out from the transducers; this signal is
e.g. a short window of a sine wave. As the wave travels through
the tissue, it gets reflected varyingly strongly at the different
locations. After sending out the signal, no more voltage is
applied to the transducers and instead, the voltage generated by
the transducers is measured over time. For n transducers, this
gives n individual traces of recorded sound waves. From these
traces, a two-dimensional image is reconstructed. This can be
done using the algorithm which we implement and optimise
in this paper, and which is described in the next section.

B. Individual steps of the algorithm

The image reconstruction can be decomposed into multiple
independent steps, which are explained in the following.
Attenuation compensation: The longer a wave travels through
the tissue, the more it gets attenuated. This attenuation can
be calculated and reversed on each trace by multiplying the
samples with an exponentially growing function.



Vector addition
Elementwise multiplication
Convolution

: Index lookup

env: Envelope detection

log: Elementwise logarithm

+:
x:
*

filter to eliminate DC biases.

Beamforming and Apodisation: This is the most important
reconstruction step. When the signal is reflected, the reflection
arrives at all transducers, however at different points in time
due to the different geometrical distances between the reflec-
tion origin and the transducers. For every geometrical position,
one can calculate at which times a reflection from there
arrives at the individual transducers. The different samples at
these times are summed up for all positions considered, thus
creating a first image. The image quality can be improved by
weighting the different samples according to the angle in which
the reflection hits a transducer. This is called apodisation. In
practice, for each transducer, one image column is calculated
such that all the samples from the transducers trace can be
used. For each column, this can be achieved by taking the
prepared traces from all transducers, extracting samples at
precalculated indices, multiplying the extracted samples with
precalculated factors and finally summing the results up. All
these operations are element-wise vector operations.
Demodulation: The beamformed image still contains the sine
waves of the echoed signal. These are removed by applying an
envelope detection and a low-pass filter. Both can essentially
be implemented as a convolution.

Log compression: To stress differences at weaker reflections,
the logarithm is taken of each point in the image.

C. KPN implementation of the algorithm

Fig. 1 shows how the ultrasound image reconstruction
can be implemented as a KPN. The processes in the upper-
most row precalculate certain vectors and tables like the filter
kernels, the delay indices for the beamforming process or the
apodisation tables. This precalculated working data is then sent
to all the processes which need it. The processes will read the
data once and keep it stored; afterwards, they will no longer
read from those channels and instead keep working on the
incoming samples. An input process obtains the data from the
transducers, which is then split into the individual transducer
traces and sent through the channels. The working processes
themselves accomplish rather simple work like convolutions,
element-wise multiplications or index-lookups. At the end, the
final image is merged together.

IV. DETERMINISTIC MEMORY SHARING

It can be easily seen from the last section that the ultra-
sound image reconstruction algorithm works on large amounts
of data, which need to be exchanged between different cores
on multi-core systems. Also, multiple processes have to work
on the same data. In a traditional KPN, all this data has to be
sent over the channels, and there has to be a separate copy of it
for each process. Clearly, this leads to a considerable overhead.
We try to avoid this overhead using a different method of data
exchange that is based on memory sharing.

Figure 1: KPN imple-
mentation of the ultra-
sound image reconstruc-
tion algorithm.

The dashed rectangles
group all the processes
involved in the beam-
forming of one image
column each.

This section explains how memory blocks can be shared by
multiple KPN processes while still preserving the advantages
of KPN, in particular its determinacy. We will introduce the
basic ideas of KPN memory sharing and that of an efficient
memory management technique.

A. Basic idea of the model

As previously mentioned, our approach is to have multiple
KPN processes share certain memory blocks. In general,
however, when multiple processes share one memory block,
they can communicate through it, thereby circumventing the
actual KPN communication mechanism (which uses channels).
This would not only destroy the determinacy of the process
network, it would also reintroduce races, glitches and all the
other multi-processor issues KPN originally set out to avoid.
Therefore, it is essential to have a synchronisation mechanism
which regulates the accesses to shared memory blocks.

This can be done by the concept of access tokens. An
access token gives a process the right to access (i.e. read from
and write to) a certain memory block. There is only one access
token for each memory block, and a process is not allowed to
create copies of it. This ensures that only one process can
access a memory block at a time. Access tokens can be sent
to other processes over the conventional KPN channels; the
sending process has to destroy its local instance of the token
once it has sent it (s.t. there are no two copies of the token).

In summary, instead of sending data directly over a channel,
the data is stored in a memory block, the access token to which
is then sent over the channel. This is illustrated in Fig. 2. We
will show in Section VII that the determinacy property of KPN
still holds when sharing memory through access tokens.

B. Relaxations and additions to the model

The mechanism presented above already brings clear im-
provements, but there are more possibilities of eliminating
overhead. In this section, we will discuss how it can be relaxed
in order to allow further useful optimisations.

1) Multiple memory copies: One desirable feature would
be to avoid multiple copies of the same data. This can be
achieved by allowing multiple processes to simultaneously
share one memory block. However, that leads to problems
when these processes simultaneously write (or read and write)
the same memory locations. As it was shown above, this would
violate the determinacy of the KPN. On the other hand, it is
not a problem if multiple processes concurrently read from
the same memory locations. Thus, it is possible to relax the
uniqueness constraint for the access tokens in a way that access
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Figure 2: Two KPN approaches: a) Classic process network;
b) Process network with shared memory blocks. The spade represents
an access token linked to a memory block with the “classic” token
from before.



tokens can be duplicated if it can be guaranteed that no write
accesses are performed to the memory blocks they are linked
to. Conversely, one can say that memory blocks may not be
written to if multiple access tokens are linked to them. This
relaxation does not compromise the determinacy of the KPN
for the simple reason that no communication can be established
by only reading.

A typical use case for duplicating access tokens could be
as follows. Some data is produced and written to a memory
block. Once the writing is finished, the producing process
duplicates the access token multiple times and distributes the
access tokens linked to the memory block to multiple receivers,
which can then read it simultaneously.

2) Different levels of process granularity: A second relax-
ation that can be made to the access-token principle helps to
deal with different levels of granularity of different processes.
Depending, e.g., on the workload of different tasks, it may be
advantageous if one process works on a large amount of data
and afterwards multiple processes work on distinct subsets of
this data. After that, it may be desirable again to have one
more process working on the entire set of data. This can be
allowed if it is ensured that these subsets are distinct, i.e. that
in the memory block, the locations accessed by the different
processes do not overlap. Again, it must be ensured that these
processes cannot communicate through shared memory blocks.

To this end, we introduce the notion of memory sub-blocks.
A memory block can be split up into multiple sub-blocks,
which denote distinct, non-overlapping memory regions in the
original memory block. Every sub-block can now have its own
access token. The different access tokens can be sent to differ-
ent processes, which can then only access different memory
regions. Thus, no communication between them through the
memory block is possible.

It is also possible to introduce a reverse operation to
the split mechanism, which we will call merge. The merge
operation can join two (or multiple) adjacent memory sub-
blocks to one single (sub-)block, reducing the set of access
tokens provided to it to one single access token.

3) Memory recycling: Until now, memory blocks have been
discussed as something that exists, but without mentioning
where they actually come from. The conventional way of
obtaining them is through dynamic allocation [16]. Similarly,
they are deallocated when no more access token is linked to
them. This, however, may be rather slow on many systems or
even not supported by the underlying software stack. Thus it
appears sensible to look for alternatives to dynamic memory
allocation.

One such alternative would be to introduce a recycling
channel which goes from a consuming to a producing process.
Instead of deallocating memory blocks, the consuming process
sends the access tokens linked to them back to the producing
process for later use. Initial access tokens (with corresponding
memory blocks) are placed on the recycling channel such that
the producing process can always use this channel as a source
for obtaining (access tokens to) memory blocks. We call this
technique memory block recycling.

In general, this change to the process network also changes
the semantics of the program, especially when there is no
more access token on the recycling channel and the consuming
process blocks trying to obtain one. However, we will show
that under certain conditions, the same change in semantics is
also induced by using channels with limited capacity (which
is anyway necessary when actually implementing a KPN).

V. FORMALISATION OF THE MODEL
In the previous section, we have informally described the
different ideas DMS is based on. Now, we are going to give

a formal definition of all the mechanisms included. This will
help in the next sections, when we discuss KPN transformation
methods and show their correctness. For this purpose, we
will first define the data structures involved and the properties
they have. Afterwards, the different operations on these data
structures will be defined.

The model works on memory blocks, which are regions of
memory that can be shared between processes. B is the set of
memory blocks. For each block b € B, there is

e size(b) € N, the size of the memory block

e b[n], n € {0..size(b) — 1}, the access operator for the
memory block. It returns a memory location which can
be read or written.

The processes do not have direct access to the memory
blocks. They can only access the blocks through access tokens.
An access token is an abstract entity with the following
properties:

1) It is linked to a memory block.

2) It allows read accesses to the block.

3) It only allows write accesses to the block when it is the
only access token linked to the block.

4) It can be sent over KPN channels.

5) Send operations are destructive, i.e. the sending process
does not retain a copy of the token sent.

T is the set of access tokens which currently exist in the
application. For each 7 € T, there is

e link(7) € B, the memory block the token is linked to.

e t[n] :=link()[n], the access operator for the access token.

The subject of write accesses being allowed or not needs
some more discussion. This is a global property, which we call
ownership: A process owns a memory block if it has the only
access token linked to that block. One could have mechanisms
to check for ownership at runtime before each write operation.
This, however, would have to be done carefully in order not to
allow global communication through this checking mechanism.
In this work, the approach is to formally ensure at design time
that write accesses are only performed when they are allowed.

For defining split and merge operations later, we also need
the concept of a sub-block. A sub-block is a part of a memory
block, which can be created by splitting a memory block. A
sub-block behaves like a normal block, in particular it can have
access tokens linked to it.

With these definitions, we can now describe the set of DMS
operations that can be executed by the processes.

Allocation: Creates a new memory block of a given size and
returns an access token to it.

Duplication: A copy of a given access token is created,
thereby ending a possible ownership of (and thus inhibiting
further write accesses to) the memory block linked to the token.
Splitting: The memory block (or sub-block) a given access
token is linked to is split into two or more sub-blocks. The
access token which was provided is destroyed. Instead, access
tokens to the sub-blocks are returned. For simplicity reasons,
we demand that the calling process must own the memory
block for splitting. All sub-blocks created are then owned
by the calling process, but can later also be owned each by
different processes.

Merging: Two or more sub-blocks of the same memory block
that are adjacent in memory are merged together to a bigger
sub-block or back to the entire memory block. The calling
process must own all the sub-blocks. The access tokens which
were provided are destroyed. Instead, an access token to the
merged (sub-)block is returned.

Release: Destroys an access token. If the calling process owns
the memory block linked to the access token, this block is
destroyed as well. In the case of a sub-block, destruction only
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Figure 3: Illustrations of the basic transformations introducing DMS to a KPN. Recycling channels are shown as dotted lines.

happens to the entire memory block once the last access token
linked to it or one of its sub-blocks is released.

These operations can now be used for implementing a
DMS-enabled KPN.

VI. TRANSLATION TO DMS

In the last sections, the idea of DMS was explained and
formally described. However, it is not clear yet how it can
be applied and in particular how an existing KPN can be
transformed to use DMS. Note that the transformation process
must be organised such that the generated code follows DMS
rules and that the semantics of the original KPN are preserved
(no deadlocks are introduced etc.).

It is important to note that the translation is not an all-or-
nothing operation; in fact, it may sometimes be advantageous
to convert a KPN only partially. Note that due to the high ex-
pressiveness and the intricate process interactions of KPNs, it
is not possible in general to always implement the optimisation
ideas shown in Section IV.

This section will introduce a set of transformations that
can be carried out in process networks and we will try to
establish an intuitive understanding for them. We will show in
the next section that they all are correct and do not change the
semantics of the process network.

We have conceived the translation such that it works step
by step, each time applying one transformation. The translation
is performed in three stages:

1) Basic transformations: All channels are transformed to
DMS for which this is desired. Recycling channels can
be added.

2) Optimisation: The performance of the application is in-
creased and its memory footprint is decreased by taking
advantage of techniques like splitting and merging or
token duplication.

3) Final clean-up: The attained process network is simplified.

In the following, the transformations in each stage shall
be discussed. Afterwards, it is shown how the optimisation
transformations can be coordinated.

A. Basic transformations

The basic transformations are described below and illus-
trated in Figs. 3a to 3c. We assume each channel to have
been assigned a maximum capacity. (This is necessary for any
implementation. Dynamically increasing channel capacities
later as in [4], [5] is also possible with our approach.)
Converting classic channels to DMS channels: For every
channel in the network that is intended to use DMS, its sending
process and its receiving process are altered such that they send
and receive access tokens instead of traditional “data” tokens.
The access tokens are obtained by allocating memory blocks
in the sending process and directly released after reading in
the receiving process.
Adding recycling channels: For each channel converted to
DMS as shown above (referred to as data channel), a recycling
channel can be added. The recycling channel goes into the
opposite direction of the data channel and has the same capa-
city. Initial access tokens linked to separate memory blocks are
added to the recycling channel such that the number of initial
tokens on both channels is equal to the capacity of the data

channel. Releasing tokens and memory block allocation are
replaced with sending and receiving tokens from the recycling
channel, respectively.

Reordering channel accesses: After applying the transform-
ations above, accesses to a data channel and its corresponding
recycling channel happen in pairs, i.e. one channel is accessed
directly after the other, with no other channel access in
between. This means that only one access token is available
to a process at a time. Simultaneous access to two or more
memory blocks can be achieved by moving reads from or
writes to recycling channels such that they happen earlier or
later in the execution path, respectively. However, an additional
initial access token may have to be added to the recycling
channel in order to prevent a change in the semantics of the
process network.

B. Optimisation transformations

For the optimisation transformations, we will give a non-
exhaustive list of the most common optimisations that can be
applied to a DMS-enabled KPN. We will assume recycling
channels have always been added to the channels involved (the
other case can be easily derived). All these transformations can
be applied by looking at one process and a subset of its data
channels. We look at processes which access all the channels
in this subset only in the form of elementary transactions,
which consist of reading/writing exactly one token from/to
each channel. Note that this only restricts the access pattern
of a process concerning the subset of channels considered. Its
other behaviour — in particular, its accesses to other channels
— does not play a role.

We look at three groups of transformations here, which are
illustrated in Figs. 4a to 4d on the following page.
In-place editing: If a process always reads from one channel
¢; and writes to another channel c,, and if the operations to
the two memory blocks concerned are such that they could
happen in-place in only one memory block, then the process
can be altered such that it performs the in-place operation on
the memory block received from ¢; and then sends the access
token to c,. The recycling channels corresponding to ¢; and ¢,
are joined as shown in Fig. 4a, with their capacities and number
of initial tokens adding up for the joint recycling channel.
Splitting and merging: These transformations work in a sim-
ilar way as in-place editing. The difference is that in the case of
split, the input memory block is split into smaller sub-blocks,
which are then distributed to multiple output channels. In the
case of merge, multiple input-sub-blocks are merged to give
the output block. As sub-blocks can only be merged when they
belong to a common memory block, a dummy split process has
to be generated as a part of the recycling infrastructure when
applying a merge transformation (cf. Fig. 4c). In the case of a
split transformation, a dummy merge process is generated to
ensure correct memory block recycling (cf. Fig. 4b).
Duplicating access tokens: If a process always sends the
same data to multiple channels, it can be transformed such
that it only allocates one memory block which is filled with
this data. The access token to this block is then duplicated
and sent to each of the channels. As with split, an additional
dummy process is generated in order to collect all these
duplicate tokens again, such that the memory block can be
safely recycled (cf. Fig. 4d).
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Figure 4: lllustrations of different DMS transformations. Dummy processes generated during transformation are shown as dotted circles.

C. Simplifications

Simplification transformations become necessary due to
the overhead caused by the previous optimisations. While this
overhead is necessary to ensure correctness of the optimisa-
tions, it can be safely eliminated after they are finished. We
limit ourselves to two important simplifications, which are
illustrated in Figs. 4e and 4f.
Gathering initial tokens: Initial access tokens should always
be linked to entire memory blocks, not to sub-blocks. There-
fore, initial access tokens linked to sub-blocks are moved
behind a merge or in front of a split. This implies a merge
operation on the initial access tokens, as illustrated in Fig. 4e.
Should the number of initial tokens on different branches
differ, this situation can be resolved by adding additional initial
access tokens to certain branches.
Removing split and merge processes: In certain situations, a
dummy split and a dummy merge process just neutralise each
other after a sequence of transformations. In that case, both can
be removed and the channels connected to them are joined, as
shown in Fig. 4f.

D. Optimisation coordination

All of the optimisation transformations shown above can
be applied if their requirements are met; however, not all of
them can be applied together. For instance, an in-place edit
transformation is not allowed after an access token has been
duplicated. As transformations are applied individually to the
processes, one after another, a mechanism is required which
keeps track of the transformations applied and reveals which
transformations are still allowed. In particular, one must be
able to prove at design time whether or not a process, after
a given sequence of operations, owns the memory blocks
arriving from a certain channel. For this purpose, we use an
ownership annotation of the channels: own(c) € (0,1]U {*}
for every channel ¢ using DMS.

Directly after applying the basic transformations to a
channel, its target process always owns the memory blocks
sent over it. On the other hand, it only reads from the blocks
and then recycles them, i.e. it does not need to own them.
Therefore, the ownership annotation is * directly after the
basic transformation to indicate that optimisations changing
the ownership are still possible.

When a process needs ownership of the tokens coming
through a channel (i.e. for in-place edit, merge and split
transformations), the annotation of the channel is changed
to 1 during the transformation. When a token is duplicated,
the channels which the duplicates go to are marked with an
ownership < 1. Once a channel has been annotated with an
ownership other than *, this annotation must not be changed
any more. Any transformation may only be applied if the
corresponding annotations are still possible or if the channels
already have the annotation the transformation would entail.

In case of token duplications or collecting duplicates, the
exact value of the ownership annotation is determined such
that the sum of the annotations of the outgoing channels
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Figure 5: Example for the ownership annotation of channels. The
graph shown only contains channels transporting duplicate access
tokens linked to the same memory blocks. Note that the rightmost
process owns the memory block.

is always equal to that of the incoming channels carrying
access tokens linked to the same memory blocks. In case of
token duplication, this means that the annotation value of the
incoming channel (or recycling channel, i.e. 1) is divided by
the number of duplicates. In case of collecting duplicates, the
annotation values of the incoming channels are added up to
obtain the value for the outgoing channel. This is illustrated
in Fig. 5. As the ownership value is always one before the
first duplication, the sum of the ownership values after any
combination of duplications and collected duplicates is always
equal to one. If all the channels transporting a duplicate of
an access token are collected again, the resulting ownership
value must be one. Conversely, if there is one duplicate channel
which has not yet been collected, this ownership value cannot
be one because the ownership value of the uncollected channel
is greater than zero by definition. Remember that an ownership
annotation of one for a channel means that its target process
owns the memory blocks linked to the tokens it receives from
that channel.

VII. CORRECTNESS OF THE TRANSLATION
In this section, we show that the translation described in
the previous section is correct. This comprises three points:
1) Memory integrity: We show that all memory blocks are
correctly deallocated.
2) Determinacy: We show that the modified KPN is still
determinate.
3) Semantics: We show that the semantics of the original
KPN are preserved.
The first two points will be shown in general, whereas the
third point will be shown to hold for each transformation
individually.

A. Memory integrity

If an access token is sent to a channel — including recycling
channels —, the memory block linked to it stays in use and must
not be deallocated. If an access token is released, the memory
block linked to it will be deallocated if it is no longer in use,
as described in Section V.

With the transformations shown in this work, one of both
is always the case in each process for each access token.
Therefore, no memory leaks can occur among the memory
blocks allocated using the DMS mechanisms.

B. Determinacy
To show the determinacy of the modified KPNs, we have
to show that they meet two properties:



1) Communication only happens through channels.
2) Read accesses on the channels are blocking and destruct-
ive.

Then, determinacy follows from [1].

The second property is inherited from the underlying KPN
channels, which still transport the access tokens.

The first property is met because a process can only write to
a memory block if it owns it, i.e. if no other process can access
the block. The only possibility for the process of making the
data available to other processes is to send the access token
over a channel. At this point, it loses the access to the memory
block and thus cannot use it for any further communication.
Therefore, any data transfer needs a sending operation over a
KPN channel.

C. Semantics

In the following, we show that each of the transformations
showed in Section VI preserves the semantics of the process
network, i.e. that the same data is sent over the channels and
that no deadlocks are introduced by the transformations'. This
makes it necessary to also formalise the prerequisites that must
be met for the transformation to be allowed as well as possible
annotations made during a transformation.

First, we have to specify more exactly the patterns of the
processes which we are looking for during the optimisation
phase. One pattern which is required by all the optimisation
transformations is what we call regular behaviour.

Definition 1 (Regular behaviour). A process p performs an
elementary transaction on a subset C; of its input channels
and a subset C, of its output channels iff

e it reads exactly one token from each channel ¢ € C; and
releases/recycles it after usage and afterwards

e it allocates/obtains through recycling exactly one memory
block for each ¢ € C, and sends it over that channel.

p behaves regularly on C; and C, iff all accesses to any of the
channels in C; and C, are part of an elementary transaction.

With the following definitions, we generally describe an-
other major pattern which is part of many rules below. We
are looking for operations that can be performed in-place. The
criterion for this is as follows:

Definition 2 (Inplaceable behaviour). The behaviour of a
process p on an input channel ¢; and an output channel ¢,
is inplaceable iff
e p behaves regularly on {¢;} and {c,} and
e p never writes to memory blocks received from ¢; and
e in every elementary transaction, a being the memory
block received from c¢; and b being the block sent to c,,
for every k € N, p never reads alk] after writing b[k].

If this is the case, one can set a = b because (i) before any
write operation to a location b[k], b[k] is still undefined and
alk] contains the expected value and (ii) after a write operation
to a location b[k|, b[k] contains the expected value and a[k] is
not accessed any more.

To extend this definition for split and join operations, we
gather multiple channels to one virtual channel, which we
call compound channel. A compound channel over a tuple
of channels is interpreted such that it reads/writes one token
each from/to each channel of the tuple, virtually linking them
to a compound block. For a tuple of n different memory
(sub-)blocks by...b,, the compound block k over these blocks
then has an access operator defined as:

'We do not consider limits of channel capacities as a part of the semantics,
since KPN channels are theoretically unbounded. If one needs this feature,
one can always add feed-back channels.

k[s(j)+1] = b;[l] VI € {0..size(b;) — 1} Vj € {1..n}
with s(j) = Y1, size(b;).

With this notion, the definition of inplaceable behaviour
naturally extends to sets of input and output channels:

Definition 3 (Inplaceable behaviour on channel sets). The
behaviour of a process p on a subset C; of its input channels
and a subset C, of its output channels is inplaceable iff there
exists a permutation x; of C; and x, of C, such that the
behaviour of p is inplaceable on the compound channel over
x; and that over x,,.

With these definitions, we can give exact specifications of
the transformations already shown in Section VI and draw
conclusions about their correctness:

Transformation 1 (Converting a KPN channel to a DMS-en-
abled channel).

Prerequisites: Channel ¢ not using DMS

Annotations: own(c) := *

This transformation is always valid, since any data that can be
sent using normal KPN channels can also be sent using DMS.

Transformation 2 (Adding recycling channels).
Prerequisites: DMS-enabled channel ¢ with fixed capacity
This transformation’s influence on the process network se-
mantics is identical to that of introducing feed-back channels as
described in [4]. There, feed-back channels are used to model
the fixed capacities of KPN channels. As we assume a fixed
capacity for c, the transformation is neutral to the semantics
of the process network.

Transformation 3 (Simultaneous access to memory blocks).
Prerequisites: A process p accessing multiple channels, at least
one of which uses DMS

As mentioned in Transformation 2, a recycling channel models
the fixed capacity of its corresponding data channel. Post-
poning a send operation to a recycling channel thus delays
the provision of channel capacity after a (destructive) read.
Similarly, preponing a receive operation from a recycling
channel brings forward the beginning of a write operation in
the sense that channel capacity is claimed. A possibly blocking
operation between a pair of data and recycling channel ac-
cesses may therefore, in connection with other processes, lead
to deadlocks. As these deadlocks, however, are only related to
a limitation of virtual channel sizes, they can be prevented by
increasing these virtual channel sizes by adding initial access
tokens to recycling channels.

Transformation 4 (In-place editing).

Prerequisites: Process p with inplaceable behaviour on input
{c¢;} and output {c,}

Annotations: own(c;) :=1

The transformation of the data channels does not change the
semantics of the process network as shown above. The same
holds for the recycling channels, because (i) the overall number
of initial memory blocks does not change and therefore all the
data channels affected still can be filled completely and (ii)
the elimination of a receive and a send operation in p can
only decrease, not increase, the possibilities for an (unwanted)
blocking.

Transformation 5 (Splitting).

Prerequisites: Process p with inplaceable behaviour on input
{c¢i} and output set C,

Annotation: own(c;) :=1

In general, we do not assume to have separate split processes,
but rather consider the split as an operation happening inside
a process of any kind. Therefore, we require inplaceable
behaviour, allowing the process to write to the memory block



before splitting it.

The transformation of the data channels does not change
the semantics of the process network as shown above. The
same holds for the recycling channels, because (i) the overall
number of initial memory blocks for each cycle containing a
split branch does not change and therefore all the data channels
affected still can be filled completely and (ii) the out-sourcing
of multiple receive and a send operation from p to a dedicated
process can only decrease, not increase, the possibilities for an
(unwanted) blocking.

Transformation 6 (Merging).

Prerequisites: Process p with inplaceable behaviour on input
set C; and output {c,}

Annotation: Vc¢; € C;,own(c;) :=1

Transformation 7 (Duplication). Prerequisites:

e Process p with regular behaviour on input set {} and
output set CU{c*}

e The channels in C just receive copies of the data going
to ¢*

Annotation: Ve € CU{c*}, own(c) := @, where ® = \Clﬁ or,
if the access tokens sent to ¢* already come from an input
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VIII. APPLYING DMS TO THE ULTRASOUND
ALGORITHM

Having theoretically discussed the transformation of a
classic KPN to a KPN using DMS in the previous section,
we will now show how these transformations are applied
to a given KPN. We choose to use the ultrasound image
reconstruction algorithm explained in Section III as an example
for a multimedia application which has a high demand of
computation power and handles large amounts of data.

Starting point is a slight variation from the KPN shown
in Fig. 1. To reduce the large number of processes in the
application, the index extraction processes and the apodisation
multiplication processes have already been merged together
to beamforming processes. Due to the moderately complex
structure of the network, all channels can be limited to a
capacity of one token, where a token usually is a vector or a
matrix. The different transformation steps which are performed
are going to be explained below.

In a first step, all channels are transformed to DMS
channels according to Transformation 1. To all channels drawn
in horizontal direction in Fig. 1, Transformation 2 is applied,
i.e. a recycling channel is added. The other channels just
transport the precalculated working data to the processes that
use it. These processes will however keep the data forever, thus
rendering recycling channels pointless. Wherever necessary
or advantageous, the processes are transformed such that
they permit simultaneous access to certain memory blocks
(Transformation 3). Again, due to the moderate complexity of
the network structure, the additional initial tokens suggested
in this rule are not necessary here. Fig. 6 shows the process
network after these transformation steps.

In the following, it is described how the optimisation
transformations can be applied. This is essentially done tra-
versing the process network from left to right, although other
transformation sequences are also possible.

For the split process, both splitting and token duplica-
tion are an option. We thus postpone the decision here. The
element-wise multiplication processes next to it (attenuation
compensation) lend themselves to applying an in-place editing
transformation (Transformation 4). During this transformation,

the channels coming from split are annotated with an own-
ership of one. With this annotation, Transformation 7 (token
duplication) can no longer be applied to the split process,
so this process is transformed according to Transformation 5
(splitting). This transformation requires a new merge process
to be put in place which takes all the recycling channels com-
ing from the high-pass filter processes (the first convolution
processes from the left), merges them back together and then
sends a token linked to the full memory block back to the
transducer input process for later use.

The high-pass filter processes have a hybrid functionality:
Each one convolves the incoming vector with a high-pass
kernel. The convolution is done such that the resulting vector
has the same size as the incoming one. Its implementation
allows the convolution to be carried out in-place. On the other
hand, one copy of the resulting vector is sent to a beam-
forming process in each beamforming block. We therefore
apply Transformation 4 (in-place editing) first for one of the
output channels. Then, we apply Transformation 7, access
token duplication, for this output channel together with the
other output channels. The procedure will be such that the
high-pass process obtains an access token from the attenuation
compensation process, convolves the data in-place and then
duplicates the token, sending one duplicate to each out-going
channel. This also necessitates a new process which collects all
the duplicate tokens coming back through recycling channels
from the different beamforming processes. It will then release
these sub-block access tokens except for one, which is sent
further to the previously generated merging process.

For the beamforming processes, in-place editing is not an
option, since the access tokens they receive are duplicates.
This is reflected by the fact that the prerequisites of Trans-
formation 4 are not met, the input channels being annotated
with an ownership of a fraction of one.

The following summation processes also fulfil the require-
ments for in-place editing: From the vectors obtained through
the input channels, it is possible to take one out and then
add all the others to it. Thus, the operation between the input
channel that provides this vector and the output channel is
inplaceable, which makes it possible to apply the in-place
editing transformation to the summation processes considering
one of the input channels and the output channel. The other
output channels remain untouched.

For the following processes (envelope detection, low-pass
filter and logarithm), in-place editing can again be applied.
The merge process can be optimised using Transformation 6
(merging). For this, a new splitting process is created, which
takes the full blocks recycled from the display process and
splits them again for reuse at one beamforming process in each
beamforming block.

Finally, the processes generating the initial working data
are transformed according to Transformation 7 (duplication).
All the data generated by them is thus no longer copied but
instead only the access tokens are duplicated.

The resulting KPN after applying the clean-up transform-
ations is shown (without the initialisation processes) in Fig. 7.
Note that the number of initial access tokens has decreased;
this, however, is just due to the merging of smaller vector to
bigger matrix tokens. The amount of memory linked to these
initial tokens is still the same.

IX. IMPLEMENTATION IN DAL
In the previous sections, DMS has been theoretically
specified and it was shown abstractly how a given KPN
can be transformed to a KPN using DMS. It has, however,
not been explained yet how DMS can be implemented on
a target architecture. In particular, the notion of an access
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token was only introduced as an abstract concept. This section
will show how the ultrasound image reconstruction algorithm
was implemented as a C-based program using the Distributed
Application Layer (DAL) framework [3].

DAL is a programming framework which allows the user to
specify a KPN and then translates this definition to parallel C
code. The specification of a KPN application in DAL consists
of two parts. In the first part, one specifies as C code the
behaviour of a set of processes with input and output ports.
Sending and receiving data works through these ports, using
special read and write functions. The second part is an
XML specification of how many copies of these processes
exist and how they are connected through channels. There are
different back-ends producing native C code for different target
platform types; in our case we use a back-end creating POSIX
threads since it provides a shared memory model.

The implementation of the DMS mechanisms can contain
arbitrarily many safety checks. For instance, one could add
a thread-safe reference counting mechanism to each memory
block for keeping track of its usage and deallocating it when
necessary. One could also store privilege information in the
access token to inform a process whether it is allowed to write
to the memory block linked to it. Another possibility would
be to use the reference counter to dynamically check if a write
access is allowed and, if not, block until this is the case.

Our approach concentrates rather on performance than on
run-time assertions. As it has been shown in the previous
sections, one can formally ensure that the code one creates
is correct by construction. If the programmer strictly follows
the rules and mechanisms of DMS, no global run-time checks
are necessary.

We therefore implement access tokens as simple pointers.
We use malloc and free for allocating and deallocating
memory blocks and pointer arithmetic for splitting and mer-
ging. The sending and receiving of tokens is done by using the
DAL read and write functions on the pointer itself, sending
it over the channel as one would send a normal integer.

DAL allows to specify an initialisation and a clean-up
function for each process. We use the former for creating the

Figure 6: Implementation of the
ultrasound image reconstruction al-
gorithm after basic DMS transform-
ations. The data precalculation pro-
cesses have been left out for reasons
of clarity.

Figure 7: Implementation of the ultra-
sound image reconstruction algorithm
after DMS transformations and op-
timisations. Colours have been used
to mark the individual token cycles.
Splits are illustrated by using lighter
colours of the same hue. Next to each
data channel, its ownership annota-
tion is shown if it is not equal to one.

initial tokens on the channels and the latter for deallocating
the memory. As the clean-up function is only called once the
whole process network has stopped executing, every process
can just store a reference to the memory blocks it allocated
during initialisation an then deallocate those during clean-up.

X. EXPERIMENTAL RESULTS

The previous sections have shown many optimisation pos-
sibilities that are provided by DMS. Now we examine if these
theoretical advantages translate to actual performance improve-
ments with the ultrasound image reconstruction algorithm.

To this end, we execute the algorithm on an Intel Xeon Phi
5110P accelerator running a Linux kernel (version 2.6.38.8).
This accelerator has 60 processor cores, each running at a clock
frequency of 1053 MHz. Each core has four instruction decod-
ing pipelines, which allows for a better utilisation of the ALU
and for an overhead-free context switch between four threads
per core. The cores are linked by a token ring communication
infrastructure to each other and to the memory, which has a
total capacity of 8 GB. They can not directly communicate;
data exchange is done exclusively through memory. However,
each processor has a 32KB L1 data cache and a 512KB
L2 cache. A complex hardware-implemented cache synchron-
isation mechanism allows data exchange directly through the
caches without accessing the memory. The code is compiled
using the Intel compiler ICC, version 14.0.1 with optimisation
level 2.

Two implementations of the ultrasound algorithm are
tested. One is the configuration discussed earlier in this pa-
per. The second implementation is obtained by aggressively
merging processes in the original KPN before translating it
to DMS. In particular, all the beamforming and apodisation
processes for one output image column (all the processes in a
dashed rectangle in Fig. 1) are merged to one single process.
The transducer samples are obtained from pre-recorded data
loaded into memory during program initialisation. The config-
uration is for 63 transducers and 2048 12 bit samples (stored
as 16 bit integers) per transducer. This gives a process count
of roughly 4000 for the first implementation and 200 for the
second implementation.



Threads Mapping Method Init Cap Mem (MB) Rate (s71)

4000 dynamic classic 12 397 65.3
classic 5 212 61.1

DMS 4 1 47 121.5

200 dynamic classic 12 254 147.6

windowed 2 109 157.7

DMS 30 7 32 187.3

DMS 3 2 5 180.0

200 static classic 50 805 154.3

classic 3 124 151.0

windowed 2 109 161.7

DMS 6 14 8 192.1

DMS 4 2 6 191.8

Table I: Experimental results for the ultrasound image reconstruction
algorithm. Init denotes the number of initial tokens (i.e. memory
blocks) on recycling channels. Cap denotes the capacity (in tokens) of
the channels (except for the initialisation channels, which only hold
one token). Mem denotes the total amount of memory used for all
channels and the initial tokens. Rate denotes the amortised average
reconstruction framerate achieved.

The 4000 thread implementation is tested using dynamic
mapping (operating system decides on binding and scheduling
of the processes at runtime) with two configurations, namely
classic KPN channels and DMS channels.

The 200 thread implementation is also tested using static
mapping (binding of processes is decided at design-time ac-
cording to load-balancing considerations, scheduling is done
by hardware, since there are more instruction pipelines than
threads). Furthermore, windowed FIFO channels are tested as
a third option for channel implementations.

The performance of the different configurations is meas-
ured in the form of the amortised average image reconstruction
framerate. To this end, the execution time of the program is
measured for 50 frames and for 250 frames, 30 times each. The
values obtained are then fitted using the least squares method
on a linear model (time vs. number of frames).

In general, the channel capacities have a considerable
influence on the performance of an application. While too low
capacities restrict the parallelism and the scheduling options
for a KPN, too high capacities will result in higher memory
footprints and thus a worse performance of the caches. We
have therefore tested different values for the capacity of all the
channels in the range of 1 to 250 tokens per channel. For the
DMS implementation, we have also varied number of initial
access tokens in all the token cycles in the range of 1 to 250. In
Table I, we give two configurations for each implementation:
The configuration achieving the best framerate and, if it exists,
the configuration coming next to this framerate with a smaller
memory footprint. The memory footprint is also given for these
configurations. Note that in the case of classic or windowed
FIFOs, it depends mainly on the channel capacities whereas
for DMS implementations, it is the number of initial tokens
that counts.

The numbers show that: (i) the framerate with DMS is
significantly higher than with windowed FIFOs and classic
channels, (ii) the memory footprint with DMS is drastically
lower than with windowed FIFOs and classic channels and
(iii) using DMS, it is possible to achieve good performance
already with small amounts of memory.

Especially from the fact that no special optimisations for
the target platform were applied, it can be concluded that the
effort of transforming a KPN to use DMS pays off in terms
of performance and memory footprint.

XI. CONCLUSION
In this paper, we have presented deterministic memory
sharing, a concept for sharing memory blocks between dif-
ferent processes in a KPN. We have shown how the concept
of access tokens ensures that the determinacy of KPNs still

persists even when multiple processes access the same memory
regions. Rules have been set up which allow to transform a
traditional KPN application such as to make use of DMS. A
first set of rules transforms the channels into DMS channels. A
second set of rules optimise individual processes. They can be
applied locally, i.e. to one process and the channels connected
to it without having to consider the rest of the process network.

An ultrasound image reconstruction algorithm was ex-
plained and a classic KPN implementation of it was presented.
This KPN was then transformed according to the rules men-
tioned above. Experiments on the Intel Xeon Phi accelerator
show that even without any special adaptations, a signific-
ant speed-up can be achieved while immensely reducing the
memory footprint of the application.

It is important to note that the Intel Xeon Phi is already
optimised to ensure good performance also with suboptimal
memory configurations. At the same time, it is has a rather
complex hardware architecture, which makes it difficult to
optimise programs on it for optimal memory usage. We be-
lieve that on less sophisticated, simpler and more transparent
platforms even higher performance gains can be achieved. The
topic how a certain hardware configuration should influence
the KPN transformation and optimisation steps described in
this paper will be part of our future research as well as the
question how these optimisations can be automated.
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