
Two Protocols to Reduce the Criticality Level of
Multiprocessor Mixed-Criticality Systems

François Santy
PARTS Research Center

Université Libre de Bruxelles (ULB)

Gurulingesh Raravi
CISTER-ISEP Research Center
Polytechnic Institute of Porto

Geoffrey Nelissen
CISTER-ISEP Research Center

Polytechnic Institute of Porto

Vincent Nelis
CISTER-ISEP Research Center

Polytechnic Institute of Porto

Pratyush Kumar
Computer Engineering and Networks

Laboratory, ETH Zurich

Joël Goossens
PARTS Research Center

Université Libre de Bruxelles (ULB)

Eduardo Tovar
CISTER-ISEP Research Center

Polytechnic Institute of Porto

ABSTRACT

Most of the existing research on multiprocessor mixed-critica-
lity scheduling has focused on ensuring schedulability of the
task set when the criticality level of the system increases.
Furthermore, upon increasing the criticality level, most of
these scheduling approaches suspend the execution of the
lower criticality tasks in order to guarantee the schedula-
bility of the higher criticality tasks. Although there exists
a couple of approaches to facilitate the execution of some
of the lower criticality tasks using the available slack in the
system, to the best of our knowledge, there is no efficient
mechanism that allows for eventually decreasing the criti-
cality level of the system in order to resume the execution
of the suspended lower criticality tasks. We refer to the
problem of deciding when and how to lower the criticality
level of the system as the“Safe Criticality Reduction” (SCR)
problem. In this work, we design two solutions that are in-
dependent of the number of criticality levels and the number
of processors and prove their correctness. The first protocol
can be applied to any fixed task priority scheduler, and an
upper-bound on the suspension delay suffered by the lower
criticality tasks is presented. The second protocol can be ap-
plied to any fixed job priority scheduler and hence dominates
the first protocol albeit with a higher run-time overhead. To
the best of our knowledge, these are the first solutions for
the SCR problem on multiprocessor platforms.

Keywords

Real-time scheduling, Identical Multiprocessor, Mixed-Cri-
ticality, Decrease Criticality.

Permission to make digital or hard copies of all or part of this work for per-
sonal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than the author(s) must be honored. Abstract-
ing with credit is permitted. To copy otherwise, or republish, to post on
servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.
RTNS 2013 , October 16 - 18 2013, Sophia Antipolis, France
Copyright 2013 ACM 978-1-4503-2058-0/13/10$15.00.
http://dx.doi.org/10.1145/2516821.2516834.

1. INTRODUCTION
Many industrial domains such as avionics, automotives,

smart manufacturing, etc. rely heavily on the use of real-
time embedded systems. Typically, such systems are subject
to stringent timing requirements. These systems are typi-
cally composed of a set of very specific functionalities, hence-
forth called tasks. In order to guarantee that these systems
always react within some pre-determined time-bounds, each
task must be thoroughly analyzed for their temporal be-
haviour. In particular, one must determine their worst-case
execution times (WCETs) and many tools and approaches
exist to perform this estimation. The rigorousness of these
tools depends on the desired level of confidence that the ac-
tual execution time of a task will not exceed its estimated
WCET. For example, the WCET of a task can be computed
empirically by using measurement tools and run-time traces,
in which case the WCET estimation is the maximum exe-
cution time observed during the simulation. Alternatively,
the WCET can be estimated by using more conservative
but safer approaches based on parsing and analyzing the
source code, by figuring out the worst possible case when this
code is executed on the target platform. Typically, WCETs
determined by simulation are optimistic and thus less reli-
able than the WCETs estimated by statically analyzing the
source code. However, the latter approach usually overly es-
timates the actual execution requirements of the tasks. The
method to be employed to estimate the WCET of a task thus
depends on the consequences of the analyzed task missing its
deadlines. Therefore, each task is subject to a“risk analysis”
that will decide on its criticality level1. Consequently:

• The WCET of higher criticality tasks are determined
by using conservative approaches which provide safe
but overly pessimistic estimates since the timeliness of
these tasks is crucial for the system;

• The WCET of lower criticality tasks are determined
by using less conservative approaches since these tasks
tolerate occasional deadline misses.

1In industrial standards, the criticality of a task is some-
times referred to as its safety integrity level (SIL), or Design
Assurance Level (DAL).

183

When designing systems with tasks of different criticality,
the usual approach is to partition the system in space and
time, and isolate tasks with a common criticality in a ded-
icated partition [1]. This eliminates any interference across
different criticality levels, and thus preserves a simple mod-
ularity in the design and certification process of the entire
system. However, in order to efficiently use the computing
resources (which is hard to achieve with partitioned schedul-
ing), as well as to reduce the system’s SWaP (size, weight
and power) due to budgetary constraints, there has been a
strong push towards integrating multiple functionalities onto
the same computing platform. To allow tasks with different
criticality levels to run concurrently on the same comput-
ing platform, there is a need to design efficient protocols
which facilitate this. Many solutions have been proposed
in the past few years, which have been witnessing an ever-
growing interest in the real-time scheduling community (see
Section 1.1).

Among those solutions, one model has been commonly
adopted [3, 7, 14, 15, 19]. Each task is modeled using multi-
ple WCETs — one WCET for each criticality level that is
less than or equal to the criticality level of the task. That
is, a task of criticality level ℓ has a WCET estimate at ev-
ery criticality level that is less than or equal to ℓ with the
following rule: the higher the criticality level, the more con-
servative the WCET estimate2. During run-time, the mod-
ule has a “current criticality level” henceforth denoted by
CL. Usually, CL is initialized to the lowest criticality level.
Whenever a task executes for longer than its WCET at the
current criticality level CL, then CL is raised to the next
criticality level. When this happens, all tasks with a criti-
cality level less than the new CL are suspended, i.e. they are
not executed anymore. This is done in order to ensure that
the tasks of high criticality will always be granted enough
computing resources to complete their execution on time, as
their timeliness is more important than the timeliness of the
less critical tasks.

When considering system safety, mixed-criticality is a nat-
ural approach, since it aims at favouring the timeliness of
the functionalities that are crucial for the proper function-
ing of the system. Therefore, most of the current work has
been oriented toward the study of protocols that allow to re-
spond promptly and adequately to the increase of the crit-
icality level of the system. However, there has not been
much focus, yet, on the problem of safely decreasing the
CL. A decrease in CL from level h to level ℓ < h consists
in re-activating all the suspended tasks that have a criti-
cality level greater than or equal to ℓ. This thus improves
the timing guarantees provided by the system, in the sense
that the timeliness of both the currently executing tasks as
well as the re-activated tasks are met. However, any such
decrease must be carefully done: it must be ensured that
the re-activated lower criticality tasks do not interfere with
the schedulability guarantees of the higher criticality tasks.
We refer to this problem as the “Safe Criticality Reduction
(SCR)” problem.

2Modeling a task with a vector of monotonically increasing
WCET might for instance originate from a prior probabilis-
tic timing analysis [24]. Such an analysis computes several
WCET bounds for a task, each bound being associated to
a probability of that task exceeding that particular WCET.
This modelisation of real-time tasks is particularly suited
for functionalities being subject to mandatory certification,
as certification processes often impose a specific maximum
probability of failure per criticality level [12,22].

1.1 Related Work
Mixed-Criticality scheduling was initially introduced by

Vestal [23] and since then it has gained increasing interest
in the real-time research community. Mixed-criticality sys-
tems are found in almost all the industrial domains such
as avionics, automotives, etc. [12, 22], where applications
are subject to multiple certification requirements. Many
works have addressed the scheduling problem for such sys-
tems implemented upon uniprocessor platforms [3–7,13, 17,
20, 21]. More recently, research has been oriented towards
the study of mixed-criticality scheduling upon multiproces-
sor platforms [14, 16, 19, 19]. Many of the previous results
focus on ensuring the timeliness of higher criticality tasks,
potentially at the expense of the lower criticality tasks. Al-
though there exists a couple of approaches to facilitate the
execution of some of the lower criticality tasks using the
available slack in the system, to the best of our knowledge,
there is no efficient mechanism that allows for eventually
decreasing the criticality level of the system in order to re-
sume the execution of the suspended lower criticality tasks.
Furthermore, many results are restricted to an easier sub-
problem of mixed-criticality, with only two criticality levels.
The work by Santy et. al. [20] comes closest to our work
in the sense that it has addressed the problem under con-
sideration, but only for task sets scheduled using fixed-task
priority algorithms on uniprocessor platforms.

1.2 This Research
In this work, we address the problem of when and how to

reduce the criticality level of the system so that all the lower
criticality level tasks are (re-)activated without jeopardising
the schedulability of the system. We refer to this problem
as “Safe Criticality Reduction” (SCR) problem. To address
this problem, we propose two protocols: (P1) a fixed-task
priority protocol with negligible run-time overhead and with
a proven upper bound on the time to switch back to lower
criticality mode and (P2) a fixed-job priority protocol which
dominates the first protocol (since fixed-task priority is a
special case of fixed-job priority) but at the cost of higher
run-time overhead. We believe that the significance of this
work is as follows: 1) there exists no protocols for SCR prob-
lem in the past and hence our protocols are the first of their
kind, 2) our protocols can be applied to mixed-criticality
systems with any number of criticality levels, 3) our proto-
cols are generic in the sense that the first protocol can be
applied to any fixed-task priority predictable scheduler and
the second protocol can be applied to any fixed-job priority
predictable scheduler and finally 4) the protocols are appli-
cable to both global and partitioned scheduling paradigms3.

2. MODEL OF COMPUTATION

2.1 Task and platform model
We consider an identical multiprocessor platform π com-

prising m unit-speed processors, denoted by πj with j =
{1, 2, . . . ,m}.

We consider a mixed-criticality task set τ comprising n
constrained-deadline sporadic tasks, denoted by τi with i =
{1, 2, . . . , n}. Let the set L = {1, . . . , L} denote different
criticality levels in the system with level 1 begin the least

3For ease of explanation, thought the paper, we explain the
protocols for global scheduling algorithms and in Section 6,
we discuss how the protocols can also be applied to parti-
tioned scheduling paradigms.

184

critical level and level L being the most critical level. Each
task τi is characterized by a 4-tuple 〈Li, Ci, Ti, Di〉 where:

• Li ∈ L denotes the criticality level of task τi;

• Ci ∈ NL
0 denotes a vector 〈Ci(1), Ci(2), . . . , Ci(L)〉 of

size L, where Ci(ℓ) denotes the worst-case execution
time of task τi at criticality level ℓ ∈ L;

• Ti ∈ N0 denotes the minimum inter-arrival time of
task τi;

• Di ∈ N0 denotes the deadline of task τi, with Di ≤ Ti.

We assume Ci(ℓ) is monotonically increasing for increasing
values of ℓ. More precisely, for task τi the following two
conditions hold:

• ∀ℓ ∈ [1, Li), Ci(ℓ) ≤ Ci(ℓ+ 1);

• ∀ℓ ∈ [Li, L], Ci(ℓ) = Ci(Li).

We will assume that no task is supposed to execute longer
than its WCET at its own criticality level, meaning that
the probability of a task exceeding its WCET at its own
criticality level is zero. For convenience, we will use the
notation τ (k), with k ∈ L, to denote the set of tasks having
criticality level greater than or equal to k.

Each task τi releases a (potentially infinite) sequence of
jobs with two consecutive jobs separated by at least Ti time
units. Hereafter, we call such a collection of jobs gener-
ated by τ , an instance of τ . The kth job Ji,k released by
the mixed-criticality task τi is characterized by a 3-tuple of
parameters {ri,k, di,k, ci,k} where:

• ri,k ∈ N denotes the release time of job Ji,k;

• di,k ∈ N0 denotes the absolute deadline of job Ji,k and

is given by di,k
def
= ri,k +Di;

• ci,k ∈ N0 denotes the actual execution time of job Ji,k.
From the specifications of τi, we can say that ci,k ≤
Ci(Li), but the exact value of ci,k will not be known
until Ji,k is released and completes its execution.

We will furthermore use the notations si,k ∈ N and fi,k ∈
N0, to denote the exact time-instant at which job Ji,k starts
and finishes its execution, respectively. A job Ji,k is said to
be active at time t if and only if ri,k ≤ t ≤ fi,k.

Definition 1. (Scenario) Given a sequence of jobs, a sce-
nario represents the set of actual execution times for each of
these jobs.

Definition 2. (Criticality of a scenario) The criticality
of a scenario is given by the lowest criticality level, such that
no job overruns its WCET at that specific criticality level:

scenario criticality = min{ℓ | ci,k ≤ Ci(ℓ), ∀i, k}

Definition 3. (Worst-case response time) The worst-
case response time (WCRT) Ri(ℓ) of task τi at criticality
level ℓ is the maximum amount of time that elapses between
the release of any job Ji,k of τi at time ri,k, and its comple-
tion at time fi,k, in any scenario of criticality level ℓ.

2.2 Scheduler specification
In this work, we consider global, fully-preemptive and work-

conserving scheduling policies, according to Definition 4.

Definition 4. (Global, fully-preemptive, work-conser-
ving scheduler) At each time instant, a global, fully-pre-
emptive and work-conserving scheduler dispatches the m high-
est priority jobs (if any) on the m processors of the platform,
is allowed to interrupt a job that is executing on a given
processor to assign another active job to this processor, and
never idles a processor while there is an active job..

We will furthermore consider both fixed task priority (FTP)
and fixed job priority (FJP) scheduling policies, according
to the definitions given below.

Definition 5. (FTP scheduler) A scheduler is said to be
FTP if it assigns a single static priority to each task (though
different tasks may share the same priority). It follows that
different jobs released by the same task will have the same
priority.

Definition 6. (FJP scheduler) A scheduler is said to be
FJP if it assigns a single static priority to each job, but
different jobs of the same task may have different priorities.

Note that FTP schedulers are a strict subset of FJP sched-
ulers. In the remainder of the paper, when considering FTP
schedulers, we will denote by hp(τi) the set of tasks having a
priority higher than τi, and by lp(τi) the set of tasks having
a priority lower than τi.

The following definitions introduce what is considered as
being a schedulable mixed-criticality task set.

Definition 7. (Feasible schedule) A schedule for a sce-
nario of criticality ℓ is feasible if every job Ji,k |Li ≥ ℓ ∀i, k
executes for ci,k time units between ri,k and di,k.

Definition 8. (S-Schedulable) Let S be a scheduling pol-
icy, and τ a mixed-criticality task set. We say τ is S-
Schedulable if, for any scenario of criticality ℓ ∈ L, S gen-
erates a feasible schedule.

In the remainder of the paper, we assume that the task
sets on which our protocols are applied have been deemed
S-schedulable by a preliminary offline analysis stage.

3. MOTIVATION
In mixed-criticality scheduling, most of the work is built

on a common assumption: the platform π is not powerful
enough to meet all the task deadlines if they all run concur-
rently and execute for their WCET at their own criticality
level. As a result, most methods and analysis tools presented
in the literature share a common view on how the tasks are
handled at runtime: an “overrun handler” is in charge of
monitoring the execution of jobs and increases the current
criticality level CL of the module at run-time, as described
in Section 1.

If the current criticality level CL of the module can be in-
creased dynamically at run-time, it should also be possible
to decrease CL. Otherwise, if no action is taken to reduce
the criticality level CL, the system will eventually be run-
ning in the highest level L, thus executing only the most
critical tasks. Hence, the lower criticality tasks will never
be executed anymore, even though there may be sufficient
spare processing capacity available to execute them. This
leads to inefficient usage of the computing resources. We
therefore believe that the SCR problem is a crucial chal-
lenge in improving mixed criticality systems, as the overall
performance of the system and its quality of service is likely
to be better if the system is executing more tasks in a lower
CL, rather than a subset of tasks in a“safe operating mode”.

185

Figure 1: An example to motivate the problem under consider-
ation.

In this work, our focus is to design an approach to deter-
mine the time instants at which CL can be reduced.

On a uni-processor computing platform, decreasing the
level of the system from its current criticality level h to a
criticality level ℓ < h at a time instant t when the proces-
sor is idle has been shown to work well [20]. However, a
straightforward adaptation of this rule on multiprocessors,
i.e., lowering the criticality level of the system at a time in-
stant t when all the processors are idle is not efficient. This
is because there are very few time instants at which all the
processors are idle. It can even be shown that such a time in-
stant t may not even exist, even for a simple dual-criticality
system, as illustrated by Example 1.

Example 1. Consider a mixed-criticality system with only
two levels, L = {LO,HI}. Let the task set τ = {τ1, τ2, τ3}
consists of three implicit-deadline sporadic tasks with the fol-
lowing parameters:

τ1 = 〈HI, [6, 9] , 10, 10〉

τ2 = 〈HI, [6, 9] , 10, 10〉

τ3 = 〈LO, [3, 3] , 10, 10〉

Consider an identical multiprocessor platform π = {π1, π2}
with two processors. Let us consider a FTP scheduler where
task τ1 has the highest priority, task τ3 the lowest priority,
and task τ2 has an intermediate priority. Let us assume that
the first job of τ1 is released at time t = 0 and its subsequent
jobs are released periodically after every 10 time units. Sim-
ilarly, let the first job of task τ2 be released at time t = 5 and
all its subsequent jobs be released exactly 10 time units apart.
Finally, let the first job of task τ3 be released at time t = 0
and all its subsequent jobs are released periodically after ev-
ery 10 time units. The scenario illustrated by Figure 1 shows
that a time instant at which both π1 and π2 are idle never
occurs even though all the jobs released after time t = 9 re-
spect their WCET at the lowest criticality level. Therefore,
task τ3 might never be reactivated.

Example 1 shows that the problem under consideration
is nontrivial and in this work, we propose efficient proto-
cols to decide when to reduce the criticality level CL of the
module without jeopardizing its schedulability. Upon the re-
enablement of the previously suspended tasks, both proto-
cols make sure that no task in the system is affected anymore
by the overrun that occurred previously. Section 4 describes
a protocol with a negligible run-time overhead which can be
applied to any FTP scheduler. Section 5 describes a protocol
with a higher run-time overhead but which can be applied
to a wider family of FJP schedulers.

In the following sections, we assume that:
• At least one task overruns, causing CL to reach criti-

cality level h.
• We wish to decrease CL from level h to level ℓ < h.

4. A PROTOCOL FOR FTP SCHEDULERS

4.1 Background Results
In [19], a method for computing an upper-bound on the

WCRT of a mixed-criticality task τi is described. This
method consists in considering the execution of a job Ji,k re-
leased by τi in a time window starting at Ji,k’s release time
ri,k, and finishing ∆ time units later, i.e. at time instant
ri,k + ∆. The procedure aims at defining an upper-bound
on the workload, the interfering workload, the total inter-
fering workload, and the interference (as explained in the
following definitions) suffered by task τi in any scenario of
criticality level ℓ ∈ L during that interval. The WCRT of τi
at criticality level ℓ ∈ L is then deduced from the previously
computed values.

Definition 9. (Workload [19]) The workload of task τj
within a time window of size ∆ is the cumulative length of
time intervals during which the jobs released by τj execute
within that window.

A task τj ∈ hp(τi) is considered as a carry-in task if τj
released a job before the start of the window, and that job
executes (partly or fully) within the window. Otherwise,
τj is considered as a non carry-in task. Pathan [19] showed
that if a higher-priority task is a carry-in task, then its worst-
case interference on the lower-priority task is higher than if
it was non carry-in.

Definition 10. (Carry-in/Non Carry-In Interfering
Workload [19]) The carry-in interfering workload Ī

CI
j,i(∆, ℓ)

(resp. non carry-in interfering workload Ī
NC
j,i(∆, ℓ)) of τj on

task τi in any scenario of criticality level ℓ, is the cumula-
tive length of time interval within the time window of size
∆ during which a job released by a carry-in task τj (resp. a
non carry-in task τj) executes, and Ji,k is not dispatched on
any processor.

The difference between the carry-in and non carry-in in-
terfering workload of a task τj ∈ hp(τi) will be denoted by:

Ī
DIFF
j,i (∆, ℓ)

def
= Ī

CI
j,i(∆, ℓ)− Ī

NC
j,i(∆, ℓ) (1)

The following property shows that it is not necessary to
consider all tasks as being carry-in tasks.

Property 1. (From [8] and [19]) The total interfering
workload is upper-bounded by considering at most m−1 (re-
call that m is the number of processors) carry-in tasks within
the time window of any lower priority task, when consider-
ing global FTP scheduling of constrained-deadline sporadic
task sets.

Definition 11. (Total Interfering Workload [19]) The
total interfering workload Īi(∆, ℓ) of tasks τj ∈ hp(τi) on
task τi in any scenario of criticality level ℓ, over any time
window of size ∆, is the sum of interfering workload of all
the higher priority tasks within that window. The total inter-
fering workload suffered by task τi is computed as follows:

Īi(∆, ℓ)
def
=

∑

τj∈hp(τi)

Ī
NC
j,i(∆, ℓ) +

∑

τj∈hpm−1(τi)

Ī
DIFF
j,i (∆, ℓ) (2)

where hpm−1(τi) is the set of at most m− 1 carry-in tasks

belonging to hp(τi) that have the largest value of Ī
DIFF
j,i (∆, ℓ).

Definition 12. (Interference [19]) The interference suf-
fered by a task τi in any scenario of criticality level ℓ, and

186

Algorithm 1: FTP Protocol

1 fX
0 := toverrun;

2 for i=1,...,n do
3 if τi has an active job Ji,k at time fX

i−1 then
4 fX

i := fi,k;
5 else
6 fX

i := fX
i−1;

7 end
8 end

during a time interval of length ∆, is the cumulative length
of time intervals during which the m processors are busy ex-
ecuting tasks belonging to hp(τi). An upper-bound on the
interference suffered by τi over an interval of length is given

by
⌊

Īi(∆,ℓ)
m

⌋

.

Finally, and from the above definitions, since in any sce-
nario of criticality level ℓ, Ji,k is allowed to execute for at
most Ci(ℓ) time units, the WCRT Ri(ℓ) of task τi at criti-
cality level ℓ is obtained by determining the least fixed point
of the following function:

Ri(ℓ)
def
= Ci(ℓ) +

⌊

Īi(Ri(ℓ), ℓ)

m

⌋

(3)

Note that since the task set is S-schedulable (see Sec-
tion 2), it must be the case that Ri(ℓ) ≤ Di ∀ℓ ∈ L. In
the remainder of this section, we will denote by I

∗
i (∆, ℓ) ≤

Īi(∆, ℓ) the actual total interfering workload suffered by τi
over an interval of length ∆. Moreover, we assume that the
tasks in τ are prioritized in the order of their indices. That
is, if i < j then τi has a higher priority than τj .

4.2 Description of the Protocol
The first protocol, formalized by Algorithm 1, and whose

correctness is proved in Section 4.4, works as follows: Sup-
pose an overrun occurs at time toverrun and that no job ex-
ceeds its WCET at criticality level ℓ after toverrun. For every
task τi in a decreasing order of priority, the protocol identi-
fies a time instant fX

i satisfying Condition 1.

Condition 1. Time fX
i is such that:

1. fX
i ≥ fX

i−1 (with fX
0 = toverrun);

2. τi has no active job at time fX
i .

Then, as soon as such an instant has been found for the
lowest priority task τn, the criticality of the system can safely
be decreased to level ℓ and all the suspended tasks with a
criticality greater than or equal to ℓ can be reactivated.

More precisely, starting at time toverrun, the protocol (Al-
gorithm 1) identifies the earliest time instant fX

1 satisfying
Condition 1. That is, the protocol checks whether task τ1
(the highest priority task belonging to τ) has an active job
J1,k at time toverrun. If it is the case, then the protocol waits
for that job to complete its execution at time fX

1 = f1,k.
Otherwise, fX

1 = toverrun. The protocol then looks for the
earliest instant after fX

1 where τ2 has no active job (i.e., the
earliest instant fX

2 ≥ fX
1 satisfying Condition 1). Again, if

at time fX
1 , τ2 has no active job, then fX

2 = fX
1 . Other-

wise, the protocol simply waits for the active job of τ2 to
complete. These steps are iteratively performed by Algo-
rithm 1 for every task τi ∈ τ in their priority order (i.e. it
identifies such a time instant for task τi only when it has

Figure 2: An example to illustrate the protocol described in
Section 4.2.

previously identified such a time instant for task τi−1). The
re-enablement of the previously suspended tasks having a
criticality at least equal to ℓ can then take place when an
instant fX

n satisfying Condition 1 has been found.
Note that our reasoning is based on the assumption that

an overrun is unusual. In particular, we make the assump-
tion that if the protocol identified a time instant satisfying
Condition 1 for every task τ1, ..., τi, then these tasks will not
overrun their WCET at level ℓ until the protocol was able
to decrease CL from level h to level ℓ. If this happens nev-
ertheless, then the protocol is aborted and has to restart all
over from the beginning.

Moreover, in the remainder of the section, we assume
that if the protocol identifies a time instant fX

i satisfying
Condition 1 for task τi, then this means that the protocol
has already identified such a time instant for every tasks
τ1, τ2, ..., τi−1.

4.3 An Example
Consider a mixed-criticality system with only two critical-

ity levels, L = {LO,HI}. Let the task set τ = {τ1, τ2, τ3, τ4}
consists of four implicit-deadline sporadic tasks with the fol-
lowing parameters:

τ1 = 〈HI, [4, 5] , 5, 5〉

τ2 = 〈HI, [3, 4] , 9, 9〉

τ3 = 〈HI, [4, 9] , 11, 11〉

τ4 = 〈LO, [1, 1] , 5, 5〉

Consider an identical multiprocessor platform π = {π1, π2}
with two processors. Let us use a FTP scheduler where
tasks are prioritized according to their indices (i.e., task τ1
has the highest priority and task τ4 the lowest) and consider
the scenario illustrated by Figure 2 where tasks τ2, τ3 and
τ4 release a job at time t = 0, and task τ1 releases a job at
time t = 2. At time t = 4, τ3 does not signal its completion,
which results in CL being increased from level LO to level
HI. Task τ4 is therefore suspended. At time t = 4, the pro-
tocol is launched and checks whether task τ1 has an active
job. Since the first job of task τ1 is still executing, the pro-
tocol must wait for that job to finish at time t = 5. Since at
time t = 5, task τ2 has no active job, the protocol can skip
τ2 and consider τ3 instead. Since at time t = 5, τ3 has an
active job, the protocol must wait for that job to finish at
time t = 9. Because τ3 is the lowest priority task among the
tasks in τ (HI), it follows that no other task in τ will have an
active job (the lower criticality tasks have been suspended

187

at time t = 4). Thus, at time t = 9, the criticality of the
system can be decreased to level LO, thereby reactivating
the task τ4.

4.4 Proof of Correctness

Lemma 1. Let toverrun be the last time at which a job over-
ran its WCET at criticality level ℓ. Let us assume that the
protocol identifies an instant fX

i−1 ≥ toverrun respecting Con-
dition 1 for task τi−1 and no job with an execution time
greater than its WCET at criticality level ℓ is released after
toverrun. From time fX

i−1 onwards, the actual total interfering
workload I

∗
i (∆, ℓ) suffered by task τi over any window of size

∆ is less than or equal to Īi(∆, ℓ).

Proof. From Definition 11, we know that Īi(∆, ℓ) is an
upper-bound on the total interfering workload suffered by
task τi in any scenario of criticality level ℓ. More precisely,
we have I

∗
i (∆, ℓ) ≤ Īi(∆, ℓ) if no job released by a task in

hp(τi) within the interval ∆ has an execution time greater
than its WCET at criticality level ℓ. We now prove that this
is the case from time fX

i−1 onwards.
The proof is by induction on the task priorities. In partic-

ular, assuming that Lemma 1 holds for task τi−1, we prove
that it also holds for task τi.
Base case. Let us consider that τi−1 is the highest priority
task (i.e. τi−1 = τ1), and that τi = τ2. It follows that
the jobs released by task τ1 are the only jobs interfering
with the execution of task τi from time fX

i−1 onwards. But

since task τ1 has no active job at time fX
1 , and because we

assumed that all the jobs released by τ1 after fX
1 have an

execution time that is less than or equal to their WCET
at level ℓ, it follows that all the jobs interfering with the
execution of τ2 from time fX

1 onwards have an execution
time that is less than or equal to their WCET at level ℓ.
Hence, I∗2(∆, ℓ) ≤ Ī2(∆, ℓ) for any window of size ∆ starting
at time fX

1 .
Inductive step. The jobs released by the task in hp(τi)
are the only ones interfering with the execution of task τi
from time fX

i−1 onwards. Because Algorithm 1 considers the
tasks in their priority order, we know from Condition 1 that
for every task in τj ∈ hp(τi), fX

j ≤ fX
i−1. Furthermore,

by the induction hypothesis, it holds that no job with an
execution time greater than its WCET at criticality level ℓ
interferes with the execution of τj after fX

j , and thus after

fX
i−1. Furthermore, because we made the assumption that no

job released by a task after fX
i−1 ≥ toverrun exceeds its WCET

at level ℓ, it results that all the jobs interfering with the
execution of τi after f

X
i−1 have an execution time not greater

than their WCET at level ℓ. Hence, I∗i (∆, ℓ) ≤ Īi(∆, ℓ) for
any window of size ∆ starting at time fX

i−1.

Corollary 1. Let toverrun be the last time at which a job
overran its WCET at criticality level ℓ. When the proto-
col identifies an instant fX

n ≥ toverrun satisfying Condition 1
for task τn, then from time fX

n onwards, the actual total in-
terfering workload suffered by any task τi ∈ τ is less than or
equal to Īi(∆, ℓ).

Proof. Since, by definition of the highest priority task,
the highest priority task τ1 never suffers from any interfer-
ence from lower priority tasks, this corollary is obviously true
for τ1. Furthermore, because according to Algorithm 1, we
have fX

i ≤ fX
n for 1 ≤ i ≤ n, this corollary directly follows

from Lemma 1 for any task τi such that 1 < i ≤ n.

Figure 3: Upper-bound on the re-enablement of suspended
tasks.

From Corollary 1, we will now show that every suspended
task τk ∈ τ (ℓ) can be re-enabled at time fX

n .

Theorem 1. Upon an overrun at time toverrun, when the
protocol identifies an instant fX

n ≥ toverrun satisfying Condi-
tion 1 for the lowest priority task τn ∈ τ , then every sus-
pended task τk ∈ τ (ℓ) can be re-enabled.

Proof. From Corollary 1, we know that from time fX
n

onwards, every job Ji,k released by a task τi ∈ τ ℓ will suffer
a total interfering workload that is not greater than Īi(∆, ℓ)
in any window of size ∆. Hence, from Expression 3, every
job will completes its execution after no more that Ri(ℓ)
time units. Furthermore, since the system was deemed S-
schedulable, we have that Ri(ℓ) ≤ Di ∀i. Consequently,
every task τi ∈ τ ℓ can be safely re-enabled.

4.5 Upper Bound on the Suspension Delay
In this section, we prove that using the protocol presented

in Section 4.2, it is possible to upper-bound the suspension
delay suffered by lower criticality tasks. This means that
even though a task can exceptionally overrun its WCET at
a specific criticality level ℓ, the system will eventually be
able to recover from the generated overload.

Theorem 2. Let us assume that an overrun occurs at time
toverrun, i.e. a task τi with Li > h exceeds its WCET at
criticality h − 1, thus causing the system to increase CL to
h. If no other task overran its WCET at criticality level
ℓ < h after toverrun, then an upper-bound susp

h
ℓ on the time

required to re-enable the suspended tasks τi ∈ τ (ℓ) is given
by

susp
h

ℓ =
∑

τi∈τ(h)

Ri(h) (4)

Proof. Since all the tasks that have a criticality smaller
than h are suspended at time toverrun, it follows that the only
tasks that may have an active job within the time interval
[

toverrun, toverrun + susp
h
ℓ

)

are the ones in τ (h). Therefore,
from line 6 of Algorithm 1, we have:

∀τi ∈ τ \ τ (h)
, f

X

i = f
X

i−1 (5)

Furthermore, in the worst-case, each task τi ∈ τ (h) released
a job right at time fX

i−1. In a scenario of criticality level h,
this job could finish its execution at most Ri(h) time units
later (i.e., the response time of the job is at most equal
to its WCRT at criticality level h). Hence, from line 4 of

188

Algorithm 1, we have:

∀τi ∈ τ
(h)

, f
X

i ≤ f
X

i−1 +Ri(h) (6)

Because all the suspended tasks in τ (ℓ) can be re-enabled
when an instant fX

n is found for task τn, susp
h
ℓ is an upper-

bound on fX
n . Using Equations 5 and 6, we get that fX

n ≤
∑

τi∈τ(h) Ri(h), thereby leading to:

susp
h

ℓ =
∑

τi∈τ(h)

Ri(h)

An illustration of the computation of the upper-bound susp
h
ℓ

is given by Figure 3.

5. A PROTOCOL FOR FJP SCHEDULERS

5.1 Background Results

5.1.1 Reference schedule

The concept of reference schedule was first introduced
in [2] for uniprocessor platforms, and later extended to iden-
tical multicore platforms in [18]. In these works [2,18], a ref-
erence schedule is used to detect the time instants at which
the speed of the cores could safely be reduced (in order to
save energy without missing any deadlines). In our work,
we use the concept of reference schedule at each criticality
level ℓ ∈ L, as explained in Definition 13, to detect the time
instants at which the criticality level of the system can be
lowered.

Definition 13. (Reference schedule at level ℓ) The ref-
erence schedule at criticality level ℓ for a task set τ consid-
ering a scheduling algorithm S, is the schedule generated by
S for the jobs released by τ under the assumption that all
these jobs execute exactly for their WCET at level ℓ.

Let us consider that an algorithm S is used to schedule
a mixed-criticality task set τ . At run-time, if the current
criticality level of the module is ℓ, then S will schedule every
task τi with Li ≥ ℓ under the assumption that none of these
tasks will exceed its WCET at criticality level ℓ. Yet, at
some point in time, a task τi with Li > ℓ might overrun,
thus causing the system to increase the criticality level from
ℓ to h. In that case, the algorithm S drops all the tasks with
their criticality level lower than h, and only schedules those
that have a criticality level at least equal to h. It follows
that the actual schedule produced by S is different from the
reference schedule that would have been produced by S if
no task had exceeded its WCET at criticality level ℓ.
The motivation for having such a (reference) schedule

which the system can refer to is the following: if at some
point in time, the actual schedule diverges from the expected
reference schedule, the system can compare both schedules
to determine when the system is “back-on-track”, i.e. when
the system has recovered from an occasional overrun by a
higher criticality task. Since we consider L different crit-
icality levels, the system has to keep track of L reference
schedules, as depicted by Figure 4.

5.1.2 Predictability

In this section, we describe the well-known concept of pre-
dictability and prove some of its properties (Lemma 3 and
Lemma 4) that will be used later to prove the correctness of
our protocol (Theorem 3 in Section 5.3). First, we introduce

Figure 4: L reference schedulers, one for each criticality
level.

some of the terms that are extensively used in the rest of the
section.

Definition 14. (Traditional Task Set) A traditional task
set is a task set in which each task τi is specified by a 3-tuple
〈Ci, Ti, Di〉 where:

• Ci ∈ N0 denotes the WCET of task τi;

• Ti ∈ N0 denotes the minimum inter-arrival time of
task τi;

• Di ∈ N0 denotes the deadline of task τi.

Definition 15. (Worst-Case Scenario of a Traditional
Task Set) The worst-case scenario of a task set is a sce-
nario in which every job released by any task of the task set
executes exactly for its worst-case execution time.

Note that for a sporadic task set, there may be several worst-
case scenarios (depending on the release times of the jobs).

We now define the notion of predictability and list some
of its properties that are relevant for this work.

Definition 16. (Predictability, from Ha and Liu [11])
Let S be a scheduling algorithm, and let J = {J1, J2, . . . , Jn}
be a set of n jobs, where each job Ji = (ri, ci) is character-
ized by an arrival time ri and a execution requirement ci.
Let si and fi denote the time at which job Ji starts and
completes its execution (respectively) when J is scheduled by
S. Now, consider any set J ′ = {J ′

1, J
′
2, . . . , J

′
n} of n jobs

obtained from J as follows. J ′
i has an arrival time ri and

an execution requirement c′i ≤ ci (i.e., job J ′
i ∈ J ′ has the

same arrival time as Ji ∈ J and an execution requirement
no larger than Ji’s). Let s′i and f ′

i denote the time at which
job J ′

i starts and completes its execution (respectively) when
J ′ is scheduled by S. Algorithm S is said to be predictable if
and only if for any set of jobs J and for any such J ′ obtained
from J , it is the case that s′i ≤ si and f ′

i ≤ fi ∀i.

We also make use of the following result from [9–11].

Lemma 2. (From Ha and Liu [9,11] and [10]) On iden-
tical multiprocessors, any global, preemptive, FJP and work-
conserving scheduler is predictable.

The concept of predictability is important in real-time
scheduling theory: using a predictable scheduler, the schedu-
lability of a given traditional task set τ can be deduced
from the schedulability of all its worst-case scenarios. Ac-
cording to Definition 16, if all these worst-case scenarios are
schedulable on the target platform then any other scenario
of τ in which jobs execute for less than their WCETs are

189

also schedulable on this platform. This property enables
the system designers to verify only the schedulability of all
these worst-case scenarios to deduce the schedulability of
the whole task set τ under every (other) possible execution
scenario. Hence, most of the schedulability analysis tech-
niques base their computations on the parameter Ci (i.e.,
the worst-case execution time of each task).

Definition 17. (Actual worst-case remaining execu-
tion time) At each time instant t, act-remi(t) denotes the
actual worst-case remaining execution time of the active job
of task τi.

Definition 18. (Reference worst-case remaining exe-
cution time) At each time instant t, ref-remi(t) denotes
the reference worst-case remaining execution time of the ac-
tive job of task τi, assuming that all the jobs released from
the beginning (from time 0) have executed for their WCET.

Lemma 3. Let τ be a traditional task set scheduled by a
predictable scheduler S on a platform π. At run-time, sup-
pose that all the deadlines are met. It holds for all τi and
time-instant t that act-remi(t) ≤ ref-remi(t).

Proof. The proof is obtained by contradiction. Let t
denote the first time-instant such that there exists a task
τi for which act-remi(t) > ref-remi(t). Let J denote the
collection of jobs that τ has released (at run-time) from time
0 to t. Let SS(J) denote the schedule of J by S on the given
platform π, i.e. SS(J) denotes the schedule that has been
generated at run-time from time 0 to t.

Let Jwc denotes a worst-case scenario corresponding to J
such that every job in Jwc has the same release time and
deadline as the corresponding job in J but has an execution
time equal to the WCET of the task that released it. Let
SS(J

wc) denote the schedule of the scenario Jwc by S on π.
Let Ji,k denote the last job released by task τi in [0, t), i.e.,

Ji,k is the job of τi for which act-remi(t) > ref-remi(t). By
definition of Ji,k, it holds that Ji,k ∈ J and Ji,k ∈ Jwc and
by definition of Jwc, the actual execution time ci,k of Ji,k in
J is no greater than its corresponding actual execution time
in Jwc.

Now, let us modify J and Jwc by setting cnew
i,k = Ci −

ref-remi(t) in both scenarios J and Jwc. With this reduced
cnew
i,k , it holds that Jℓ now finishes at time t in SS(J

wc)
whereas it finishes after time t in SS(J) (since it is assumed
that act-remi(t) > ref-remi(t)). This clearly contradicts
the predictability of S as the scenario J can be obtained
from Jwc by applying the same transformation as the one
explained in Definition 16, which implies that all the jobs in
J should start and finish not later than their corresponding
job in Jwc when scheduled by S.

Lemma 4. (Memoryless property) Let J be an infinite
collection of jobs and suppose that J is guaranteed to meet
all the deadlines when scheduled by a predictable algorithm
S on a platform π. Similarly, let J ′ be another infinite col-
lection of jobs and suppose that J ′ is guaranteed to meet
all the deadlines when scheduled by another predictable al-
gorithm S ′ on the same platform π. In the schedule of J
by S (depicted as schedule (a) in Figure 5), let the func-
tions completed(J, t), active(J, t), and future(J, t) denote
the subset of jobs of J that are completed at time t, active at
time t, and not yet released at time t, respectively. The func-
tions completed(J ′, t), active(J ′, t), and future(J ′, t) are
defined analogously for the schedule of J ′ by S ′ (see schedule
(b) in Figure 5).

�
1

�
m

�
1

�
m

�
1

�
m

 completed(J, t)

 �}u�o����~:[U���

 �}u�o����~:[U���

future(J, t)

(µ�µ��~:[U���

(µ�µ��~:[U���

active(J, t)

 ���]À�~:[U���

active(J, t)

Jk

:[k

:[[k

:[x

w���u[x(t) > 0

Jx

No corresponding job

�Æ]���W�Á��u[x(t) = 0

w���u[[x(t) = 0

:[[x

time

t

�
1

�
m

 completed(J, t) (µ�µ��~:[U��� active(J, t)

:[[k

w���u[[x(t) = 0

:[[x

scheduled by S scheduled by S

��Z��µo����Ç�^[��Z��µo����Ç�^[

��Z��µo����Ç�^[��Z��µo����Ç�^[

scheduled by S ��Z��µo����Ç�^[

(a)

(b)

(c)

(d)

Figure 5: Illustration of the different schedules used in the
proof of Lemma 4.

Now, suppose that there exists a time t during the sched-
ules of J and J ′ (by S and S ′, respectively) at which ev-
ery job Jk ∈ active(J, t) can be one-to-one mapped to a job
J ′
k ∈ active(J ′, t) such that Jk and J ′

k have the same release
time, deadline, and execution requirement, but the remain-
ing execution time remk(t) of Jk is less than or equal to that
of the corresponding job J ′

k, i.e.,

∀Jk ∈ active(J, t) : remk(t) ≤ rem
′
k(t) (7)

Under these assumptions, all the job deadlines will be met
in a schedule (see schedule (d) in Figure 5) where:

1. J is scheduled by S from time 0 to time t,

2. at time t, the scheduler S is substituted for S ′, and

3. from time t onward, the next jobs to arrive are those
from future(J ′, t) only.

Proof. Let us construct the following (infinite) collection
of jobs J ′′ from J ′ as follows. J ′′ is composed of:

1. the subsets of jobs completed(J ′, t) and future(J ′, t)
from J ′, and

2. a subset of jobs containing one job J ′′
k for each J ′

k ∈
active(J ′, t), with same release time and deadline as
J ′
k but with an execution requirement c′′k equal to c′k −

(rem′k(t) − remk(t)). That is, c′′k ≤ c′k = ck. Note
that remk(t) is assumed to be zero if there is no cor-
responding job Jk in active(J, t) for the job J ′

k (as
active(J ′, t) can contain more jobs than active(J, t)).

If J ′′ is scheduled by S ′ on π (see schedule (c) in Figure 5),
it holds by construction that at time t, the remaining exe-
cution time rem

′′
k(t) of each job J ′′

k ∈ active(J ′′, t) is equal
to remk(t) ≤ rem

′
k(t) (or equal to zero if ∄Jk ∈ active(J, t)

corresponding to J ′′
k as explained above). Thus, it holds

by Definition 16, from the schedulability of J ′ and the pre-
dictability of S ′ that the schedule of J ′′ by S ′ meets all the
job deadlines as well.

190

Now, let us compare the schedule of J ′′ by S ′ ((c) in Fig-
ure 5) with the schedule assumed in the claim ((d) in Fig-
ure 5). At time t, the sets of active jobs in both schedules
((c) and (d) in Figure 5) are identical (i.e. with equal job
remaining execution times) and since from time t onward
the two schedules will be in all points identical (same ar-
riving jobs and same scheduling decisions), the claim holds
true.

5.1.3 Alpha-queue

The alpha-queue is a data structure that stores the value
of ref-remi(t) for each task τi ∈ τ at any time t during
the scheduling of a traditional task set τ . Remember that
ref-remi(t) denotes the worst-case remaining execution time
of task τi in the schedule of all the jobs released by τ where
each job executes for its WCET. To do so, the alpha-queue
has to be updated at run-time to keep track of the reference
schedule.

From an implementation point of view, an alpha-queue is
simply a dynamic list containing one element for each task
that has an active job. The element for task τi records the
value of ref-remi(t) for the current time t. The alpha-queue
for a traditional task set is updated as follows:

R1. Upon the arrival of a job of task τi at time t, the alpha-
queue creates an element for task τi and sets this entry
to Ci , i.e. ref-remi(t) = Ci.

R2. At any time t, the alpha-queue is sorted by decreasing
order of job priorities, with the m highest priority jobs
(elements) at the head of the queue.

R3. As time elapses, the m elements ref-remi(t) (if any) at
the head of the alpha-queue are decremented. When-
ever one element reaches zero, the element is removed
from the alpha-queue and the update continues, with
the new m highest priority elements (if any). No up-
date is performed if the alpha-queue is empty.

For the same reasons as described in [2], the following
observation holds: At any time t, the alpha-queue updated
according to the rules R1–R3 contains only those jobs that
have not yet finished execution (unfinished jobs) at time t.
Moreover, ref-remi(t) fields contain the worst-case remain-
ing execution times of every unfinished job at time t in that
reference schedule. It also holds, as explained in [2], that
the dynamic update of the ref-remi(t) fields do not need to
be performed at each and every time unit. Instead, for ef-
ficiency, the update can be performed only on-demand, i.e.
only at time instants that are of interest (by taking into
account the time elapsed since the last update).

5.2 Description of the Protocol
The protocol for FJP schedulers, whose correctness is proved

in Section 5.3, works as follows: During system execution,
the protocol updates for every task τi a variable Qi(t) that
depends on the current time t. The variable Qi(t) records
the duration of time for which the last released job of task
τi has been executed up to time t. Let the current criti-
cality level be denoted by curr. At every time instant t,
if there exists a task τj such that Qj(t) > Cj(curr) (the
task is overrunning at the current level), then the system
switches to the next (higher) criticality level h = curr + 1.
Otherwise, the system computes the worst-case remaining
execution time at level ℓ (where ℓ can be curr − 1 or any
lower level) as act-remi(t, ℓ) = Ci(ℓ)− Qi(t) of every task τi

with Li ≥ curr. The system switches to the lower criticality
level ℓ if the following two sets of conditions are satisfied:

COND1. ∀τi with Li ≥ curr: act-remi(t, ℓ) ≥ 0 (the task
is not overrunning at level ℓ) and

COND2. ∀τi with Li ≥ curr: act-remi(t, ℓ) ≤ ref-remi(t, ℓ)

If any of the above conditions is not satisfied then the system
continues in its current criticality level, curr.

The quantities ref-remi(t, k), where k ∈ {1, 2, . . . , L}, are
obtained from L different alpha-queues (one for each level
of criticality) updated at run-time. The alpha-queue corre-
sponding to level k contains one element for each active task
defined at level k. The element for task τi at level k records
the value of ref-remi(t, k) for the current time t. These L
alpha-queues for mixed-criticality task sets are updated as
follows (mixed-criticality variants of rules R1–R3):

MCR1. Upon the arrival of a job of τi at time t, each alpha-
queue k with k ≤ Li creates an element for task τi and
sets this element to Ci(k), i.e. ref-remi(t, k) = Ci(k).

MCR2. At any time t, the L alpha-queues are sorted by de-
creasing order of the job priorities, with the m highest
priority jobs at the head of the queue.

MCR3. As time elapses, the m elements ref-remi(t, k) (if
any) at the head of each alpha-queue k are decre-
mented. Whenever one element reaches zero, the ele-
ment is removed from the alpha-queue and the update
continues, still with the m highest priority elements (if
any). Obviously, no update is performed on an alpha-
queue that is empty.

5.3 Proof of Correctness

Theorem 3. Consider a task set τ which is deemed A-sche-
dulable on a platform π by a predictable algorithm A. At any
time t during the scheduling of τ by A at the criticality level
curr, it is safe to switch back to the lower criticality level
ℓ < curr if, for all task τi ∈ τ with Li ≥ curr:

act-remi(t, ℓ) ≥ 0 and (8)

act-remi(t, ℓ) ≤ ref-remi(t, ℓ) (9)

Proof. The safety of this approach follows from the me-
mory-less property proven in Lemma 4. Expression 8 asserts
that, at time t, no task running at criticality level curr has
executed for more than its worst-case execution time at level
ℓ (otherwise the task would be overrunning at level ℓ and the
system must continue at the current level). Then, it can be
seen that in Lemma 4, by defining (i) J as the set of jobs of
tasks with criticality level curr, (ii) J ′ as the set of jobs of
tasks with criticality level ℓ and (iii) both S and S ′ as algo-
rithm A, Lemma 4 is applicable to the situation described in
the claim (since Expression 9 is equivalent to Expression 7).
Therefore, switching from criticality level curr to the lower
criticality level ℓ at time t when Expressions 8 and 9 are sat-
isfied does not jeopardize the schedulability of the system.
Hence the proof.

6. DISCUSSION AND CONCLUSIONS
We studied the problem of deciding when to lower the

criticality level of a multiprocessor mixed-criticality system,
so that all the suspended tasks from that (lower) criticality
level can resume execution without jeopardizing the schedu-
lability of the system. We proposed two protocols, one of

191

which could be applied to any fixed-task priority scheduler,
and one of which could be applied to any fixed-job prior-
ity scheduler. For the first protocol, we also provided an
upper-bound on the suspension delay suffered by the lower
criticality tasks. Both protocols are independent of the num-
ber of criticality levels and the number of processors. To the
best of our knowledge, this work presents the first solutions
to the problem of safe criticality reduction on multiprocessor
platforms.

For convenience, throughout the paper, we explained our
protocols for global mixed-criticality scheduling algorithms.
However, it is trivial to see that the proposed protocols also
work for partitioned scheduling, as long as the underlying
(mixed-criticality) scheduling algorithm is fixed job priority
and work conserving. Both protocols can be applied inde-
pendently on each processor. Analogously, for both proto-
cols, depending on the outcome, the criticality level is re-
duced from h to ℓ either (i) on each processor or (ii) only
on those processors in which the respective conditions are
satisfied for lowering the criticality level. Observe that, for
partitioned scheduling, the increase in the run-time over-
head is negligible for the first protocol compared to the sec-
ond protocol. This is because the second protocol now has
to maintain L alpha queues on each processor and needs to
update all these queues at run-time.

Acknowledgments

This work was partially supported by National Funds through
FCT (Portuguese Foundation for Science and Technology)
and by ERDF (European Regional Development Fund) through
COMPETE (Operational Programme ’Thematic Factors of
Competitiveness’), within projects ref. FCOMP-01-0124-
FEDER-022701 (CISTER) and ref. FCOMP-01-0124-FEDER-
020447 (REGAIN); by National Funds through FCT and by
the EU ARTEMIS JU funding, within grant nr. 333053
(CONCERTO) and grant nr. 295371 (CRAFTERS); by
ERDF, through ON2 - North Portugal Regional Operational
Programme, under the National Strategic Reference Frame-
work (NSRF), within project ref. NORTE-07-0124-FEDER-
000063 (BEST-CASE).

7. REFERENCES
[1] Avionics application software standard interface: Part

1 - required services (ARINC specification 653-2).
Technical report, Avionics Electronic Engineering
Committee (ARINC), March 2006.

[2] H. Aydin, R. Melhem, D. Mossé, and P. Mej́ıa-Alvarez.
Power-aware scheduling for periodic real-time tasks.
IEEE Trans. Comput., 53(5):584–600, May 2004.

[3] S. K. Baruah, V. Bonifaci, G. D’Angelo, H. Li,
A. Marchetti-Spaccamela, S. van der Ster, and
L. Stougie. The preemptive uniprocessor scheduling of
mixed-criticality implicit-deadline sporadic task
systems. In ECRTS 2012, pages 145–154.

[4] S. K. Baruah, V. Bonifaci, G. D’Angelo,
A. Marchetti-Spaccamela, S. Van Der Ster, and
L. Stougie. Mixed-criticality scheduling of sporadic
task systems. In ESA 2011, pages 555–566.

[5] S. K. Baruah, A. Burns, and R. Davis. Response-time
analysis for mixed criticality systems. In RTSS 2011,
pages 34–43.

[6] D. de Niz, K. Lakshmanan, and R. Rajkumar. On the
scheduling of mixed-criticality real-time task sets. In
RTSS 2009, pages 291–300, 2009.

[7] N. Guan, P. Ekberg, M. Stigge, and W. Yi. Effective
and efficient scheduling of certifiable mixed-criticality
sporadic task systems. In RTSS 2011, pages 13–23.

[8] N. Guan, M. Stigge, W. Yi, and G. Yu. New response
time bounds for fixed priority multiprocessor
scheduling. In RTSS 2009, pages 387–397.

[9] R. Ha. Validating Timing Constraints in
Multiprocessor and Distributed Systems. PhD thesis,
Department of Computer Science, University of
Illinois at Urbana-Champaign, 1995.

[10] R. Ha and J. W. Liu. Validating timing constraints in
multiprocessor and distributed real-time systems.
Technical report, Department of Computer Science,
University of Illinois at Urbana-Champaign,
Champaign, IL, USA, 1993.

[11] R. Ha and J. W. S. Liu. Validating timing constraints
in multiprocessor and distributed real-time systems. In
ICDCS 1994.

[12] ISO/TC22. ISO26262: Road Vehicules - Functional
Sagety. Technical report, International Organization
for Standardization, 2011.

[13] K. Lakshmanan, D. de Niz, and R. Rajkumar.
Mixed-criticality task synchronization in zero-slack
scheduling. In RTAS 2011, pages 47–56.

[14] H. Li and S. Baruah. Outstanding paper award:
Global mixed-criticality scheduling on multiprocessors.
In ECRTS 2012, pages 166–175.

[15] H. Li and S. K. Baruah. An algorithm for scheduling
certifiable mixed-criticality sporadic task systems. In
RTSS 2010, pages 183–192.

[16] H. Li and S. K. Baruah. Global mixed-criticality
scheduling on multiprocessors. In ECRTS 2012, pages
166–175.

[17] H. Li and S. K. Baruah. Load-based schedulability
analysis of certifiable mixed-criticality systems. In
EMSOFT 2010, pages 99–108.

[18] V. Nelis and J. Goossens. Mora: An energy-aware
slack reclamation scheme for scheduling sporadic
real-time tasks upon multiprocessor platforms. In
RTCSA 2009, pages 210–215.

[19] R. M. Pathan. Schedulability analysis of
mixed-criticality systems on multiprocessors. In
ECRTS 2012, pages 309–320.

[20] F. Santy, L. George, P. Thierry, and J. Goossens.
Relaxing mixed-criticality scheduling strictness for
task sets scheduled with FP. In ECRTS 2012, pages
155–165.

[21] H. Su and D. Zhu. An elastic mixed-criticality task
model and its scheduling algorithm. In DATE 2013,
pages 147–152.

[22] F. A. A. United States. DO-178B: Software
Considerations in Airborne Systems and Equipment
Certification. Technical report, Radio Technical
Commission for Aeronautic, 1992.

[23] S. Vestal. Preemptive scheduling of multi-criticality
systems with varying degrees of execution time
assurance. In RTSS 2007, pages 239–243.

[24] F. Wartel, L. Kosmidis, C. Lo, B. Triquet,
E. Quinones, J. Abella, A. Gogonel, A. Baldovin,
E. Mezzetti, T. V. L. Cucu, and F. Cazorla.
Measurement-based probabilistic timing analysis:
Lessons from an integrated-modular avionics case
study. In SIES 2013, pages 241–248.

192

