Think Global – Act Local

Roger Wattenhofer
Think global... act local.

Think Globally
Act Locally
Town Planning *Patrick Geddes*
Architecture Buckminster Fuller
Computer Architecture Caching
Robot Gathering

e.g., [Degener et al., 2011]
Natural Algorithms

[Bernard Chazelle, 2009]
game theory
Algorithmic Trading
Think Global – Act Local

...is there a theory?
Complexity Theory

Can a Computer Solve Problem P in Time t?
Can a Computer Solve Problem P in Time t?

Complexity Theory

Network

Distributed

(Think Global - Act Local)
Distributed (Message-Passing) Algorithms

- Nodes are agents with unique ID’s that can communicate with neighbors by sending messages. In each synchronous round, every node can send a (different) message to each neighbor.
Distributed (Message-Passing) Algorithms

- Nodes are agents with unique ID’s that can communicate with neighbors by sending messages. In each synchronous round, every node can send a (different) message to each neighbor.

- **Distributed (Time) Complexity**: How many rounds does problem take?

```
  17
 /   \
69---11
 |   |
10---10
 |   |
 10---10
```

Each round:
1. send msgs
2. rcv msgs
3. compute
An Example

each round:
every node:
1. send msgs
2. rcv msgs
3. compute
How Many Nodes in Network?

each round: every node:
1. send msgs
2. rcv msgs
3. compute
How Many Nodes in Network?

each round:
every node:
1. send msgs
2. rcv msgs
3. compute
How Many Nodes in Network?

each round: every node:
1. send msgs
2. rcv msgs
3. compute
How Many Nodes in Network?

With a simple flooding/echo process, a network can find the number of nodes in \textit{time} $O(D)$, where D is the diameter (size) of the network.
Diameter of Network?

- Distance between two nodes = Number of hops of shortest path
Diameter of Network?

- **Distance** between two nodes = Number of hops of shortest path
Diameter of Network?

- **Distance** between two nodes = Number of hops of shortest path
- **Diameter** of network = Maximum distance, between any two nodes
Diameter of Network?
Networks Cannot Compute Their Diameter in Sublinear Time!

(even if diameter is just a small constant)

Pair of rows connected neither left nor right? Communication complexity:
Transmit $\Theta(n^2)$ information over $O(n)$ edges $\Rightarrow \Omega(n)$ time!

[Frischknecht, Holzer, W, 2012]
What about a “local” task?
Example: Minimum Vertex Cover (MVC)

• Given a network with n nodes, nodes have unique IDs.
• Find a Minimum Vertex Cover (MVC) – a minimum set of nodes such that all edges are adjacent to node in MVC
Example: Minimum Vertex Cover (MVC)

- Given a network with n nodes, nodes have unique IDs.
- Find a Minimum Vertex Cover (MVC)
 - a minimum set of nodes such that all edges are adjacent to node in MVC
Example: Minimum Vertex Cover (MVC)

- Given a network with \(n \) nodes, nodes have unique IDs.
- Find a Minimum Vertex Cover (MVC) – a minimum set of nodes such that all edges are adjacent to node in MVC.
On MVC

- Find an MVC that is “close” to minimum (approximation)
- Trade-off between time complexity and approximation ratio

- MVC: Various simple (non-distributed) 2-approximations exist!
- What about distributed algorithms?!?
Finding the MVC (by Distributed Algorithm)

- Given the following bipartite graph with $|S_0| = \delta |S_1|
- The MVC is just all the nodes in S_1
- Distributed Algorithm...
Finding the MVC (by Distributed Algorithm)

- Given the following bipartite graph with $|S_0| = \delta |S_1|$.
- The MVC is just all the nodes in S_1.
- Distributed Algorithm...
Finding the MVC (by Distributed Algorithm)

• Given the following bipartite graph with $|S_0| = \delta |S_1|
• The MVC is just all the nodes in S_1
• Distributed Algorithm...
$N_2(\text{node in } S_0)$

$N_2(\text{node in } S_1)$
Graph is “symmetric”, yet highly non-regular!
Lower Bound: Results

- We can show that for $\varepsilon > 0$, in t time, the approximation ratio is at least

\[
\Omega \left(n^{\frac{1}{4} - \varepsilon} \right) \quad \text{and} \quad \Omega \left(\Delta^{\frac{1 - \varepsilon}{t+1}} \right)
\]

- Constant approximation needs at least $\Omega(\log \Delta)$ and $\Omega(\sqrt{\log n})$ time.
- Polylog approximation $\Omega(\log \Delta / \log \log \Delta)$ and $\Omega(\sqrt{\log n / \log \log n})$.

[Kuhn, Moscibroda, W, journal version in submission]
Lower Bound: Results

- We can show that for $\epsilon > 0$, in t time, the approximation ratio is at least
 \[\Omega \left(n^{\frac{1}{4} - \frac{\epsilon}{t^2}} \right) \text{ and } \Omega \left(\frac{\Delta^{1-\epsilon}}{t+1} \right) \]

- Constant approximation needs at least $\Omega(\log \Delta)$ and $\Omega(\sqrt{\log n})$ time.
- Polylog approximation $\Omega(\log \Delta / \log \log \Delta)$ and $\Omega(\sqrt{\log n / \log \log n})$.

[Kuhn, Moscibroda, W, journal version in submission]
Lower Bound: Reductions

- Many “local looking” problems need non-trivial t, in other words, the bounds $\Omega(\log \Delta)$ and $\Omega(\sqrt{\log n})$ hold for a variety of classic problems.

[Kuhn, Moscibroda, W, journal version in submission]
Lower Bound: Reductions

- Many “local looking” problems need non-trivial t, in other words, the bounds $\Omega(\log \Delta)$ and $\Omega(\sqrt{\log n})$ hold for a variety of classic problems.

[Kuhn, Moscibroda, W, journal version in submission]
Olympics!
Distributed Complexity Classification

1 \log^* n \quad \text{polylog } n \quad D \quad \text{poly } n

- \text{e.g., dominating set approximation in planar graphs}
- \text{MIS, approx. of dominating set, vertex cover, ...}
- \text{diameter, MST, verification of e.g. spanning tree, ...}
- \text{various problems in growth-bounded graphs}
- \text{count, sum, spanning tree, ...}
Distributed Complexity Classification

- **1** \(\log^* n\)
- **polylog** \(n\)
- **\(D\)**
- **poly** \(n\)

- **"easy"**
 - MIS, approx. of dominating set, vertex cover, ...
 - count, sum, spanning tree, ...

- **"hard"**
 - diameter, MST, verification of e.g. spanning tree, ...

- e.g., dominating set approximation in planar graphs
- various problems in growth-bounded graphs

Locality

- Local Algorithms
- Sublinear Algorithms

The diagram illustrates the relationship between locality and algorithms, showing how local algorithms are a subset of sublinear algorithms.
Locality is Everywhere!

- Self-Assembly
- Applications e.g. Multi-Core
- Local Algorithms
- Sublinear Algorithms
- Dynamic Networks
- Self-Stabilization
Locality is Everywhere!

- Self-Assembly
- Applications e.g. Multi-Core
- Self-Stabilization
- Local Algorithms
- Sublinear Algorithms
- Dynamic Networks
each round:
every node:
1. send msgs
2. rcv msgs
3. compute

[Afek, Alon, Barad, et al., 2011]
each round:

every node:
1. send msgs
2. rcv msgs
3. compute
Maximal Independent Set (MIS)

- Given a network with n nodes, nodes have unique IDs.
- Find a Maximal Independent Set (MIS)
 - a non-extendable set of pair-wise non-adjacent nodes
Maximal Independent Set (MIS)

- Given a network with \(n \) nodes, nodes have unique IDs.
- Find a Maximal Independent Set (MIS)
 - a non-extendable set of pair-wise non-adjacent nodes
Maximal Independent Set (MIS)

• Given a network with n nodes, nodes have unique IDs.
• Find a Maximal Independent Set (MIS)
 – a non-extendable set of pair-wise non-adjacent nodes
given: id, degree
synchronized while (true) {
 p = 1/(2*degree);
 if (random value between 0 and 1 < p) {
 transmit "(degree, id)"
 }
 ...
}
given: id, degree
synchronized while (true) {
 p = 1 / (2*degree);
 if (random value between 0 and 1 < p) {
 transmit "(degree, id)";
 ...
 }
}
Distributed Computing Without Computing!
each round:
every node:
1. send msgs
2. rcv msgs
3. compute
Stone Age
Distributed Computing
nFSM: networked Finite State Machine

- Every node is the **same finite state machine**, e.g. no IDs
- Apart from their state, nodes **cannot store** anything
- Nodes **know nothing about the network**, including e.g. their degree
- Nodes **cannot explicitly send messages** to selected neighbors, i.e. nodes can only implicitly communicate by changing their state
- Operation is **asynchronous**
- **Randomized** next state okay, as long as constant number
- Nodes **cannot compute**, e.g. cannot count
One, Two, Many Principle

Piraha Walpiri
One, Two, Many Principle

- Not okay
 - while \((k < \log n)\) {
 - At least half of neighbors in state \(s\)?
 - More neighbors in state \(s\) than in state \(t\)?

- Okay
 - No neighbor in state \(s\)?
 - Some neighbor in state \(s\)?
 - At most two neighbors in state \(s\)?

Priveing Cultures Develop
Sesame Street.
alone
The diagram shows a network with nodes labeled as follows:

- u_0, u_1, u_2, and d_2
- A central node labeled "MIS"

The network connects these nodes with arrows indicating the direction of interaction:

- u_0 connects to "u_1", "u_2", and "$d_2"$
- "$u_1" connects to "$u_2$"
- "u_2 connects to "d_2"

The labels on the arrows are:

- "alone" from u_0 to "u_1" and "u_2"
- "not alone" from "d_2" to "$u_0", "$u_1", and "u_2"
MIS

\[u_2 \quad u_0 \quad u_1 \quad d_2 \quad d_1 \]

alone

not alone
not alone
nFSM solves MIS whp in time $O(\log^2 n)$

[Emek, Smula, W, in submission]
Overview

- General Graph
- Growth-Bounded Graph
- Bounded Degree Graph

Network

MIS

MVC

Problem

Diameter
0(1)-APX, O(1) - time

Series-parallel -> planar

planar, plane

planar 2-fold cover

(bounded tree-w.)

triangle-free

some forbidden ind. subgr.

Sparse

some forbidden minor

no k_3,5

no k_5

da, d_1, d_2, d_3

sparse, d_1, d_2

dom. p.

claw-free line graph?
F(n)-reg.

growth-bounded

O(1)-APX

log^* time

trees

d-regular

bounded degree

bounded diam.

cliques

gb + sparse

0(1)-APX

log^* time
Summary
Thank You!

Questions & Comments?

Thanks to my co-authors
Yuval Emek
Silvio Frischknecht
Stephan Holzer
Fabian Kuhn
Thomas Moscibroda
Jasmin Smula

www.disco.ethz.ch