Power Management for Solar-Driven Sensor Nodes

Clemens Moser
(joint work with D. Brunelli, L. Thiele and L. Benini)

Outline

- System Model
- Problem Statement
- Lazy Scheduling
- Admittance Test
- Simulation
- Conclusion

System Model

energy source

energy storage

computing device

tasks

Task J_i

- can be preempted
- arrives at time a_i
- has deadline d_i
- needs total energy e_i to complete
- can consume power $0 \leq P_D(t) \leq P_{max}$
- therefore, needs time

$$w_i \geq \frac{e_i}{P_{max}}$$
Problem Statement

- Determine an **optimal on-line scheduling** algorithm:

 If the task set is schedulable, it determines a feasible schedule.

- Construct an **admittance test**:
 Determine, whether a set of event streams with a given characteristic is schedulable.

Nothing known so far …

Problem Statement - EDF

Greedy scheduling is not suited.
Problem Statement - ALAP

ALAP does not work either.
And what happens if the energy storage is full?

Lazy Scheduling Algorithm

optimal starting time s_i

$$s_i = d_i - \frac{\min (E_C(a_i) + E_S(a_i, d_i), C + E_S(s_i, d_i))}{P_{max}}$$

Rule 1: All tasks with $s_i \leq t$ are processed with EDF scheduling using P_{max}.

Rule 2: If there is no task with $s_i < t$ and the energy storage is full, all incoming power $P_S(t)$ is assigned to the task with the currently earliest deadline.
Optimality of Lazy Scheduling Algorithm

Theorem:
If the Lazy Scheduling Algorithm LSA cannot schedule a given set of tasks, then no other scheduling algorithm can schedule it.

Sketch of Proof

Energy-Constrained

\[\Delta : \text{with } C + E_S < \sum_{i} e_i \]

Time-Constrained

\[\Delta : \text{with } \Delta < \frac{\sum_{i} e_i}{P_{\text{max}}} \]
Admittance Test

Is the scheduling of the event streams feasible with LSA?

Event stream: delay requirement d
energy request per event c
arrival curve $\alpha(\Delta)$

Energy source: energy variability $[c^l(\Delta), c^u(\Delta)]$

Admittance Test

A given set of event streams J_i, $i \in I$ is schedulable with initially stored energy C, iff

$$\forall \Delta : \sum_{i \in I} e_i \alpha_i(\Delta - d_i) \leq \min \{c^l(\Delta) + C, P_{max} \Delta\}$$
Simulation Results

Capacity savings of ~40% measured for random task sets for LSA with \(\varepsilon'(\Delta) \) compared to EDF

Conclusions

Scheduling Scenario	Optimal Lazy Scheduling	Admittance Test	Simulation Results
EDF | LSA with \(\varepsilon' \) | \(C_{\text{min}} \) |
Future Work

- Modular Real-Time Analysis

\[e^1(\Delta) \]

- \(d_1, e_1 \)
- \(d_2, e_2 \)
- \(d_3, e_3 \)