
WikiFlash: Generating Flashcards from
Wikipedia Articles

Yuang Cheng1, Yue Ding1, Sebastien Foucher2, Damián Pascual2,
Oliver Richter2, Martin Volk1, and Roger Wattenhofer2 ?

1 University of Zurich, Switzerland
{yuang.cheng, yue.ding}@uzh.ch, volk@cl.uzh.ch

2 ETH Zurich, Switzerland
{sfoucher, dpascual, orichter, wattenhofer}@ethz.ch

Abstract. Flashcards, or any sort of question-answer pairs, are a funda-
mental tool in education. However, the creation of question-answer pairs
is a tedious job which often defers independent learners from properly
studying a topic. We seek to provide a tool to automatically generate
flashcards from Wikipedia articles to make independent education more
attractive to a broader audience. We investigate different state-of-the-art
natural language processing models and propose a pipeline to generate
flashcards with different levels of detail from any given article. We eval-
uate the proposed pipeline based on its computing time and the number
of generated and filtered questions, given the proposed filtering method.
In a user study, we find that the generated flashcards are evaluated as
helpful. Further, users evaluated the quality of human created flashcards
that are available open source as comparable to or only slightly better
than the automatically generated cards. 1

Keywords: Question-Answer Extraction · Personalized Education · Nat-
ural Language Processing

1 Introduction

The recent development of artificial intelligence make available a new set of
tools that can be exploited to advance the field of personalized education. In the
last years, we have seen how, thanks to new deep learning methods, machines
have attained super-human performance in a large number of language-related
tasks [33]. These methods can accelerate the development of personalized educa-
tion by automatically generating instructional material. Generating instructional
materials manually is a costly task that requires instructors to select and cure
large amounts of information. With a growing internet, an ever-increasing (and
overwhelming) amount of information and data is available. However, it is chal-
lenging for a person to learn in a systematic manner from this information. To

? Authors in alphabetical order
1 Our application is available at: flashcard.ethz.ch



2 Y. Cheng et al.

improve human learning, it is necessary to structure the information into in-
structional materials that select the most relevant points and guide learning.
Automatically generating these materials can widely accelerate human learning
while giving each person the freedom to learn any arbitrary topic of her interest.

A well-known and effective format for instructional materials are flashcards
[30]. Flashcards are small cards (physical or virtual) with a question written on
the front face and the answer to that question written on the back face. Flash-
cards stimulate learning by hiding the answer that the student is trying to learn.
A big advantage of flashcards is that they are topic-independent, i.e., flashcards
can be used to learn anything: languages, history, mathematics... Nevertheless,
a large number of flashcards is necessary to cover a given topic or subtopic, and
preparing good flashcards requires good summarization skills, all of which makes
the process of manually producing flashcards challenging and time consuming.

In this work, we present a system for automatically generating flashcards
about any arbitrary topic. We leverage recent advances in language processing, in
particular transformer-based models [32], to extract questions and answers from
input text. We implement our system as a web application that takes as input the
title of a Wikipedia article and outputs flashcards for that article. We evaluate
the application, profiling generation time and the number of flashcards produced.
Furthermore, we run a user study to assess the quality of our automatically
generated cards in comparison to human-created cards. The results show that
the quality of our automatically generated cards is similar to the quality of cards
generated by humans. Our system has the flexibility of generating instructional
materials (in the form of flashcards) for any topic a student may be interested
in, beyond standard curricula. We build our system as a web application that
serves as both, a proof-of-concept of how current technologies allow automatic
generation of materials for learning, as well as a first step towards a completely
functional tool to enhance learning anywhere and about anything.

2 Related Work

Automatic question generation for educational purposes is a growing research
area with many works focusing on assessment and template based question gen-
eration [13]. In a recent trend, data driven approaches that use neural networks
became more prominent in many natural language processing tasks, includ-
ing question generation [21]. These data driven approaches might struggle to
extract questions that require several steps of reasoning as in the LearningQ
dataset [6]. However, for flashcard generation, simple factoid questions are often
preferred. We therefore focus on models that perform well on the Wikipedia
based SQuADv1 dataset [24], which was originally developed for question an-
swering models but can be re-purposed for context based question generation.

On this dataset, transformer based approaches for question generation [12, 5,
19, 7, 3] are currently preforming best in terms of n-gram similarity metrics such
as ROUGE-L [17]. This is likely due to the fact that these models benefit from
large scale unsupervised pretraining. Our implementation is based on the pub-



WikiFlash: Generating Flashcards from Wikipedia Articles 3

licly available code of [22], which follows ideas from [5, 19] and [1] and achieves
results not far behind the state-of-the-art [3].

As a pre-processing step, text summarization can be used to reduce the text
from which questions are to be generated. Automatically summarizing text is
the focus of a large body of research and a number of datasets exist that are
used to benchmark progress [11, 28, 26]. There are two types of summarization:
extractive [36], the summary consist of sentences copied from the original text;
and abstractive [10], the sentences do not coincide with the original text but
the meaning does. Abstractive summarization is both, more natural and harder.
Recently proposed models [34, 35, 16, 23] have achieved new state-of-the-art re-
sults as measured by ROUGE-L score. Here, we leverage this progress and use
abstractive summarization for content selection before question generation.

The general idea of filtering questions in a post-processing step has been
explored in different settings [14, 4, 18, 20, 1]. Using a question-answering system
to filter questions where the answers do not align, was proposed by [1] to create
a synthetic data corpus for pretraining a question-answering model. We use this
approach in our system with slight adjustments. Compared to their approach
of filtering all questions where answers do not align, we relax the filtering by
allowing for questions where the extracted answers and the answers produced
by the question-answer model yield a sufficient overlap.

The main contribution of this work is an end-to-end application that allows
for flashcard generation based on a Wikipedia article freely chosen by the users.
Our work thereby differs from the work of [8] that created a fixed size corpus
for scientific investigation. Also, despite the existence of many applications that
allow for the design and/or studying of flashcards, we only encountered one
working application which allows for automated flashcard creation [9]. This ap-
plication uses a key-phrase based system for the creation of flashcards in the
biological and medical domain. In contrast, our approach does not rely on key
phrases and is therefore applicable to a much wider range of topics.

3 Method

Generating meaningful flashcards from an arbitrary piece of text is not a trivial
problem. Currently, there does not exist a single model that can alone perform
this task. We therefore divide the flashcard generation process into four sub-
tasks that cover more general and well-studied problems that can be individually
addressed by state-of-the-art models. In particular, we build a pipeline consisting
of four stages: summarization, answer identification, question generation and
question answering. Figure 1 shows a depiction of this pipeline.

Summarization By definition, a summary contains the most relevant informa-
tion for a general understanding of the corresponding text. Thus, generating
flashcards from a summary reduces the level of detail in the resulting flashcards,
in comparison to using the original text as input. A summarization stage gives
the user the freedom of deciding between two levels of detail for the information



4 Y. Cheng et al.

S
um

m
ar

iz
at

io
n

A
ns

w
er

 
E

xt
ra

ct
io

n

Q
ue

st
io

n 
G

en
er

at
io

n

Fi
lte

rin
g

Fig. 1. Pipeline of the flashcard generation system. The summarization step is optional.

contained in the flashcards. If more detailed flashcards are preferred, the sum-
marization step is skipped and the input text is passed directly to the next step
of the pipeline. Otherwise, a summary is generated from the input text and fed
into the next stage.

Answer extraction After the optional summarization step, we proceed to gen-
erate flashcards by identifying potential answers in the text. To this end, we
use a model for answer extraction, which receives as input a piece of text and
finds words or groups of words that can be answers to questions. These answers,
together with the original text, are passed as input to the next stage.

Question generation In this stage we use an answer-aware question generation
model to generate answer specific-questions. This way, the output of this stage
is the set of question-answer tuples that we need for flashcards. However, the
question-answer tuples generated at this point tend to include some questions
that either make no sense or are incorrect. Therefore, we include a final step in
our pipeline to filter out unusable questions.

Filtering To filter out erroneous questions, we use a model for question answer-
ing. For each question-answer tuple we provide this model with the question
and the paragraph where the answer can be found. If the answer provided by
the question-answering model overlaps enough with the answer from which the
question was generated, then the question-answer tuple is accepted, otherwise it
is discarded.

4 Implementation

We implement our flashcard generation pipeline as a web application. The in-
terface of our application is simple and intuitive. The main screen displays the
existing flashcard decks and their status, e.g., “Generating”, “Complete”, as
well as a button to add a new deck. When clicking on this button the user is
prompted a screen where they should provide a title of a Wikipedia article they



WikiFlash: Generating Flashcards from Wikipedia Articles 5

want flashcards from. Given this title, the application suggests a number of ac-
tual Wikipedia articles; this way, if the article name is redundant, i.e., there are
more than one article with the same name, disambiguation results are suggested.
Once the Wikipedia article is selected, the user can define which sections of the
article they want flashcards from, and whether summarization should be applied
or not. Finally, the user can choose the name of the generated deck, by default
the name of the corresponding Wikipedia article is given.

Regarding, the implementation of each stage of our system, we use the fol-
lowing models to build the pipeline:

Summarization We use DistilBART for summarization [29, 16], pre-trained on
the CNN/DailyMail summarization dataset [11]. The maximum input length
of this model is 1024 tokens, which is less than a long Wikipedia article. To
circumvent this issue, our summaries are generated paragraph-wise.

Answer extraction We use T5 fine-tuned on the SQuADv1 dataset for answer ex-
traction [22, 23]. At inference time, for each paragraph we highlight one sentence
at a time and feed it together with the rest of the paragraph to the model. The
model extracts answers from the highlighted sentence leveraging the additional
context information contained in the rest of the paragraph. To stay within the
admitted input size of the model, we clip the paragraphs to 512 tokens.

Question generation Here we use T5 fine-tuned on the SQuADv1 dataset for
answer-aware question generation [22, 23]. For each extracted answer, we append
the corresponding paragraph as context and feed it to the model. Again, to not
exceed the maximum input size we clip the input to a length of 512 tokens.

Filtering For filtering we use DistilBERT fine-tuned using a second step of knowl-
edge distillation on the SQuADv1 dataset for question answering [31, 27]. Similar
to the previous steps, we feed the model at inference time with each of the gen-
erated questions together with their corresponding paragraphs. We calculate an
overlap score between the answer obtained in the answer extraction step and
the answer produced by this question-answering model. The overlap score we
calculate here is the ratio of identical bigrams over the total number of bigrams.
Questions with an overlap score below 0.75 are discarded. Duplicates and ques-
tions whose answer is the title of the article are also discarded.

For each of the stages of our system, many different models exist in the
literature. We selected each specific model based on their fitness to the task
(i.e., models that are trained on Wikipedia based data-sets) as well as their
availability as open source implementation.

Once a deck is generated, the user can interact with the flahscards in two
different ways: 1) in grid view, 2) in study mode. In grid view, all the cards of
the deck are displayed in a grid, showing the question faces. When the mouse is
placed over the question, the card flips showing the answer to that question. In
study mode, one question is presented at a time and after clicking the answer
is revealed. In this mode the user can edit the card as well as give feedback



6 Y. Cheng et al.

Fig. 2. Grid view for the topic Dante Alighieri. The white squares contain the questions
and the yellow square is the answer to “What Boethius work did Dante read?”.

about it, choosing from four options: “The answer does not fit the question”,
“The answer is wrong”, “The answer is trivial” and “Other” (where the user
can input their own text). Finally, after the answer is shown, the user is asked to
label the difficulty of the card choosing from five possibilities, from “Too easy”
to “Too hard” or alternatively, as “Not interested”. These feature may be used
in future work for designing algorithms that decide the optimal card ordering
for human learning. Figure 2 shows an example of generated cards displayed in
grid view.

To make our cards usable beyond our web application, we provide the option
of exporting the generated cards as text file that can be imported into Anki. Anki
is a popular framework for flashcard-based learning with a large community of
users that share their own flashcard decks as well as a number of commercial
applications for smart-phones and web to help learning. This way, our generated
flashcards are compatible with existing commercial applications and the users
can choose the learning platform they prefer.

5 Evaluation

In this section we evaluate objective parameters of our flashcard generation
pipeline, such as compute time or number of questions generated. Conversely,
in Section 6 we evaluate the subjective quality of the generated cards through
a user study. We divide our objective evaluation in two parts: 1) summarization
step and 2) question generation and filtering step.

5.1 Summarization

Since we do not have reference summaries of the pieces of text that we are aiming
to summarize, we cannot rely on the ROUGE score, which is the most common
metric for summary quality. Instead, we calculate two values, similarity and error
rate, that do not require a reference summary. The similarity score gives us a



WikiFlash: Generating Flashcards from Wikipedia Articles 7

Table 1. Comparison of T5, BART and DistilBART summarization.

Model Similarity Error Rate

T5 0.912 0.129
BART 0.947 0.057
DistilBART 0.937 0.052

notion of how faithful the summary is to the original text, while the error rate
quantifies the linguistic correctness of the summary.

To calculate the similarity score we use Sentence-BERT [25] to compute an
embedding of each sentence in the original text and in the summary. Then, we
calculate a context vector for the original text by adding up all of its sentence
embeddings. We do the same for the summarized text. This results in two context
vectors, one representing the original text and one representing the summary.
Our similarity score is the cosine similarity of these two vectors. The error rate
is the percentage of erroneous tokens. To calculate it, we determine the number
of wrong tokens using LanguageTool [15] and divide this number by the total
number of tokens. If a sentence has no end-of-sentence token, it is considered
incomplete and an error is added to the count.

To determine which model to use in the summarization step, we compare
three state-of-the-art models: T5, BART, and DistilBART (the distilled version
of BART). In Table 1 we compare the models in terms of similarity and er-
ror rate scores over the introduction of 256 Wikipedia articles. These articles
were randomly selected based on the requirement that their introductions have
more than 200 tokens. BART presents the highest similarity score and Distil-
BART the lowest error rate. This result is in line with the fact that BART
obtains higher ROUGE score than T5 in summarization benchmarks such as
CNN/DailyMail [23, 16].

Since we are implementing our system as a web application, we need to con-
sider computation time: to improve user experience we are interested in reducing
as much as possible the time needed for the system to generate the cards. Using
the same set of 256 Wikipedia articles we calculate the average time it takes
for BART and DistilBART to summarize the introductions, when running on a
24GB Nvidia Titan RTX GPU. While BART needs on average 6.1 seconds per
article, DistilBART requires only 3.7 seconds, i.e., DistilBART is 1.64 faster.
While the absolute difference in computation time might seem small, we note
that the computation time scales linearly with the article length, as articles are
fed one paragraph at a time. We therefore choose DistilBART for the summa-
rization step of our system, as the total speed up is significant and obtains a
similarity score and an error rate comparable to BART.

5.2 Question Generation and Filtering

We study the performance of the question generation and filtering stage of our
pipeline in terms of computing time and questions generated. We use 1024 ran-
domly selected articles from Wikipedia with more than 200 tokens and analyse



8 Y. Cheng et al.

Table 2. Average number of questions generated and kept after filtering.

Time Number of Questions Questions after Filter

Original
Per section 14.3 s 10.4 8.7
Per article 240.5 s 178.4 148.2

Summary
Per section 9.3 s 8.6 7.2
Per article 151.2 s 144.0 120.5

the number of questions generated. In Table 2, we report the average number of
flashcards generated and the average number of flashcards kept after the filtering
stage.

We see that even after applying our filtering step the number of questions
kept, i.e., questions that meet a minimal quality requirement, is relatively large.
In particular, generating 148.2 questions on average for a Wikipedia article im-
plies that a student can access a significant amount of information from the cards.
Furthermore, from the results we see that summarization helps in reducing the
number of questions that are discarded.

From the results presented in this section, we cannot assess the quality and
usefulness of the generated cards, since this is a feature that depends on human
perception. However, we can visually examine some examples of flashcards to
have a notion of what kind of question-answer pairs our model generates. Ta-
ble 3 shows the first four question-answer tuples generated for the article Animal
Farm (novel by George Orwell) for the summary of the introduction. From the
examples we see that generally, the generated cards are grammatically correct
and contain meaningful information. However, to evaluate flashcard quality in a
more rigorous manner, in the next section we conduct a user study.

Table 3. Flashcards from the Wikipedia article on Animal Farm by George Orwell.

Question Answer

Who did George Orwell write a letter to about An-
imal Farm?

Yvonne Davet

Who do the farm animals rebel against? Human farmer

When was Animal Farm written? Between November 1943
and February 1944

What are two other variations of the title of Animal
Farm?

A Satire and A Contem-
porary Satire

6 User study

Given the strong perceptual component of flashcards, the best way of evaluating
the quality of automatically generated cards is with a user study. In this study,
we are interested in determining three aspects: usefulness for learning, linguistic



WikiFlash: Generating Flashcards from Wikipedia Articles 9

Table 4. Questions in the user study

Question Scale

1) Is this card helpful for people who are studying this topic? 0− 3
2) The text on the card makes sense to me. 0− 3
3) Is the answer to this question correct? 0− 1

comprehensibility and content correctness. In our user study, we ask about this
three aspects and define a four-point scale for helpfulness and comprehensibility
(strongly disagree, disagree, agree and strongly agree), and a binary scale for
perceived content correctness (“I think the answer is incorrect”, “I think the
answer is correct/I do not know”). Table 4 displays the detail of the questions
asked in the study. During the study, the user is shown one card at a time and
has to answer the three questions before the next card is displayed.

The study consisted of 50 cards, from which 25 are generated by our auto-
matic flashcard generation system, and the other 25 are created by humans. We
obtain the human-created cards from flashcard decks that are freely available
online in Anki format [2]. At the beginning of the study, the user can choose
between two topics, History and Geography; this gives the user the possibility of
deciding the topic she is most familiar with, or interested in. We chose History
and Geography as representative topics since they consist of factual knowledge,
which is often studied with flashcards. The human-created cards for History were
taken from decks with titles: “Christianity” and “French Revolution”, while our
cards were generated from the Wikipedia article “French Revolution” and the
history section of the article “Germany”. For Geography, the topics were “In-
dia”, “Physical Geography” and “General Geography” for the human-created
cards; and our cards were generated from the article “Atmosphere”, and the
geography section of the articles “India” and “China”. For each category, we
randomly chose 25 cards from the generated cards and mixed them with 25 ran-
domly chosen cards from the human-created decks. The origin of the flashcards,
i.e., whether they are automatically generated or human created, was not re-
vealed to the participants. 50 participants from Amazon Mechanical Turks took
part in the study. Data from participants which completed the study in less than
1, 000 seconds was discarded. From the remaining, 21 participants selected the
category history and 27 geography. Figure 3 show the results of our user study.
The maximum score for helpfulness and comprehensibility is 3 and minimum is
0; and for correctness maximum is 1 and minimum is 0.

The results show that in the case of geography there is no statistically mean-
ingful difference between human-created and our cards for either of the three
aspects. For history, the difference for helpfulness and comprehensibility is sta-
tistically significant (p < 0.01), with human cards being marginally better than
our cards. Neither category revealed a statistically significant difference in per-
ceived correctness. Upon further investigation we found that the difference in
the history category is mainly due to three automatically generated flashcards



10 Y. Cheng et al.

Helpfulness* Comprehensibility* Correctness

0

1

2

3

1.93
2.04

0.81

1.80 1.84

0.83

Helpfulness Comprehensibility Correctness

0

1

2

3

2.13
2.04

0.87

2.09 2.03

0.84

Human-created WikiFlash

Fig. 3. Results of the user study. Left: Category history. Statistically significant
differences (p < 0.01) are marked with an asterisk. Right: Category geography. The
differences are not statistically significant.

which are too ambiguous. We intend to improve our generation and filtering
procedure in future work based on this insight.

Overall, this study demonstrates that the quality of our automatically gener-
ated cards is close to the quality of cards created by humans. This result validates
our system and evidences its potential for enhancing personalized learning.

7 Discussion

In this work, we have presented a system for flashcard generation from raw text.
Our system builds on recent advances in natural language processing, in par-
ticular on summarization, answer extraction, question generation and question
answering. We thereby base our work on recent ideas on combining different
models for question-answer generation and filtering. We have implemented our
system as a web application that generates flashcards from Wikipedia articles
with four different levels of detail. Our user study shows that the quality of the
cards generated by our application is comparable, or only slightly worse, than
human-created flashcards. Our work makes available a valuable tool for person-
alized education. By speeding up and automatizing flashcard generation, we give
students the flexibility to decide which topics to learn, beyond standard curric-
ula. Moreover, our work can be extended and combined with existing curricula
by mapping course concepts to Wikipedia pages. A usage of knowledge graphs
can also be envisioned to link a user to adjacent topics for an automatically gen-
erated curriculum. We will explore these ideas in future work. We believe that
in the near future tools and applications such as the one presented here will play
a major role in enhancing autonomous and personalized learning. Although our
application is already functional, there is still a lot of room for improvement and
we plan to develop it further in order to improve computing efficiency and user
experience.



WikiFlash: Generating Flashcards from Wikipedia Articles 11

References

1. Chris Alberti, Daniel Andor, Emily Pitler, Jacob Devlin, and Michael Collins.
Synthetic QA corpora generation with roundtrip consistency. In Proceedings of the
57th Conference of the Association for Computational Linguistics, ACL, 2019.

2. AnkiWeb. Shared decks - ankiweb, 2020.
3. Hangbo Bao, Li Dong, Furu Wei, Wenhui Wang, Nan Yang, Xiaodong Liu,

Yu Wang, Songhao Piao, Jianfeng Gao, Ming Zhou, and Hsiao-Wuen Hon.
Unilmv2: Pseudo-masked language models for unified language model pre-training.
CoRR, abs/2002.12804, 2020.

4. Miroslav Bľsták and Viera Rozinajová. Automatic question generation based on
analysis of sentence structure. In Text, Speech, and Dialogue, pages 223–230, Cham,
2016. Springer International Publishing.

5. Ying-Hong Chan and Yao-Chung Fan. A recurrent bert-based model for question
generation. In Proceedings of the 2nd Workshop on Machine Reading for Question
Answering, MRQA@EMNLP, 2019.

6. Guanliang Chen, Jie Yang, Claudia Hauff, and Geert-Jan Houben. Learningq:
A large-scale dataset for educational question generation. In Proceedings of the
Twelfth International Conference on Web and Social Media, ICWSM, 2018.

7. Li Dong, Nan Yang, Wenhui Wang, Furu Wei, Xiaodong Liu, Yu Wang, Jianfeng
Gao, Ming Zhou, and Hsiao-Wuen Hon. Unified language model pre-training for
natural language understanding and generation. In Annual Conference on Neural
Information Processing Systems, NeurIPS, 2019.

8. Xinya Du and Claire Cardie. Harvesting paragraph-level question-answer pairs
from Wikipedia. In Proceedings of the 56th Annual Meeting of the Association for
Computational Linguistics, 2018.

9. The Examiners. theexaminers, 2020.
10. Som Gupta and SK Gupta. Abstractive summarization: An overview of the state

of the art. Expert Systems with Applications, 121:49–65, 2019.
11. Karl Moritz Hermann, Tomas Kocisky, Edward Grefenstette, Lasse Espeholt, Will

Kay, Mustafa Suleyman, and Phil Blunsom. Teaching machines to read and com-
prehend. In Advances in neural information processing systems, 2015.

12. Kettip Kriangchaivech and Artit Wangperawong. Question generation by trans-
formers, 2019.

13. Ghader Kurdi, Jared Leo, Bijan Parsia, Uli Sattler, and Salam Al-Emari. A sys-
tematic review of automatic question generation for educational purposes. Inter-
national Journal of Artificial Intelligence in Education, 30(1):121–204, 2020.

14. C. Kwankajornkiet, A. Suchato, and P. Punyabukkana. Automatic multiple-choice
question generation from thai text. In 2016 13th International Joint Conference
on Computer Science and Software Engineering (JCSSE), pages 1–6, 2016.

15. LanguageTool. Languagetool, 2020.
16. Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvininejad, Abdelrahman Mo-

hamed, Omer Levy, Veselin Stoyanov, and Luke Zettlemoyer. BART: denoising
sequence-to-sequence pre-training for natural language generation, translation, and
comprehension. In Proceedings of the 58th Annual Meeting of the Association for
Computational Linguistics, ACL, 2020.

17. Chin-Yew Lin. Rouge: A package for automatic evaluation of summaries. In Text
summarization branches out, pages 74–81, 2004.

18. M. Liu, V. Rus, and L. Liu. Automatic chinese factual question generation. IEEE
Transactions on Learning Technologies, 10(2):194–204, 2017.



12 Y. Cheng et al.

19. Luis Enrico Lopez, Diane Kathryn Cruz, Jan Christian Blaise Cruz, and
Charibeth Cheng. Transformer-based end-to-end question generation. CoRR,
abs/2005.01107, 2020.

20. Nobal Bikram Niraula and Vasile Rus. Judging the quality of automatically gener-
ated gap-fill question using active learning. In Proceedings of the Tenth Workshop
on Innovative Use of NLP for Building Educational Applications, 2015.

21. Liangming Pan, Wenqiang Lei, Tat-Seng Chua, and Min-Yen Kan. Recent advances
in neural question generation. arXiv preprint arXiv:1905.08949, 2019.

22. Suraj Patil. Question generation using transformers, 2020.
23. Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang,

Michael Matena, Yanqi Zhou, Wei Li, and Peter J Liu. Exploring the lim-
its of transfer learning with a unified text-to-text transformer. arXiv preprint
arXiv:1910.10683, 2019.

24. Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy Liang. Squad:
100, 000+ questions for machine comprehension of text. In Proceedings of the
2016 Conference on Empirical Methods in Natural Language Processing, EMNLP.

25. Nils Reimers and Iryna Gurevych. Sentence-bert: Sentence embeddings using
siamese bert-networks. In Proceedings of the 2019 Conference on Empirical Meth-
ods in Natural Language Processing and the 9th International Joint Conference on
Natural Language Processing, EMNLP-IJCNLP, 2019.

26. Alexander M. Rush, Sumit Chopra, and Jason Weston. A neural attention model
for abstractive sentence summarization. In Proceedings of the 2015 Conference on
Empirical Methods in Natural Language Processing, EMNLP, 2015.

27. Victor Sanh, Lysandre Debut, Julien Chaumond, and Thomas Wolf. Distilbert, a
distilled version of bert: smaller, faster, cheaper and lighter, 2020.

28. Abigail See, Peter J. Liu, and Christopher D. Manning. Get to the point: Sum-
marization with pointer-generator networks. In Proceedings of the 55th Annual
Meeting of the Association for Computational Linguistics, pages 1073–1083, 2017.

29. Sam Shleifer. Distilbart model, 2020.
30. Will Thalheimer. The learning benefits of questions. Work Learning Research,

2003.
31. HuggingFace Transformers. Question answering using distilbert, 2020.
32. Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,

Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention is all you need.
In Advances in Neural Information Processing Systems, 2017.

33. Alex Wang, Yada Pruksachatkun, Nikita Nangia, Amanpreet Singh, Julian
Michael, Felix Hill, Omer Levy, and Samuel Bowman. Superglue: A stickier bench-
mark for general-purpose language understanding systems. In Advances in Neural
Information Processing Systems, 2019.

34. Yu Yan, Weizhen Qi, Yeyun Gong, Dayiheng Liu, Nan Duan, Jiusheng Chen,
Ruofei Zhang, and Ming Zhou. Prophetnet: Predicting future n-gram for sequence-
to-sequence pre-training. CoRR, abs/2001.04063, 2020.

35. Jingqing Zhang, Yao Zhao, Mohammad Saleh, and Peter J. Liu. PEGASUS:
pre-training with extracted gap-sentences for abstractive summarization. CoRR,
abs/1912.08777, 2019.

36. Ming Zhong, Pengfei Liu, Danqing Wang, Xipeng Qiu, and Xuanjing Huang.
Searching for effective neural extractive summarization: What works and what’s
next. In Proceedings of the 57th Conference of the Association for Computational
Linguistics, ACL, 2019.


