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Abstract—Multimedia streaming applications are
traditionally delivered over UDP. Recent measure-
ments show that more and more multimedia streaming
data are over TCP as web-based TV, P2P streaming,
video sharing websites are getting increasingly popu-
lar. To improve the Quality of Experience (QoE) for
users and to cope with variability in TCP throughput,
streaming applications typically implement buffers.
Yet, for improving the QoE and the streaming quality,
e.g., playback continuity and timeliness, it is critical
to dimension buffers and the initial buffering delay
appropriately.

In this paper, we first develop a model for TCP
streaming systems and an analytical framework to
assess the QoE. Our emphasis is on buffer occupancy,
which depends on the TCP arriving rate and the
playout rate (the coding rate). We observe that TCP
window “bounds”, namely congestion window sizes im-
mediately before a triple duplicate or timeout event,
allow to distinguish the minimum and maximum buffer
occupancy for TCP streaming systems. As confirmed
by experiments, the proposed analytical framework
allows to estimate the frequency of buffer overflow or
underflow events if buffer sizes and the initial buffering
delays are known parameters, or conversely, to dimen-
sion the buffer and delay appropriately.

We further extend our model and analysis for P2P
multicast streaming systems. Simulations and experi-
ments in real networks validate our proposed analytical
framework in terms of underflow/overflow probabilities
and delay.

Index Terms—HTTP/TCP streaming, overflow, un-
derflow, delay, buffer size, Quality of Experience (QoE)

I. Introduction

Conventionally, multimedia streaming applications in
the Internet run over UDP instead of TCP due to the
following reasons. First, the additive increase multiplica-
tive decrease (AIMD) congestion control algorithm of TCP
leads to a varying throughput for real-time streams, which
severely impacts the video quality perceived by the end
user. Second, TCP applies packet retransmission to guar-
antee the delivery of packets. But ultimately, such packets
may arrive too late for playback and therefore be useless.
The real-time transport protocol (RTP) [1], therefore, was
designed for streaming multimedia on top of UDP to meet
a lot of functionality for multimedia applications including
communicating the choice of coding scheme, the timing
relationship and synchronization among the sent/received
data, packet loss indication, etc. RTP has been used
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extensively in communication and entertainment systems
such as VOIP and video teleconference applications.

For UDP-based multimedia applications, a main con-
cern in the design of transmission control algorithms
has been the coexistence of traffic with TCP traffic.
Indeed, without congestion control, non-TCP traffic can
cause starvation of TCP traffic if both types of traffic
compete for resources at a congested FIFO queue [2].
Among the principal representatives of the TCP-friendly
congestion control algorithms is the TCP-friendly rate
control (TFRC) algorithm. TFRC is an equation-based
congestion control mechanism over UDP that uses the
TCP throughput function of the measured rate of loss
events derived in [3] to calculate the actual available rate
for a media stream. TFRC was adopted as a profile in
the Datagram Congestion Control Protocol (DCCP) [4].
However, TFRC and other TCP friendly UDP algorithms
are not yet widely used in today’s Internet probably due
to some limitations reported in [5] [6].

Recent measurements [7][8] show that streaming over
TCP is becoming practical and popular as applications
such as web-based TV, P2P streaming, video sharing
websites and social media systems are rapidly adopted
in the Internet. The trend of TCP streaming is mainly
due to the fact that the deployment and the use of
TCP/HTTP multimedia applications is easier than relying
on UDP based multimedia applications given the wide
use of Network Address Translation (NAT) and firewalls.
For example, Adobe HTTP Dynamic Streaming1 over
flash platform is becoming one of the largest categories of
video traffic according to Cisco’s VNI report[9]. It enables
the standard web servers to deliver on-demand and live
streaming of multimedia over regular HTTP connections.

The throughput and performance of multimedia stream-
ing (but also other) applications strongly depend on the
AIMD congestion behavior of the underlying TCP [10]
[11] when reacting the packet loss and delay jitter in the
Internet. In general, today’s Internet only provides a best-
effort service and it does not provide quality of service
(QoS) or guarantees for multimedia streaming applica-
tions. Network conditions such as available bandwidth,
packet loss rate, delay and delay jitter vary over time.
To improve the QoE and to cope with this variability
in TCP data throughput, streaming applications typically
use buffers. While QoE is a subjective measure from the
users’ perspective of the overall service quality, we assess
QoE and the quality of IPTV service in terms of the buffer

1http://www.adobe.com/products/httpdynamicstreaming/
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delay, playback jitter (buffer underflow and overflow) and
video quality in this paper. When TCP packets arrive, they
are inserted into a buffer. To achieve a steady playout,
packets are removed from the buffer at a constant rate.
However, the capacity of devices used in the Internet
ranges from high performance computers to low memory
and performance mobile nodes. Ideally, both the initial
buffer delay and the size of the buffers should be as small
as possible, yet big enough to avoid buffer underflow and
overflow events. Playback stops when an underflow occurs
due to packets arriving late. When an overflow occurs,
video is discontinuous as packets are skipped and lost.
An empirical evaluation in [12] for commercial multimedia
software such as Skype, Google Talk and MSN Messenger
shows that these applications do not dimension and adjust
their buffer sizes very well. Proper buffer and initial buffer
delay dimensioning algorithms and analysis are needed to
provide better QoE.

In this paper, we propose a framework to analyze the
probability of discontinuing playback and delay for any
stream2 under the conditions of the dynamics of the Inter-
net, the variability of TCP throughput and the streaming
buffer size. Guided by our analytical framework for TCP
streaming, a Skype video conference over TCP, for exam-
ple, may trade video quality for playback continuity and
low delay. Namely, Skype may scale down the video quality
to a certain rate much lower than the TCP average avail-
able rate for the desired and less overflow/underflow events
while better meeting the real time delay constraints3.

Figure 2 illustrates the relationship between TCP win-
dow size (namely sending/arriving packets in a round-
trip time), buffer occupancy, and the playout rate in our
analytical framework. The evolution of the congestion
window size of a TCP connection is shown in Figure 1.
Interestingly, we observe that the concept of “bounds”
on TCP congestion window sizes, i.e., the window sizes
immediately before a triple duplicate event4, allow to
distinguish between three cases with respect to the times of
minimum and maximum buffer occupancy within a triple
duplicate period (TDP).

To summarize our contributions, we first develop a TCP
streaming model and analytical framework with emphasis
on relationship between TCP arriving rate (namely TCP
window size number of packets per RTT), buffer occu-
pancy, and the playout rate (the encoding rate). In our
previous work [13], we developed a TCP window “bounds”
model tailored to streaming applications. We find that
TCP window “bounds” aligned with the classification of
Figure 2 allow to describe the relationship among buffer
sizes, the initial buffer delay and overflow/underflow prob-
abilities in an elegant and simple manner.

Secondly, we show that, given desired under-

2Streaming rate and its variability
3The recommended one-way transmission time for interactive ap-

plications is 150 ms in ITU-T Rec. G.114 (05/2003).
4The window size during a TOP (timeout period) is fixed to

1. Hence, playout buffer occupancy during a TOP monotonously
decreases.

flow/overflow probabilities, we can determine appropriate
buffer sizes and the initial buffer delay based on our
framework by using the distribution of TCP window
bounds. Or, conversely, it is possible to estimate
underflow/overflow probabilities if buffer sizes and the
initial buffer delay are given.

Finally, we extend our TCP streaming model and ana-
lytical framework for P2P multicast streaming systems.

We verify our models and analysis both in simulated en-
vironments and in the real Internet with our P2P multicast
streaming system.

The rest of the paper is organized as follows. Section II
reviews related work and highlights the novel aspects of
this work compared to previous work. In Section III, we
present our system model, define the research problems
and QoE metrics for TCP-based streaming. We further
characterize buffer occupancy within a TDP. We scru-
tinize the relationship between buffer sizes and under-
flow/overflow probabilities (Section IV) in various stream-
ing cases. We extend our model and analysis from unicast
to P2P multicast streaming systems in Section V. We eval-
uate the buffer performance in terms of underflow/overflow
probabilities and delay by simulations and experiments in
real networks in Section VI. Finally, we conclude the paper
in Section VII. For completeness, we present the model
and the solution for the distribution of bounds on TCP
congestion window sizes in Appendix A.

II. Related work

Researchers have studied the performance of TCP
streaming with infinite buffers in [14] and with finite
buffers in [15]. Work reported in [14] suggests that TCP
generally provides good streaming performance when the
achievable TCP throughput is roughly twice the media
bit-rate with only a few seconds of startup delay. The per-
formance is measured by late packets in [14]. In [16], buffer
and delay performance of streaming over random VBR
channels was studied. Random VBR channels in [16] are
channels with statistical properties such as wireless access
networks modeled by an extended Gilbert channel. Our
proposed analytical framework is developed for streaming
over TCP channels and it is more comprehensive to ana-
lyze the playback continuity, delay and video quality by
taking the variability of TCP throughput, buffer delay,
buffer size and streaming rate into account. Moreover,
we extend our analytical framework for P2P multicast
streaming. Evaluation of the performance and the quality
of P2P streaming has been a hot topic in the recent past
[17] [18] [19] [20] and [21]. However, these studies rely on
packet traces that are collected from a limited number
of measurement points to infer and estimate the P2P
streaming quality. Without an analytical framework, it is
difficult to systematically understand the properties and
quality of large scale P2P streaming systems through limit
measurements.
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(a) Packets sent during a TDP (b) Evolution of window sizes

Fig. 1. TCP Reno model [3]. The congestion window size is adjusted by packet losses which can be detected by either triple-duplicate ACKs
or timeouts. TDP (triple-duplicate period) is a period ending in triple-duplicate ACKs while TOP (timeout period) is a period ending in a
timeout. During a TDP the congestion window size increases by 1/b packets per round. b is the number of packets that are acknowledged by
an ACK and it is typically 1. We define the duration of a round as the round-trip time (RTT), namely the time between the transmission
of packets and the reception of the first acknowledgment (ACK). The window size is immediately cut to half when triple-duplicate ACKs
are detected. However, when less than three duplicated ACKs are received, a TO period (TOP) begins. During a TOP, the sender waits for
a timeout interval, and then the congestion window size is set to one and the sender retransmits non-acknowledged packets. The timeout
interval in a TOP increases exponentially for each unsuccessful retransmission until it reaches 64T0.

Fig. 2. Window bounds and buffer occupancy for TCP streaming – TDP Case 1: window sizes and arrival rates roughly match playout
rate (The minimum buffer occupancy is when the playout rate equals the arriving rate); TDP Case 2: window sizes and arrival rates are
smaller than stream playout rate (The maximum buffer occupancy is at the beginning of the period and the minimum buffer occupancy is
in the end); TDP Case 3: window sizes and arrival rates are higher than the stream playout rate for stored streams while the arrival rate
is constrained by the coding rate for live streams (The maximum buffer occupancy is at the end of the period and the minimum buffer
occupancy is in the beginning); TOP: window sizes during TOP are set to be one and the buffer occupancy is monotonously decreasing.

III. TCP Streaming system

A. System model

The right side of Figure 3 shows the model of video
streaming systems consisting of TCP connections and a
receiver or a P2P node (for example, node h1) in the P2P
streaming system shown at the left side of the figure. We
assume that the sender transmits CBR video packets over
a unicast TCP connection, and that the receiver node is
equipped with a buffer in front of a video decoder/player.
We assume that one single playout buffer is used both for
smoothing delay jitter and for delivering to the decoder as
work in [22] showed that a single receiver buffer always
performs at least as well as two separate buffers. The
buffer is used to accommodate the fluctuations of the TCP
receiving rate. The decoder waits to fill the buffer to some

degree before beginning to display the video. For P2P
streaming system, data in the buffer are sent to children
nodes over TCP as soon as possible.

Fig. 3. TCP streaming model for P2P node (The left side shows the
P2P overlay tree while the buffer model of a node is described at the
right side.)
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Fig. 4. Buffer occupancy illustration (Each arc is a buffer occupancy
evolution of a TDP (as given in Eq.(4)). The straight line is the buffer
occupancy evolution during a TOP (as given in Eq.(9)).

To model the arrival rate and its variation of TCP
connections, we apply the TCP model proposed in [3].
Let λi,k be the arrival rate (namely, the window size per
RTT round) of video packets at round k of TDPi and
λ̂ be the video encoding/playback rate. We assume λ̂ is
constant. Since QoE degradations are a) buffer underflows
that result in playout disruptions or freezings of images;
b) buffer overflows that result in the loss of data and
non-smooth video; c) the buffer delay include the initial
buffer delay as well as re-buffer delay to fill the buffer
for avoiding further underflows. Intuitively, the longer the
buffer delay is, the less the buffer underflow events are.
The larger the buffer size is, the less the buffer overflow
events are. Fig. 4 illustrates the buffer size with the initial
buffer occupancy and the buffer overflow/underflow events
during streaming.

Table I summarizes the variables and notation for the
TCP streaming system model and buffer occupancy.

B. Problem statement

Given desired delay, buffer overflow and underflow prob-
abilities in the network condition of the packet loss rate
and RTT, the research questions are a) How big should the
buffer be? b) How much should the buffer be filled before
starting to playback?

An analytical framework for TCP streaming is needed
to analyze the trade off of the probability of discontinuing
playback, the buffer size and delay for any specific stream,
given the dynamics of the Internet and the variability of
TCP throughput.

Guided by the analytical framework, we are interested
in dimensioning the buffer size and the initial buffer delay
to provide streaming quality with low buffer delay and
limited underflow probability and overflow probability.
Or, we may estimate the underflow/overflow probability

TDP0 the TDP when packets begin to be played out
q1,0 buffer occupancy at the beginning of of TDP1

qi,k buffer occupancy right after (at) round k of TDPi

qmin minimum buffer occupancy of the TDP
qmax maximum buffer occupancy of the TDP
B buffer size
p packet loss rate
R round-trip time
λi,k arrival rate of video packets at round k of TDPi

λ̂ video encoding/playout rate (packets per round)
λ̄ average TCP sending rate (packets per round)
r(R, p) average available TCP throughput (packets per round)
q0 initial buffer occupancy when playback begins
w0 the TCP window size when playback begins

D initial buffer delay, defined by q0/λ̂
b number of packets that are acknowledged by an ACK
Wi window size at the end of TDPi (window bounds)
Xi the number of rounds in TDPi where a TD loss is detected
Yi the number of packets sent in TDPi

T0 retransmission timeout
Pu buffer underflow probability
Po buffer overflow probability

TABLE I
Notation for TCP streaming

for given buffer sizes and the initial buffer delay. Live
streaming applications such as football matches often have
a requirement of very little playout delay and continuing
playout with low underflow probability. End systems such
as cell phones or PDAs are often confronted with limited
buffer space and not able to store the entire multimedia
content, however still desire low overflow probability of
streams.

C. QoE Metrics

We evaluate the QoE of a video streaming application by
startup delay (namely, the initial buffer delay), the buffer
underflow probability and the buffer overflow probability,

and video quality.
–The initial buffer delay is the time difference between
the first streaming packet arrived in the buffer and it
is sent to decoder. For simplicity, we define the initial
buffer delay D as the time to fill the buffer up to
initial buffer occupancy q0 at the coding rate λ̂, namely
D = q0

λ̂
.

–The buffer underflow/overflow probability is de-
fined by the probability that the buffer is under-
flowed/overflowed in a specific TDP or TOP. The to-
tal number of buffer underflow/overflow events can be
estimated from the buffer underflow/overflow proba-
bility given the streaming length in terms of the av-
erage duration of TDPs and TOPs. We measure the
buffer underflow/overflow events instead of the number
of the packets involved in buffer underflow/overflow
events. A buffer underflow/overflow event may con-
sist of one or more packets underflowed/overflowed
within a TDP/TOP. The difference between buffer un-
derflow/overflow events and buffer underflow/overflow
packets is small for small underflow/overflow proba-
bilities. In our experiments, a long underflow/overflow
event covering multiple TDP time is counted as multi-
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ple events. Therefore, we only consider the number of
underflow/overflow events.
–The video quality is calculated by the encoding rate
for simplicity reason, although the most widely used
objective video quality metric is the peak signal-to-noise
ratio (PSNR). Moreover, the video quality is a non-
linear, increasing and concave function of the encoding
rate [23]. The higher the encoding rate is, the better the
quality of video streaming and the higher the PSNR are.
The video encoding rate and playback rate are the same

λ̂. While the encoding rate is a metric for the video quality,
we assume that it is constant during the QoE analysis.
Therefore, for a specific stream we consider mainly the
initial buffer delay, the buffer underflow and overflow
probabilities as QoE metrics, and trade the encoding rate
and buffer sizes for the playback continuity and timeliness
in this paper.

We further define the buffer size, denoted by B, as the
amount of buffer allocated by the system. The buffer size
may vary from very small such as in nodes in the sensor
network to very large such as in PCs and Servers in the
Internet.

D. Buffer occupancy

Now, let us take a look at the buffer occupancy at
time t. We assumed that the arriving rate is the window
size number of packets per round, λi,k is the number of
packets received during round k of TDPi, and λ̂ packets
are drained at round k of TDPi. We can get λi,k,

λi,k = Wi−1/2 + k − 1 (1)

where k = 1, 2, · · ·Xi and Xi is the round number when
the ith triple duplicate ACKs event is detected Xi = Wi−
Wi−1

2 + 1. We denote round 0 or k = 0 as the beginning
of TDP i before round 1 starts. For simplicity, both the
playout rate and the encoding rate are λ̂ and constant.
The playout buffer occupancy at round of k of TDPi is
qi,k given by

qi,k = qi,k−1 + λi,k − λ̂

= qi,0 +

k∑
n=1

(λi,n − λ̂)

= qi,0 +
k2

2
+

(Wi−1 − 2λ̂− 1)k

2
(2)

where qi,0 is the playout buffer occupancy at the beginning
of TDP i (when k = 0 or before round 1 begins). The
playout buffer occupancy at round 0 of TDP i is given as
follows,

qi,0 = q1,0 +

i−1∑
m=0

Xm∑
k=1

[λm,k − λ̂]

≈ q1,0 + i ∗ k̄(λ̄− λ̂) (3)

where i → ∞, λ̄ is the average throughput of TCP
estimated by the throughput from TDP0 to TDPi−1:

λ̄ ≈
∑i−1

m=0

∑Xm
k=1[λm,k]∑i−1

m=0Xm
, and k̄ is the average number of

rounds of a TDP estimated by the number of rounds from

TDP0 to TDPi−1: k̄ ≈
∑i−1

m=0Xm

i .
Substituting Eq.(3) into Eq.(2), the playback buffer

occupancy at round k of TDPi is

qi,k = q1,0 + i ∗ k̄(λ̄− λ̂) +
k2

2
+

(Wi−1 − 2λ̂− 1)k

2
(4)

The maximum buffer occupancy qmax and the minimum
buffer occupancy qmin of TDPi could be at the time of

∂qi,k
∂k

= 0, or

k = 0 (namely at qi,0), or

k = Xi (5)

The buffer is overflowed during TDPi when the maximum
buffer occupancy of TDPi reaches the buffer size B,
namely qmax ≥ B. On the other hand, buffer is under-
flowed during TDPi when the minimum buffer occupancy
of TDPi reaches empty, namely qmin ≤ 0. We have

Pu = P{qmin ≤ 0} (6)

Po = P{qmax ≥ B} (7)

Therefore, we find in our analysis Eq. (4) - Eq. (7) that
the overflow and underflow probability can be derived from
TCP window bounds W , initial buffer delay q0, streaming
playback rate λ̂ in terms of RTT and buffer size B.

Moreover, the window size and thus its bounds during
TOPs is 1 and the successfully arriving data is zero. Since
all packets are lost in a TOP, no packet is successfully
delivered to the receiver buffer. The playout buffer occu-
pancy during TOP is monotonously decreasing and given
by

qi,k = qi,k−1 − λ̂
= qi,0 − k ∗ λ̂ (8)

Substitute Eq.(3) into Eq.(8)

qi,k ≈ q1,0 + i ∗ k̄(λ̄− λ̂)− k ∗ λ̂ (9)

As a receiving node is either in a TDP or a TOP, the buffer
underflow probability at time t is defined by the sum of
conditional probabilities, such that,

P{qmin ≤ 0} = P{qmin ≤ 0|t ∈ TDP}P{t ∈ TDP}
+P{qmin ≤ 0|t ∈ TOP}P{t ∈ TOP}

(10)

Similarly, the overflow probability for a given buffer size
B is,

P{qmax ≥ B} = P{qmax ≥ B|t ∈ TDP}P{t ∈ TDP}
+P{qmax ≥ B|t ∈ TOP}P{t ∈ TOP}

(11)

We will derive the solutions of buffer underflow/overflow
probabilities for a given buffer size and the initial buffer
delay in Section IV by using the distribution of TCP
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window bounds in Eq. (39) and Eq. (42) derived in Ap-
pendix A and also in our previous work [13]. Or, knowing
desired underflow/overflow probabilities we can determine
the appropriate buffer size and the initial buffer delay by
using the distribution of TCP window bounds.

IV. Performance analysis: from the case study
to the general case

In this section, we study the buffer underflow probability
and the buffer overflow probability given the buffer size
and the initial buffer delay in TCP streaming. We show
that a closed form of TCP congestion window bounds in
Eq.(39) is useful in TCP streaming applications for finding
the right buffer sizes and the initial buffer delay. For a
stream with encoding/playout rate at λ̂ packets per round,
a TCP window bound can be a)as low as 1 during TOP,
b)higher than 1 and up to λ̂, c) higher than λ̂ and up to
2λ̂, or d)higher than 2λ̂. This also corresponds to the four
cases of Figure 2.

In what follows, we will show the underflow probability
and the overflow probability for 3 detailed scenarios of
TCP streaming applications. Then, we will finally present
the underflow probability and the overflow probability for
the general TCP streaming.

A. Scenario 1: The coding rate matches TCP available
throughput

In this subsection, we show that the variance of TCP
window bounds determine the probability of buffer over-
flow and underflow in this scenario where λ̂ = λ̄ = r(R, p).
Intuitively, the higher the variance of TCP window bounds
is, the higher the underflow and overflow probabilities for
the streaming application are. Moreover, the higher the
initial buffer delay is, the lower the underflow probability
is. The higher the buffer size is, the lower the overflow
probability is. Let’s consider a TCP streaming application
where the playout rate matches the TCP average sending
rate (the average window size), namely Case 1 in Figure
2 where Wi

2 < λ̂ < Wi. For more details of the following
derivation, we refer to Appendix B.

For Case 1 in Figure 2, the minimum buffer occupancy
qmin of a TDPi is at round k where

∂qi,k
∂k = 0. We get

k = λ̂− Wi−1

2 + 1 and substitute it into Eq.(4).
The underflow probability of the buffer of TDPi is

the underflow probability of qmin at k = λ̂− Wi−1

2 + 1,

Pu = P{qmin ≤ 0}

= P{qi,0 −
W 2
i−1

8
+

2λ̂+ 1

4
Wi−1 −

λ̂2 + λ̂

2
≤ 0}

= P{Wi−1 ≤ (2λ̂+ 1)−
√

8qi,0 + 1}

When the playout rate matches the TCP average send-
ing rate, qi,0 approximately equals q1,0 in Eq.(3). Substi-
tuting the CDF of TCP window bounds in Eq.(39), we
obtain

Pu = P{qmin ≤ 0} = F (2λ̂+ 1−
√

8q1,0 + 1) (12)

where q1,0 ≈ q0 + 1
18p + 0.2√

p (See in Eq. (53)).
The overflow probability of TDPi is the overflow

probability of qmax at round k = Xi (equivalently, k = 0),

Po = P{qmax > B}

= P{qmin +
W 2
i

2
+Wi(1/2− λ̂) + λ̂2 − λ̂ > B}

= P{Wi > λ̂− 1/2 +
√

2(B − qmin) + 1/4}

= 1− F (λ̂− 1/2 +
√

2(B − q1,min) + 1/4) (13)

where qi,min approximately equals q1,min in Eq.(3) when
the playout rate matches the TCP average sending rate,
and q1,min ≈ q0 − 1

36p + 0.2√
p (See in Eq. (56)).

Knowing the desired underflow/overflow probabilities
we can now determine appropriate buffer sizes and the
initial buffer delay by using the distribution of TCP
window bounds.

Given an underflow probability for a TCP streaming
application with rate λ̂, we derive the initial buffer
occupancy q0 from Eq.(45)

q0 =
(2λ̂+ 1− F−1(Pu))2 − 1

8
− 1

18p
− 0.2
√
p

(14)

And the buffer delay D is

D =
q0

λ̂
(15)

Given an overflow probability for a TCP streaming ap-
plication with rate λ̂ and given the initial buffer occupancy,
the needed buffer size B is derived from Eq.(49)

B =
(1/2− λ̂− F−1(1− Po))2 − 0.25

2
+ q0 −

1

36p
+

0.2
√
p

(16)

B. Scenario 2: The coding rate is much higher than TCP
available throughput

Now let us consider an application where the stream-
ing rate is much higher than TCP available bandwidth,
namely window size and playout rate are mostly in Case
2 and Wi < λ̂ (λ̄ = r(R, p) < λ̂) in Figure 2. In this
application, available bandwidth is not enough for live
streaming. Intuitively, a large buffer delay is needed for
smooth playing back, otherwise underflows are unavoid-
able.

The buffer occupancy is as follows and minimum qi,k is

at k = Xi = Wi − Wi−1

2 + 1 as Wi−1

2 +Xi < λ̂.

qmin = qi,Xi

= qi,0 +
k2

2
+

(Wi−1 − 2λ̂− 1)k

2

= qi,0 +
(Wi − Wi−1

2 + 1)(Wi + Wi−1

2 − 2λ̂)

2
(17)

The underflow Probability Pu is

Pu = P{qmin ≤ 0|t ∈ case2}

= P{qi,0 +
(Wi − Wi−1

2 + 1)(Wi + Wi−1

2 − 2λ̂)

2
≤ 0}

(18)
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The underflow probability changes over the TDP s as
qi,0 = q1,0 + i ∗ k̄(λ̄ − λ̂) and λ̄ − λ̂ < 0. Therefore, when
i >

q1,0

k̄(λ̂−λ̄)
we have qi,0 = q1,0 + i ∗ k̄(λ̄− λ̂) = 0 and

Pu → 1 (19)

For i <
q1,0

k̄(λ̂−λ̄)
, we approximate by Wi ≈Wi−1

Pu ≈ P{Wi <

√
4λ̂2

9
+

4λ̂

3
+ 1− 8qi,0

3
+

2λ̂

3

= F (2λ̂+ 1−
√

6p(qi,0 +
1

3p
)) (20)

The overflow probability Po in TDPi is zero, as
the TCP throughput is always lower than the playout
rate.

Po = P{qmax > B|t ∈ case2} = 0 (21)

C. Scenario 3: The coding rate is much lower than TCP
available throughput

In this scenario, the coding rate is much lower than
the available TCP throughput. For live streams, the TCP
sending rate equals the coding rate which is lower than the
available TCP throughput (λ̂ = λ̄ < r(R, p)). For stored
streams, TCP available bandwidth equals the average
sending rate in this scenario (λ̂ < λ̄ = r(R, p)). In this
scenario (λ̂ < r(R, p) in general), TCP window size and
playout rate are mostly in Case 3, namely P{t ∈ case3} =
1 − F (2λ̂) → 1. Intuitively, live streaming applications
will generally provide good performance (both in terms
of underflows and overflows) as TCP available bandwidth
is over provisioned in the scenario. For stored streaming
applications, a large buffer space is needed for fast down-
loaded data.

Figure 5 illustrates concave increasing window sizes
measured for a live streaming application in this scenario.
The window bounds distribution in Eq. (42) still holds
in this scenario. However, it takes longer than one RTT
to fill a window size number of packets as the sender is
application-limited and offer less data to the network than
the congestion window allowing. If the congestion window
is increased too large to be fully utilized for a period of
one RTO, congestion window will stop increasing as stated
in RFC 2861 (TCP congestion window validation) [24].
For stored streams, the window sizes are linear additive
increasing as normal.

The minimum qi,k is at k = 0 when Wi−1

2 ≥ λ̂, Then the
underflow Probability Pu is

P{qmin ≤ 0|t ∈ case3} = 0 (22)

Then maximum qi,k at k = Wi − Wi−1

2 + 1 Wi−1

2 ≥ λ̂.

qi,k = qi,0 +
k2

2b
+

(Wi−1 − 2λ̂− 1)k

2

= qi,0 +
(Wi − Wi−1

2 + 1)(Wi + Wi−1

2 − 2λ̂)

2
(23)

Fig. 5. Concave increasing window sizes for over-provisioned live
streaming (It takes longer than one RTT to send a window size
number of packets as sender is application-limited. If the congestion
window is increased too large to be fully utilized for a period of one
RTO, congestion window will stop increasing as stated in RFC 2861.)

The overflow probability Po for stored streams is

Po = P{qmax > B|t ∈ case3}

= P{qi,0 +
(Wi − Wi−1

2 + 1)(Wi + Wi−1

2 − 2λ̂)

2
> B}

≈ P{Wi >

√
8

3
(B − qi,0) + (

1 + 2λ̂

3
)2 +

1 + 2λ̂

3
}

= 1− F (

√
8

3
(B − qi,0) + (

1 + 2λ̂

3
)2 +

1 + 2λ̂

3
)

(24)

where Wi ≈ Wi−1. The overflow probability changes
over the TDP s as qi,0 = q1,0 + i ∗ k̄(λ̄− λ̂) and λ̄− λ̂ > 0.

Therefore, when i >
B−q1,0
k̄(λ̄−λ̂)

, qi,0 = q1,0 + i ∗ k̄(λ̄− λ̂) = B

and qi,0 >>
(Wi−

Wi−1
2 )(Wi+

Wi−1
2 −2λ̂−1)

2

Po → 1 (25)

In this scenario, TCP available bandwidth is higher than
streaming coding/playout rate, namely λ̄− λ̂ > 0. For live
streaming, the actual send rate is not higher than coding
rate, namely λi,k ≤ λ̂. Therefore, we have λi,k = λ̂ and
the overflow probability Po for live streams is

P{qmax > Q|t ∈ case3} = 0 (26)

D. The general TCP streaming

Finally, we compute the underflow probability of
TDPi(i >> 1) for TCP streaming in general. In general
TCP streaming, TOP and all TDP cases in Figure 2 may
occur.
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Pu = P{qmin ≤ 0}
= P{qmin ≤ 0|t ∈ case1} · P{t ∈ case1}

+P{qmin ≤ 0|t ∈ case2} · P{t ∈ case2}
+P{qmin ≤ 0|t ∈ case3} · P{t ∈ case3}
+P{qmin ≤ 0|t ∈ TOP} · P{t ∈ TOP}

= F (2λ̂+ 1−
√

8qi,0 + 1)

·(F (2λ̂)− F (λ̂)) · (1−min(1,
3

E[W ]
))

+F (2λ̂+ 1−
√

6p(qi,0 +
1

3p
))

·F (λ̂) · (1−min(1,
3

E[W ]
))

+P{qi,0 − T0 · λ̂ ≤ 0} ·min(1,
3

E[W ]
) (27)

where P{t ∈ TOP} ≈ min(1, 3
E[W ] ), qi,0 = q1,0 + i ∗

k̄(λ̄− λ̂).
Remarks: From Eq. (27), we learn that,

1) The initial buffer delay must be greater than TCP
timeout for a desired low underflow probability;
for very low delay applications such as interactive
video/audio conferences, TCP timeouts, typically on
the order of hundreds miniseconds, post a problem to
the delay requirement of 150 ms in ITU-T Rec. G.114
(05/2003). Therefore, the underflow probability of
these very low delay applications is higher than the
probability of TCP timeouts;

2) The ratio of TCP average sending rate λ̄ and playout
rate λ̂, thus qi,0, determines mainly the underflow
probability: Pu → 0 if λ̄ − λ̂ > 0 and Pu → 1 if
λ̄− λ̂ < 0;

3) For the case of λ̄ = λ̂, either it is over provisioned live
streaming where the larger the difference between
available bandwidth and the playout rate, the lower
the underflow probability (namely, λ̂ ↓ and p ↓=⇒
Pu ↓). In particular, Pu → 0 when λ̄ << r(R, p).
Or, it is the case that available TCP bandwidth
matching playout rate where Pu is determined by
the initial buffer delay, timeouts and the gamma
distribution with parameter p.

The overflow probability for the general TCP streaming
is

Po = P{qmax > B}
= P{qmax > B|t ∈ case1} · P{t ∈ case1}

+P{qmax > B|t ∈ case2} · P{t ∈ case2}
+P{qmax > B|t ∈ case3} · P{t ∈ case3}
+P{qmax > B|t ∈ TOP} · P{t ∈ TOP}

= P{qmax > B|t ∈ case1} · P{t ∈ case1}
+P{qmax > B|t ∈ case3} · P{t ∈ case3} (28)

The buffer occupancy is monotonously decreasing during
TOP and TDP where Wi < λ̂. Therefore, the probability

of overflow in TOP and Case 2 is zero, namely P{qmax >
B|t ∈ TOP} = 0 and P{qmax > B|t ∈ case2} · P{t ∈
case2} = 0 in the derivation of Eq. (28).

For live streaming either in an over-provisioning case
(Case 3) or in the rate-matching case (Case 1), the actual
send rate is not higher than coding/playout rate. In Case 3,
the overflow probability is close to zero namely P{qmax >
B|t ∈ case3} = 0. For over-provisioning live streaming, the
larger difference between available bandwidth and playout
rate, the lower overflow probability (namely, λ̂ ↓ and
p ↓=⇒ Po ↓). Thus, plugging the overflow probability in
Case 1 (Eq. (49)) into Eq. (28), we get

P{qmax > B} = (1− F (λ̂− 1/2 +
√

2(B − q1,min) + 1/4))

·(F (2λ̂)− F (λ̂))(1−min(1, 3

√
3p

8
)) (29)

For stored streaming, plugging the overflow probability
in Case 1 (Eq. (49)) and the overflow probability in Case
3 (Eq. (24)) into Eq. (28), we get

P{qmax > B} = (1− F (λ̂− 1/2 +
√

2(B − q1,min) + 1/4))

·(F (2λ̂)− F (λ̂)) · (1−min(1, 3

√
3p

8
))

+(1− F (

√
8

3
(B − qi,0) + (

1 + 2λ̂

3
)2 +

1 + 2λ̂

3
))

·(1− F (2λ̂)) · (1−min(1, 3

√
3p

8
))

(30)

V. Extending from unicast streaming to P2P
multicast streaming

In the recent past, more and more multimedia streams
have been distributed over application-layer multicast or
P2P multicast. A very large number of P2P multicast
proposals and systems have emerged, see in [25] [26]
and their references. The majority of these systems can
be classified as tree-based systems such as End System
Multicast (ESM) [27] and PeerCast5. In tree-based P2P
multicast systems, the participating nodes are formed into
a tree structure with “parent-child” relationships before
data can be transmitted. Whenever a parent node receives
a packet, it creates a copy and forwards it to each of its
children. A tree-based system is a natural approach and
it is efficient for streaming applications when the tree and
nodes are stable. In most current P2P multicast streaming
systems, TCP is used for underlying congestion control.

We extend our analytical framework for tree-based P2P
multicast streaming systems. As shown in Fig.3, a TCP
connection to a child will send packets as soon as possible
in the P2P streaming. Let us assume a parent node with
the initial buffer delay q0/λ̂ will play a specific packet out
at time t. Consequently, the packet will be played out
at a child node at t + R/2 when its initial buffer delay
is the same as q0/λ̂. R is the round-trip time between

5http://www.peercast.org/
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the child node and the parent node. The buffer at the
parent node is underflowing when the packet due at time
t arrives late than t. Consequently, the packet will arrive
later than t+R/2 at the child node and the child’s buffer
with the initial delay q0/λ̂ will underflow. Therefore, the
underflow probability6 of a peer c with initial buffer
delay qc,0/λ̂ is

P̃c,u = 1−
∏
i

(1− Pi,u) (31)

where Pi,u is the underflow probability of connection i
when having the same initial buffer delay as qc,0/λ̂. Con-
nection i is any unicast upstream along the path from peer
c to root. We assume that the underflow probability of a
unicast connection is independent from other connections.
The underflow probability of each upstream connection is
approximately given in Eq. (27).

A new arriving packet will be dropped due to overflow
when the buffer at the receiver is full of unplayed packets.
Otherwise, it will replace the earliest played out packets.
Similar to the underflow probability for a peer, a packet
is not dropped/overflowed only when it is not dropped at
each of its upstream nodes. The overflow probability7of
a peer c with initial buffer delay qc,0/λ̂ and buffer size Bc
is

P̃c,o = 1−
∏
i

(1− Pi,o) (32)

where Pi,o is the overflow probability of connection i
when having the initial buffer delay qi,0/λ̂ and buffer
size Bi. Connection i is any unicast upstream along the
path from Peer c to root. Again, we assume that the
overflow probability of a unicast connection is indepen-
dent from other connections. The overflow probability of
each upstream connection is approximated in Eq. (29)
when the available bandwidth of its child connections
are no less than the streaming playout rate. When the
available bandwidth of a child connection is lower than
the playout rate, new packets will replace the played but
unforwarded packets in the buffer (packets are not over-
flowed but dropped8). The performance of downstream
nodes will decrease dramatically. A QoS-based tree should
avoid these cases of performance degradation.We assume
a bandwidth/QoS-based tree construction mechanism for
real time P2P streaming: trying to find a good quality node
with enough download/upload bandwidth as a parent.
Intermediate nodes forward the received data as soon as
possible without any delay.

VI. Evaluation

In this section, we validate our analytical framework
by evaluating the underflow and overflow probability for

6More general speaking, packets are arrived later than its playback
time

7More general speaking, packets are dropped or skipped due to the
full buffer

8This is a shortcoming of the single buffer design for both playback
and sending buffer of children connections

various buffer sizes and buffer delay of TCP streaming in
both simulated and testbed environments.

A. Evaluations on TCP streaming buffer

1) Simulation Setup: We use network simulator NS-
2.30 [28] for our simulations. In our simulation setting,
TCP streaming connections are generated over a dumb-
bell topology with one bottleneck link. Cross traffic is
generated by some FTP flows. We find that the packet
loss rate p is close to constant, and the packet losses
are independent as the correlation between subsequent
losses is highly reduced in the high multiplexing on the
bottleneck link. We simulate in the following 3 scenarios
with a duration of 1000 seconds of a precoded video
stream. Moreover we run each scenario 20 times using
random seeds. The bottleneck link has 100 ms delay and
has different capacities for each scenario. All access links
have 100 Mbps capacity and 1 ms delay. In all scenarios,
the TCP stream coding/playout rate is 1 Mbps. The TCP
initial window size is 20 packets, and the packet size is set
to 1200 bytes. In all scenarios, the buffer is filled up to half
buffer size before packets start to be sent for decoding,
namely q0 = B

2 . Thus, we adjust both the initial buffer
delay and the buffer size at the same time. We examine
the streaming overflow/underflow probabilities/events in
buffers with various the buffer sizes and the initial buffer
delay(q0/λ̂).

Scenario 1: The TCP available bandwidth equals to the
stream code rate. In this scenario, 19 FTP flows are com-
peting for the bottleneck link with 20 Mbps capacity. The
measured packet loss rate is 0.002533 and the measured
RTT is 0.229367 ms.

Scenario 2: The stream code rate is higher than the
TCP available rate where 19 FTP flows are competing for
the bottleneck link with 10 Mbps capacity. The measured
packet loss rate is 0.010773 and the measured RTT is
0.2319 ms.

Scenario 3: The stream code rate is lower than the
TCP available rate where 19 FTP flows compete for the
bottleneck link with 60 Mbps. The measured network
packet loss rate is 0.000275 and the measured RTT is
0.223241 ms.

2) Results of 3 Scenarios: We first compare the mea-
sured overflow and underflow probabilities with the analyt-
ical results in the previous sections we derived for Scenario
1. The overflow probability is calculated as the number
of overflowed TDP/TOPs derived by the total number of
TDP/TOPs, so is underflow probability.

Indeed, Fig. 6 and Fig. 7 show that the measured results
are close to our model and analytical results. Small values
for the standard error of the estimate σest confirm this
finding, underlining the expressiveness of our analytical
framework. From Fig. 6 and Fig. 7 we also learn that more
overflow events are more likely to happen than underflow
events with the initial buffer delay q0 set to half of buffer
size when TCP available bandwidth exactly matches the
coding rate. This is somewhat counter-intuitive. We may
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Fig. 6. Overflow probabilities for various initial buffer delays in
Scenario 1 (Initial buffer occupancy and buffer size are both linearly
to initial buffer delays. Initial buffer occupancy: q0 = Dλ̂, buffer size:
B = 2q0, the standard error of the estimate: σest = 0.053)

Fig. 7. Underflow probabilities for various initial buffer delays in
Scenario 1 (The initial buffer occupancy is linearly to the initial buffer
delay. Initial buffer occupancy: q0 = Dλ̂, the standard error of the
estimate: σest = 0.080)

expect the overflow and underflow probability are roughly
same with the initial buffer delay set to half of the buffer
size. Our explanation is that the window size at the time of
starting to playback is more likely closer to the minimum
buffer occupancy than the maximum buffer occupancy of a
TDP as the buffer occupancy is non-linear with the round
k in the TDP . In this scenario, TCP can provide streaming
for a low underflow/overflow probability with less than 30
seconds buffer delay when streaming at the average TCP
available rate in a steady network.

In the simulation Scenario 2, the overflow probability
measured is very close to zero, obviously because the TCP
throughput is always lower than playout rate. This is
expected from our model. Figure 8 shows the underflow
events (probability) in the simulation of Scenario 2 with
varying initial buffer delay. For a specific TDPi, its initial
buffer occupancy qi,0 namely q1,0 + i∗ k̄(λ̄− λ̂), decides the
underflow probability of this TDPi. Given the streaming
time length and λ̄− λ̂, the underflow probability tends to
be 0 when q1,0 > i∗ k̄(λ̄− λ̂). When q1,0 < i∗ k̄(λ̄− λ̂), the
underflow probability tends to be 1. Figure 8 shows how
much the underflow probability is affected with different
initial buffer delay q1,0 given the streaming duration of
1000 seconds and λ̄− λ̂.

Fig. 8. Underflow probability in Scenario 2

In the simulation of Scenario 3, the overflow events mea-
sured is shown in Figure 9 with varying initial buffer delay
for stored streams. For a specific TDPi, the buffer size B
and its initial buffer occupancy qi,0 namely q1,0+i∗k̄(λ̄−λ̂),
decides the overflow probability of this TDPi. Given the
streaming time length and λ̄− λ̂, the overflow probability
tends to be 0 when B − q1,0 > i ∗ k̄(λ̄ − λ̂). When
B − q1,0 < i ∗ k̄(λ̄ − λ̂), the overflow probability tends
to be 1. The underflow probability for stored streams in
this Scenario is close to zero which is expected from the
model.

We simulate also this over-provisional scenario for the
live stream where CBR and video traces over TCP are
used. We find that both the overflow probability and the
underflow probability for the live stream are close to zero,
which is intuitive and confirmed from our analysis. This
means for over provisional live streaming only a small
buffer size and initial buffer delay are enough for very low
underflow/overflow probability.
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Fig. 9. Overflow probability in Scenario 3 for stored streams

B. P2P multicast streaming experiment results on Planet-
Lab

Since the network environment in the Internet is dy-
namic and unknown, we examine our model for overlay
streaming qualitatively on PlanetLab9.
Network conditions and measurements settings:
From April to July in 2010, our experimental video server,
located at Communication University of China, multicas-
ted repeatedly the same video (Alizee - La Isla Bonita)
with a streaming rate of 300 Kbps simultaneously into
three P2P streaming channels. Our P2P system is an
improved version of PeerCast. We set buffer size B to
B = 12, 64, and 128 packets respectively and all q0 = B/2
for three streaming channels. Each packet is of size 16
KBytes. We used Iperf10 to measure the TCP available
bandwidth in parallel with three streaming channels. We
assume that three channels experience the same network
conditions and the same streaming application, namely
the same round-trip time R, packet loss rate p and play-
out rate λ̂. We examine the different underflow/overflow
probabilities of three channels with different buffer sizes.
While we have carried out experiments on a large number
of P2P topologies, we present here some representative
results. Four P2P multicast nodes on PlanetLab were
selected as shown in the topology in Fig.10. There were
no long-term bottleneck connection in the topology as the
average available TCP rates are 1-3Mbps measured by
Iperf. Fig. 11 shows the underflow events (late packets)
of P2P multicast streaming nodes for each channel while
Fig.12 shows the overflow events detected.

The following observations in the experiments reflected
our analysis in Section IV and Section V.

1. A larger buffer gets a smaller number of overflow and

9www.planet-lab.org
10http://iperf.sourceforge.net/

Fig. 10. Experiment example topology on PlanetLab

Fig. 11. Underflow events of peers and channels

underflow events, however a longer delay at each node.
The longer the buffer delay is, the less the buffer underflow
events are. The larger the buffer size is, the less the buffer
overflow events are.

2. Due to TCP traffic co-existing with our inserted
Iperf traffic and a longer path to the multicasting server,
child nodes experience a somewhat higher number of
overflow and underflow events than their parent nodes for
over-provisioned live streaming. The larger the difference
between the available bandwidth and the playout rate is,
the lower the underflow probability is.

3. During our experiments, we also find other possible
factors influencing the overflow/underflow packets, namely
dynamics of packet losses, timeouts and dynamics of
streaming rate.

VII. Conclusion

In this paper, we proposed an analytical framework
for QoE in terms of the playback continuity (underflow
and overflow probabilities), timeliness (delay) and the
video quality in TCP-based streaming systems. Using the
variance of TCP window bounds, we derived the underflow
and overflow probabilities for the given buffer sizes and
buffer delay. Or, given the required underflow/overflow
probabilities we allocate appropriate buffer sizes and the
initial buffer delay. From our analytical framework we
conclude the following general results. a) AIMD plays a
role only in the rate match scenarios. However, timeouts
and retransmission always plays a role in very low delay
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Fig. 12. Overflow events of peers and channels

applications and large RTT networks. b) The difference
between the available bandwidth and the streaming rate
mainly decide the buffer size needed for a low discontinuity
of playout. c) In P2P multicast streaming, due to the
long path to the broadcasting server, child nodes having
the same buffer size and initial delay will experience a
somewhat higher number of overflow and underflow events
than parent nodes.
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Appendix A
TCP congestion windows Model

In this appendix, we propose a simple model based on
Padhye’s model in [3], however, our model is accurately
tractable by a Gamma distribution. Then we derive the
distribution of the distribution of TCP window bounds
which is useful for the performance analysis of TCP
streaming.

Many TCP models such as [3] [29] [10] [11] have been
proposed and used for network research investigating prob-
lems such as active queue management, TCP-friendliness,
performance analysis, etc. Our TCP model differs from the
previous work and we study congestion window variance
with a focus on computing bounds for TCP congestion
window sizes.

Our analytical model is based on the TCP
Reno/NewReno/SACK model [3] in Figure 1 because TCP
Reno is still the most widely used TCP implementations
in the Internet11. p denotes the packet loss rate. We
assume p is stationary for a certain time scale as the
correlation between subsequent losses is highly reduced
by the high statistical multiplexing on high speed links
[31].

To derive the solution, we first assume that the proba-
bility of timeouts is small. This is the case when the packet
loss rate is low and the congestion of the network is also
low. In such cases we can restrict our analysis mostly on
the TDP of TCP streaming. We further extend our model
by taking TOP into account.

A. Triple duplicate ACKs

The duration of a round within a TDP period is defined
by a duration between the transmission of packets and
the reception of the first acknowledgment (ACK) in a
congestion window. The duration of a round is equal
to the round-trip time (RTT) and it is independent of
the window size when the network is highly statistically
multiplexed with TCP connections. According to the ad-
ditive increase/multiplicative decrease TCP algorithm the
window size increases by one packet per round and is
reduced to half of its size immediately after receiving a
triple duplicate ACK. Let Wi be the window size at the
end of the ith TDP (TDPi). Hence, Wi−1/2 is the window
size at the beginning of TDPi, and Wi and Wi−1/2 are
the upper and lower bounds for the TCP window sizes
during TDPi. According to Padhye et al. [3], the number
of rounds during TDPi is Wi−Wi−1/2+1. We refer to Yi as
the number of packets successfully sent in TDPi illustrated
in Fig.13, and compute it as follows:

11Windows 7 is using TCP Reno by default. BSD systems and
BSD-based systems such as Mac OS by default are using SACK,
a modifaction of Reno. Reno is also available and used in Linux
distributions although is being replaced by new TCP variants such
as Cubic [30].

Fig. 13. The number of packets successfully sent in TDPi

Yi =

Xi∑
k=1

(
Wi−1

2
+ k − 1)

=
(W 2

i −
W 2

i−1

4 )

2
+
Wi + Wi−1

2

2

≈
(Wi + 1)2 − (Wi−1+1)2

4

2
, (Wi >> 1) (33)

where Xi = Wi− Wi−1

2 +1. We can model the distribution
of Wi as a Markov process and obtain the stationary
distribution of window size Wi, and thus also of Wi−1/2
at the beginning of the same TDP. Transforming Eq. (33)
results in the state transition from Wi−1 to Wi:

(Wi + 1)2 − (Wi−1 + 1)2

4
≈ 2 · Yi, i = 1, 2, ... (34)

We assume each packet has the loss probability p and
packet losses are independent in low-congestion networks.
Thus, P{Yi = n} = (1− p)n · p, (n = 1, 2, . . .), and it is a
Geometric distribution for packet loss rates p� 1. While
Yi and Wi are discrete variables in the end, we treat them
as continuous as they could be divided into non-integers in
the following derivation. Each Yi of ith TDP (i = 1, 2, . . .)
follows the exponential distribution:

P{Yi = x} = p · ex·ln(1−p) = p · e−p·x, (x ≥ 0, p� 1) (35)

Note that Y1, Y2, . . . , Yi are independent, and all follow the
exponential distribution. Then we define a new variable ψ
as the sum of the weighted Yi variables for the following
derivation. In particular,

ψ = 2 ·
i∑

k=1

Yk
4i−k

(36)

According to statistical theory [32], the distribution
for sequentially independent exponentially distributed
variables with the same scale parameter θ = 1/p is a
Gamma distribution with the sum of the shape parameters
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s, and the scale parameter θ = 1/p.

s = 2( 1
4i−1 + 1

4i−2 + 1
4i−3 + ...+ 1)) = 8/3 (i→∞)

Thus, the gamma distribution of ψ is Γ(8/3, 1/p). Sub-
stituting Eq.(34) into Eq.(36), we get

ψ = 2 ·
i∑

k=1

Yk
4i−k

= (Wi + 1)2 − (Wi−1 + 1)2/4 + (Wi−1 + 1)2/4

−(Wi−2 + 1)2/42 + . . .

= (Wi + 1)2 (37)

Let Fψ is the cumulative distribution function (CDF) of
ψ namely Fψ(W ) ≡ Pr(ψ ≤W ). Then, the CDF of Wi is

F (W ) ≡ Pr(Wi ≤W ) = Pr(ψ ≤ (W+1)2) = Fψ((W+1)2)
(38)

Therefore the cumulative distribution function (CDF) of
Wi is,

F (W ) =
γ(8/3, p(W + 1)2)

Γ(8/3)

= 0.6646γ(8/3, p(W + 1)2),W = 1, 2, 3 . . .(39)

Remark : Compared with the expected value of Wi in
Eq.(14) in [3], our solution is the first to provide the
distribution of Wi (the bounds of TCP window sizes). Note
that the distribution of window sizes and bounds still holds
for live streams where it may take more than one RTT
round for data packets to fill the window sizes.

B. Timeouts

Now, we extend our analysis to include the case where
packet losses are detected by timeouts. Let Q be the proba-
bility that a packet loss is recognized via a timeout. During
a TOP, the window size is reduced to one. Then, the closed
form for the distribution of TCP window (upper) bounds
is:

F̂ (W ) = (1−Q)F (W ) +Q,W ≥ 1 (40)

According to Padhye et al. [3] the probability Q can be
approximated as follows:

Q ≈ min(1, 3

√
3p

8
) (41)

By substituting Eq. (41) into Eq. (40), we finally obtain:

F̂ (W ) ≈ (1−min(1, 3

√
3p

8
))F (W )

+min(1, 3

√
3p

8
),W ≥ 1 (42)

We point out that the distribution of Eq. (39) is an
approximation of Eq. (42) if the probability of a timeout
is very low. In Section IV we will leverage our insights to
describe the relationship between buffer sizes, the initial
buffering delay and overflow/underflow probabilities in
TCP streaming.

In our previous work [13], we verified the TCP window
bound model, and results showed that the bounds of
TCP window can be closely modeled by the Gamma
distribution. In addition, we have got almost the same
results for different TCP variants including TCP Reno,
TCP NewReno and TCP SACK. Hence, our TCP model,
which is a simple model however accurately tractable by
Gamma distribution, results accurate and closed analytical
solutions. Namely, Eq. (39) is a simple yet accurate closed
form solution.

Appendix B
Underflow and overflow probability in

Scenario 1

Scenario 1: Coding rate matches TCP available through-
put

This appendix shows more details of the derivation
of the probability of buffer overflow and underflow in
Scenario 1. Let’s consider a TCP streaming application
where the playout rate matchesthe TCP average sending
rate (average window size), namely Case 1 in Figure 2
where Wi

2 < λ̂ < Wi. In this application, we assume

P{t ∈ case1} = F (2λ̂)−F (λ̂)→ 1, thus P{t ∈ TDP} → 1
and P{t ∈ TOP} → 0.

The minimum buffer occupancy qmin of TDPi is at qi,k
when

∂qi,k
∂k = 0, thus k = λ̂− Wi−1

2 + 1,

qmin = qi,0 +
k2

2
+

(Wi−1 − 2λ̂− 1)k

2

= qi,0 −
W 2
i−1

8
+

2λ̂+ 1

4
Wi−1 −

λ̂2 + λ̂

2
(43)

The underflow Probability of the buffer of TDPi is
the underflow probability of qmin,

Pu = P{qmin ≤ 0}

= P{qi,0 −
W 2
i−1

8
+

2λ̂+ 1

4
Wi−1 −

λ̂2 + λ̂

2
≤ 0}

= P{Wi−1 ≤ (2λ̂+ 1)−
√

8qi,0 + 1} (44)

When the playout rate matches the TCP average sending
rate, qi,0 approximately equals q1,0 in Eq. (3). Substitute
Eq. 44 into the CDF of TCP window bounds and we get
finally

Pu = P{qmin ≤ 0}
= F (2λ̂+ 1−

√
8q1,0 + 1) (45)

Since the window size w0 at initial buffer occupancy q0

may range from W0/2 to W0. The worst case is the time to
start playing back is the beginning/end of the first TDP.
Then q1,0 = q0, w0 = W0/2 and

Pu,worst = F (2λ̂+ 1−
√

8q0 + 1) ≥ Pu (46)

The maximum buffer occupancy qmax is at qi,k when

k = Wi − Wi−1

2 + 1 (or, k = 0 equivalently),
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qmax = qi,0 +
k2

2
+

(Wi−1 − 2λ̂− 1)k

2

= qi,0 +
(Wi − Wi−1

2 + 1)(Wi + Wi−1

2 − 2λ̂)

2

= qmin +

Wi−
Wi−1

2 +1∑
k=λ̂−Wi−1

2 +2

(Wi−1/2 + k − 1− λ̂)

= qmin +
W 2
i

2
+Wi(1/2− λ̂) + (λ̂2 − λ̂)/2(47)

The overflow probability of TDPi, namely the overflow
probability of qmax,

Po = P{qmax > B}

= P{qmin +
W 2
i

2
+Wi(1/2− λ̂) + λ̂2 − λ̂ > B}

= P{Wi > λ̂− 1/2 +
√

2(B − qmin) + 1/4} (48)

When the playout rate matches the TCP average sending
rate, qi,min approximately equals q1,min in Eq. (3). Sub-
stitute into the CDF of TCP window bounds and we get,

Po = P{qmax > B}

= 1− F (λ̂− 1/2 +
√

2(B − q1,min) + 1/4) (49)

The worst case is the time to start playing out is the
minimum buffer occupancy of TDP1. Then q0,min = q0,
w0 = λ̂ and

Po,worst = 1− F (λ̂− 1/2 +
√

2(B − q0) + 1/4) ≥ Po (50)

To find out the expected value of Pu, we need the
expected value of q1,0. Let us assume the playout started
at k0 round in TDP0. The initial buffer occupancy is,

q0 = q1,0 −
X0∑
n=k0

(λi,n − λ̂)

= q1,0 +
(X0 − k0)2

2
− (X0 − k0) · (W0 − λ̂−

1

2
)− (W0 − λ̂)

(51)

where λi,n = W0 −X0 + n. The expected value of q1,0 is,

E[q1,0] = q0 − E[
(X0 − k0)2

2
− (X0 − k0) · (W0 − λ̂−

1

2
)

−(W0 − λ̂)]

= q0 −
1

X0
[

X0∑
k0=1

(X0 − k0)2

2

−(X0 − k0) · (W0 − λ̂−
1

2
)] + (W0 − λ̂)

= q0 −
(X0 − 1)(2X0 − 1)

12
+

(X0 − 1)(W0 − λ̂− 1/2)

2

+(W0 − λ̂)

≈ q0 −
(
√

2
3p − 1)(2

√
2
3p − 1)

12

+
(
√

2
3p − 1)(

√
8
3p − λ̂− 1/2)

2
+

√
8

3p
− λ̂

= q0 +
1

9p
+ 1/6 +

√
2

3p
−

√
2
3p + 1

2
λ̂ (52)

where W0 ≈ E[W0] =
√

8
3p , X0 ≈ E[X0] =

√
2
3p . For

scenario 1 λ̂ ≈
√

3
2p , then

E[q1,0] ≈ q0 +
1

18p
+

0.2
√
p

(53)

Given desired underflow probability for a TCP stream-
ing application with rate at λ̂, the initial buffer occu-
pancy q0 and buffer delay D needed is

q0 = q1,0 −
1

18p
− 0.2
√
p

=
(2λ̂+ 1− F−1(Pu))2 − 1

8
− 1

18p
− 0.2
√
p

(54)

D =
q0

λ̂
(55)

To find out th expected value of Po, we need the
expected value of qmin. Similar to the method to find the
expected value of q1,0, we get

E[qmin] = E[qi,0]− 1

12p
≈ q0 −

1

36p
+

0.2
√
p

(56)

Given desired overflow probability for a TCP streaming
application with rate at λ̂ and initial buffer occupancy, the
buffer size B needed is derived by substituting Eq.(56)
into Eq.(49):

B =
(1/2− λ̂− F−1(1− Po))2 − 0.25

2
+ qmin

=
(1/2− λ̂− F−1(1− Po))2 − 0.25

2

+q0 −
1

36p
+

0.2
√
p

(57)


