Internet Path Transparency
Measurements using RIPE Atlas

Brian Trammell and Mirja Kühlewind, ETH Zürich
(with thanks to Emile Aben, RIPE NCC)
Measurements and Tools WG, RIPE 72 Copenhagen, 25 May 2016
path transparency (in one slide) (From MAT at RIPE 71)

- The Internet is not end-to-end...
 - some of this is policy, but a lot of it is accident
 - deployment of new protocols over IP, transport extensions difficult or impossible
- ...but some paths are worse than others.
 - Goal: data on "how bad" and "where" to guide future protocol design
 - In operations: another tool for troubleshooting connectivity dependency for unusual traffic
Background: Active Measurement of Path Transparency

- Basic methodology:
 1. throw a bunch of packets at the Internet
 2. see what happens.
- Ideal: two-ended A/B testing
- Scalable: one-ended A/B testing
- Multiple sources: isolate on-path from near-target impairment
“Can we run the Internet over UDP?”

- UDP encapsulation attractive for new transport protocols
 - (mostly) NAT- and middlebox-compatible header
 - wide availability of APIs in userland
- Lots of current work:
 - WebRTC data channel: SCTP/DTLS/UDP
 - QUIC: new HTTP/2 new transport over UDP
 - SPUD PLUS: universal shim for explicit cooperation
- *Is this safe?*
 - Widespread operational practice may hinder UDP
RIPE Atlas to the rescue

- No arbitrary TCP/UDP on Atlas…
- …but: traceroute!
- basic connectivity and first-packet latency with high TTL
- Many probes to many anchors
- How many probes on UDP blocked networks?
- Is blocking path- or access-network dependent?
TCP appears more impaired than UDP

Connectivity, UDP/33435 vs TCP/33435, <= 19 trials, 128 probes to 32 anchors
September 2015
RTT bias mostly probe-dependent

Median RTT bias, UDP/33435 vs TCP/33435, <= 19 trials, 128 probes to 32 anchors September 2015
More interference with TCP/80

Median RTT bias, UDP/33435 vs TCP/80, <= 19 trials, 128 probes to 32 anchors
September 2015
RTT bias spread tighter on IPv6 than IPv4

Median RTT bias, UDP/33435 vs TCP/33435, 464 probes to APNIC anchor
February 2016
...not so fast: UDP blocked on one in thirty Atlas probe networks

- Methodology: find all probes
 - that tried to do at least 9 UDP traceroutes in 2015
 - to targets that were up at the time
 - and that showed connectivity via TCP or ICMP
- 2240 probes meet this criterion
 - How many of these never succeeded via UDP?
- 82 probes, largely on networks with marginal connectivity

- Running the Internet over UDP needs a backup for this 3.6%
 - (In line with a 6-7% “QUIC doesn’t work” reported in HOPSRG)
Are larger UDP packets blocked?

- Apparently not
- one-off measurement, Mar '16, 9396 probes to one anchor
- No additional blocking after 512, 1024 for IPv4
- (In this short campaign, 296 of 9262 probes (3.2%) may block UDP)
Conclusions

- Atlas useful for estimating UDP connectivity
 - it’s a hack, but it’s a nice one
- Basic UDP connectivity not very broken
 - Works on 29 in 30 (RIPE Atlas) access networks
 - Easy to find out when you’re on the other one
- Running the internet over UDP not prevented by blocking
 - 3% failure is a lot, but fallback helps.
Bonus slide: Adding new layers to the stack for fun and profit

Why care so much about UDP connectivity?

Path Layer UDP Substrate (PLUS):
BoF at IETF 96, Berlin, 17-22 July

Enables in-protocol performance measurement headers

See Mirja Kühlewind’s RACI talk (y’day) (maybe coming soon to a RIPE BoF near you?)