
GwAC: GNNs with Asynchronous Communication

Lukas Faber
ETH Zurich, Switzerland

lfaber@ethz.ch

Roger Wattenhofer
ETH Zurich, Switzerland
wattenhofer@ethz.ch

Abstract
This paper studies the relation between Graph Neural Networks and Distributed
Computing Models to propose a new framework for Learning in Graphs. Current
Graph Neural Networks (GNNs) are closely related to the synchronous model
from distributed computing. Nodes operate in rounds and, at the same time,
receive aggregated neighborhood information. Our new framework, on the other
hand, proposes GNNs with Asynchronous Communication: Every message is
received individually and at potentially different times. We prove this framework
must be at least as expressive as the existing synchronous framwork. We further
analyze GwAC theoretically and practically with regard to several GNN prob-
lems: Expressiveness beyond 1-Weisfeiler Lehman (1WL), Underreaching, and
Oversmoothing. GwAC shows promising improvements for all problems. We
finish with a practical study on how to implement GwAC GNNs efficiently.

1 Introduction
Graph Neural Networks (GNNs) have become the model of choice for applying neural networks to
graphs in many domains [8, 21, 23, 26, 28, 53, 60]. Almost all current GNNs follow the message
passing framework [6, 21]. In this framework, nodes communicate akin to the synchronous distributed
computing model. In synchronous GNN communication, (i) nodes do not receive individual messages
of neighbors but an aggregation of all neighborhood messages; (ii) every node acts at the same time
and, generally, for the same number of times (although in some GNNs, nodes can elect to drop out
from further updates).

Figure 1: Detection of an alcohol (a C atom with an OH group) with GwAC. The C atom initially
messages every neighbor. H neighbors reply, but the C atom discards the replies. The O atom reacts
and searches for an H in its neighborhood. If O receives a reply from an H, the molecule is an alcohol.

We argue that synchronous communication is not always ideal. Aggregation (i) may bury a single
important message between many irrelevant messages. Such a message becomes the proverbial
needle-in-a-haystack for the receiving node to find. Forcing nodes to act the same number of times
(ii) can become an issue when the learning problem requires communication over long distances.
Consider a line graph v1, v2, . . . vn where we want to send a message from v1 to vn. Every node
needs participate for n− 1 synchronous rounds while it only needs to forward a message once.

Distributed computing knows an antipodal paradigm to the synchronous round-based model: asyn-
chronous communication. In this paradigm, every node reacts to individual messages; at different

L. Faber et al., GwAC: GNNs with Asynchronous Communication. Proceedings of the Second Learning on
Graphs Conference (LoG 2023), PMLR 231, Virtual Event, November 27–30, 2023.

GwAC: GNNs with Asynchronous Communication

times; and a different number of times than other nodes. In this paper, we introduce GwAC as a
framework for GNNs following such an asynchronous approach. Figure 1 illustrates how such an
interaction can play out. The GwAC framework does not aggregate messages, removing poten-
tial haystacks (i). Furthermore, nodes can act at different times and a different number of times
(ii). We will theoretically and practically show benefits with regards to Expressiveness [19, 61],
Underreaching [5], and Oversmoothing [31, 32, 41]. We summarize our contributions as follows:

• We introduce GwAC, a novel framework for GNNs. Nodes follow the asynchronous commu-
nication model: They react to individual messages, act at different times, and act a different
number of times. We prove that GwAC must be at least as powerful as the synchronous model.
We further analyze the complexity to be comparable.

• We theoretically analyze GwAC with regard to expressiveness in the Weisfeiler-Lehman (WL)
framework. We prove that GwAC can separate graphs beyond 1−WL. We experimentally
validate these findings on expressiveness benchmarks where even a simple GwAC mode achieves
quasi-perfect results. Furthermore, the same model performs competitively against state-of-the-
art GNNs on real-world datasets.

• We theoretically compare the efficiency of GwAC and synchronous GNNs for propagating
information across many hops in a graph. We show that GwAC has an asymptotic advantage
and is independent of distance. We experimentally validate these findings on a reduced shortest
path problem. We analyze the results with regard to Underreaching and Oversmoothing and
confirm GwAC’s rubustness.

• We finish with a theoretical and practicual study on GwAC’s efficiency. The complexity is
comparable to powerful GNNs. We show a multithreading approach to practically compensate
the inability to benefit from GPU acceleration.

2 Related Work
This paper takes inspiration from communication paradigms in distributed computing and their
relationship to GNNs. Distributed knows both the synchronous and asynchronous paradigm [43, 57].
In the synchronous approach, all nodes operate in rounds. In every round, every node sends a
message to every neighbor. Sato et al.[46] and Loukas et al. [34] show that message passing
GNNs [6, 21] follow this framework. Following the initial work of Scarselli et al. [48], different
implementations for the individual steps in the message passing framework have been proposed over
the years, e.g., [9, 23, 28, 40, 53, 61, 62]. However, past works identified shared problems across the
synchronous GNNs:

1-WL Limit. Xu et al. [61] and Morris et al. [39] show that GNNs are limited in their expressiveness
by the 1-Weisfeiler-Lehman test (1-WL), a heuristic algorithm to evaluate graph isomorphism [50].
However, there exist simple structures that the 1-WL test cannot distinguish that we want to detect with
GNNs [19]. Therefore, several augmentations to GNNs exist that include additional features, such as
ports, IDs, overlapping subgraphs, or angles between edges for chemistry datasets [20, 34, 46, 47, 58].
Other methods run multiple rounds over slight perturbations of the same graph [7, 42, 55], or use
higher-order information [13, 36, 39]. In the asynchronous GwAC framework, nodes do not act
simultaneously. We show this allows to separate graphs beyond 1WL. Out of scope of this paper,
is the study of emerging expressiveness frameworks other than WL, such as Biconnectivity [65],
VC [38], or induced subgraph WL [56].

Oversmoothing. A limitation that quickly emerged with GNNs is that of shallow architectures [31,
32]. Each layer averages and smooths the neighborhood information and the node’s features. This
effect leads to features converging after some layers [41], known as the Oversmoothing problem.
Several works address the Oversmoothing problem, for example, by sampling nodes and edges to use
in message passing [18, 24, 44], leveraging skip connections [12, 62], or additional regularization
terms [11, 66, 67]. We argue the message aggregation aggravates this problem. Aggregation further
hides the important information in a haystack of irrelevant messages. In GwAC, listens to individual
messages should be more robust against Oversmoothing.

Underreaching. Using normal GNN layers, a GNN with k layers only learns about nodes at most
k hops away. A node fails predictions if it needs information that is k + 1 hops away. This problem

2

GwAC: GNNs with Asynchronous Communication

is called Underreaching [5]. There exist countermeasures, for example, having a global exchange
of features [21, 59] or spreading information using diffusion processes [29, 48]. We believe the
an aggravating issue for Oversmoothing is that every node always acts, even when there is no new
information. In GwAC, because of asynchrony, some nodes can be involved in the communication
much more often than others; this helps GwAC to gather information from further away, which is a
countermeasure against Underreaching.

Oversquashing. In many graphs, the size of k-hop neighborhoods grows substantially with k.
Larger neighborhoods require squashing more and more information into a node embedding of
static size. Eventually, this leads to the congestion problem (too much information having to pass
through a bottleneck) that is well known in distributed computing (e.g. [45]) and goes by the name of
Oversquashing for GNNs [2, 52]. One approach to solve Oversquashing is introducing additional
edges that function as shortcuts to non-direct neighbors [10]. Dropping-based methods [18, 24, 44]
can also reduce Oversquashing by reducing the size of the neighborhoods. If the bottleneck lies in a
node embedding, GwAC will struggle similarly. If the bottleneck lies in passing information, GwAC
will clearly help against Oversquashing since we pass one message at a time instead of all at once.

There are some works that do not fully adopt the synchronous communication model. Amizadeh et
al. [3] propose an architecture for DAGs that sequentially executes the DAG structure. Schaefer et
al. [49] employs some asynchrony to decide which nodes in the graph require processing. Martinkus
et al. [37] let a few agents walk on the graph and only update nodes where agents are. However,
node still update synchronously. We believe that only full asynchrony with individual processing of
messages can yield all the advantages, as also observed by Dudzik et al. [15]. As anectodical evidence,
similar observations hold for inference in probabilistic graphical models: Elidan et al. [16] observed
that inference in such models may not converge if nodes update synchronously. Asynchronous
updates improved stability, which also further authors found [1, 30].

3 GwAC: GNNs with Asynchronous Communication
Let us first recap the general framework for GNNs that follow the synchronous communication
model, i.e., the message passing framework outlined by Battaglia et al. [6] and Gilmer et al. [21].
Algorithm 1 briefly outlines how this framework computes node embeddings hv for every node v in
a graph G. The initial embeddings h0

v can be set to the features of the node in the graph. We can,
for example, use the final embeddings for node classification or pool the node embeddings for graph
classification.

Algorithm 1: GNNs in the synchronous model.
1 repeat L times # L is the number of GNN layers
2 foreach Node v in parallel do
3 gi+1

v = GATE(hi
v,Aggw∈NB(v) MESSAGE(hi

w))
4 zi+1

v = UPDATE(hi
v,Aggw∈NB(v) MESSAGE(hi

w))
5 hi+1

v = gi+1
v · zi+1

v + (1− gi+1
v) · hi

v

Algorithm 2: GNNs in the asynchronous model.
1 unreceivedMessages = [] ; # Tuples (receiver, message)
2 initializeList() ; # e.g., a message to single or all nodes
3 repeat M times # M is the number of processed messages
4 v, message = unreceivedMessages[0]
5 gi+1

v = GATE(hi
v,message)

6 zi+1
v = UPDATE(hi

v,message)
7 hi+1

v = gi+1
v · zi+1

v + (1− gi+1
v) · hi

v newMessage = MESSAGE(hi+1
v , message)

8 foreach w in NB(v) do
9 unreceivedMessages.add(w, newMessage)

3

GwAC: GNNs with Asynchronous Communication

Synchronous GNNs are parametrized by three functions: message: is a learnable function to apply
to the node embedding before sending. UPDATE learns how to combine the neighborhood messages
to update the node embedding. GATE: This function is optional and not used in every architecture:
Nodes can decide that certain information is irrelevant to them, or they can elect to stop participating
altogether [14, 33, 51]. We want to highlight two characteristics: (i) every node acts in parallel
(line 2), and (ii) nodes only receive an aggregation version of neighbor messages (lines 3+4). These
aggregations are usually permutation-invariant, for example, summation or element-wise maximum.

In contrast, look Algorithm 2 shows the GwAC framework for learning embeddings hv for the
same graph G. There are key differences to the synchronous model: The iteration is over individual
messages—not rounds—. Processing stops after M messages have been processed (line 3). We
process each message with the similar parametrizable functions MESSAGE, UPDATE, GATE. In the
asynchronous case, GATE could also elect to discard a message and jump to the next iteration. In
this model, we also need a temporal order between messages, i.e., which messages we might before
before others. Algorithm 2 assumes the simplest model and handles messages chronologically. We
will show in Appendix B that a more complex model using a time-ordered heap and non-uniform
delays has many theoretical benefits. However, such models do not work as well practically.

3.1 Asynchronous versus Synchronous

Our main result in this section is that asynchronous models in GwAC must be at least as expressive
as synchronous message-passing GNNs. We prove this through the notion of Simulation. Intuitively,
an asynchronous GNN A that simulates a synchronous one S can compute every embedding that S
computes. Therefore, we can always replace S with A to obtain any embedding. Formally:

Definition 1 (Simulation) Let S be a synchronous message passing GNN with l layers and A an
asynchronous GNN in GwAC. We say that A simulates S if for all input graphs G and all input
features X , A computes node embeddings hl

v for each layer and node v in G that S computes.

We will now demonstrate how to construct A for a given GNN S . For simplicity, we will construct A
and proof simulation S = GIN [61] and extend to other architectures afterward. For a graph G with
node features X , GIN computes:

h0
v = Xv

hl+1
v = UPDATES(hl

v +
∑

w∈Nb(v)

MESSAGES(hl
w))

We create A to follow the ideas from distributed computing. Awerbuch [4] presented the α synchro-
nizer, which allows asynchronous models to simulate synchronous ones. The key notion is that of
safe nodes: A node is safe for one round after it receives a message from every neighbor. A node
transfers to the next round if it and all its neighbors are safe. We will use a similar notion and show
that we can realize it with little overhead in GNNs:

If the GIN we want to simulate has L layers and an embedding size of d, we create A to have
embeddings of size 2d+4 (a linear overhead). The embeddings can are tuples (s, a, w, u, i, l) with the
following meaning: s the actual current embedding; a an accumulator for neighborhood messages; w
the number of missing pulses; u the number of unsafe nodes; i if the node never acted so far; and
l the number of layers left to simulate. Node embeddings are initialized to (Xv, 0, D − 1, D, 1, L)
where D is the node’s degree.1

Messages are tuples (m, ack, pulse, origin, noop) where the last four entries are bits one-hot
encoding the message type: origin used for the first message to start the execution; pulse messages
are only sent by safe nodes to transmit the next round’s information. The remaining messages are
necessary to synchornize the nodes. ack acknowledge the receipt of neighborhood messages; and
noop Messages containing no information, GATE will ignore those. Table 1 shows the UPDATE and
MESSAGE function for A. We can interpret the table as a series of cascading if-statements where
we apply the first matching condition. The first part m of the message is always computed as
MESSAGES (s). The table only shows which message type we set. The appendix contains an example
execution in Appendix A.

1We take the node degrees to be available. This does not leak information: Having degrees simplifies the
proof but does not leak information to AG . Nodes in A can easily find their degree by flooding the network once
and storing the number of replies in a state entry that is never modified again.

4

GwAC: GNNs with Asynchronous Communication

Table 1: UPDATE and message type to send

Condition s’ a’ w’ u’ i’ l’ message type

noop=1 ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥
l=0 ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥
origin=1 s a w D 0 l pulse
i=1 s a+m w-1 u 0 l pulse
pulse=1 ∧ w=0 UPDATE([s,(a+m)]) 0 D-1 u-1 0 l-1 ack
pulse=1 s a+m w-1 u 0 l noop
ack=1 ∧ u=0 s a w D 0 l pulse
ack=1 s a w u-1 0 l noop

Lemma 1 When node v emits its i-th pulse message, it must have already received (i− 1) ·D + 1
pulse or origin messages.

Corollary 1 Nodes require D pulse messages between their own (Lemma 1). Thus, nodes receive
one pulse from every neighbor.

We provide a proof by induction in Appendix C. The base case is true after initialization, and we
show that a node needs to receive D additional pulse messages to emit another pulse. If each node
requires D pulses, no node can message their neighbor twice.

Lemma 2 When node v emits its i-th pulse message, it’s state s equals the synchronous GNN
representation hL−i−1

v .

Appendix C shows an inductive proof. The base state h0
l is true by initialization. We show that after

receiving a pulse by every neighbor, GwAC correctly computes the next layer’s state.

Lemma 3 (Synchronous Simulation) A simulates GIN, where one round of pulse messages maps
to one synchronous layer.

This proof follows from Lemma 2. With every pulse message, nodes in A proceed to the next
embedding hl

v of GIN.

3.2 Other Simulation Scenarios

Disconnected Graphs The proof can be extended to disconnected graphs, for example, by sending
one origin message per connected component.

Variable layer sizes Let us assume the GNN does have different embeddings sizes d1, d2, . . . dL per
layer. In such a case A would have a state space consisting of s0, a0, s1, a1, . . . sL, aL, w, u, i, l.
Updates to the state would not overwrite but write to the next state. This approach also allows
us to model different message functions per layer or skip connections, for example.

Max Aggregation Changing to another associative aggregation function such as max is straightfor-
ward but changing the accumulator updates to that aggregation.

Mean Aggregation We can also easily simulate mean aggregation: When computing the update
after all pulses are received we divide by the node’s degree.

GCN Aggregation GCN multiplies messages by neighboring nodes’ degrees. We can make sender
degrees part of the message and use the GATE function to replicate this scaling.

GAT Aggregation Unfortunately this architecture cannot be simulated. GAT scales every incoming
message with an attention factor that is dependant on all messages.

4 Expressiveness
4.1 Theoretical Analysis

We investigate the expressiveness of GwAC in the Weisfeiler-Lehman (WL) framework. Our first
result follows directly from Lemma 3.

Corollary 2 (1WL) Models following the GwAC framework generally are at least as powerful as
the 1 Weisfeiler-Lehman test.

5

GwAC: GNNs with Asynchronous Communication

We now show that asynchronous GwAC models are even more expressive than 1-WL. GwAC models
can count cycle lenghts and separate graphs as in Figure 2a or 2b, and can separate cliques of
different sizes 2c.

(a) Taken from Garg et al [19] (b) From Papp et al. [42], added
red node.

(c) 3− versus 4− clique

Figure 2: a) GwAC can separate the two graphs by identifying the 8− cycle and b) by identifiying
a 3− cycle with one blue node (Lemma 4. GwAC must not start from the red node to be able to
separate the graphs. c) GwAC can separate the graphs (Lemma 5). This Lemma also allows to
separate Rook-Shrikande graphs which are beyond 3−WL.

Lemma 4 In GwAC, nodes v1, v2, . . . vk can determine if they are a k cycle.

We discuss the proof in Appendix D. The idea is that a starting node can start a search along both
branches of the cycle and infer the cycle length when they meet.

Lemma 5 In GwAC, nodes v1, v2, . . . vk can determine if they are a k clique.

We proof the Lemma in Appendix D. The idea is that the k nodes iteratively find out they are all in a
2, 3, 4, . . . , k cliques.

4.2 Expressiveness Experiments

We experimentally validate our theoretical findings on existing GNN expressiveness benchmarks2.
We try node classification (Limits1 [19], Limit2 [19], Triangles [47], LCC [47]) and graph classi-
fication (4-cycles [34], Skip-Cycles [13], Rook-Shrikande [13]). Furthermore, we test models if
they can separate certain graphs from Xu et al. [61] if we limit aggregation to max or mean. We
mant to measure the effectiveness of the asynchronous communication. To this end, we only use
simple linear projections for theMESSAGE and UPDATE functions and no gating. We will refer to
this model as GwAC-S. We compare GwAC-S with against beyond 1-WL GNNs from literature:
PPGN [36], SMP [55],3 DropGNN [42],4 and ESAN [7].5, AgentNet [37], plus a GIN [61] for control.
Appendix E.1 contains details on the hyperparameters and Table 2 the results.

Already the simple GwAC-S consistently solves all datasets (close to) perfectly and on the same level
as the recently proposed powerful AgentNet. The other methods struggle on at least some datasets. In
particular, GwAC-S solves the Skip-Cycles dataset perfectly, which requires long-range information
propagation, as well as the Rook-Shrikande graphs that need power beyond 3−WL. The results on
MAX and MEAN also showcase another benefit of not aggregation messages, where other methods
with unfitting aggregations struggle.

Table 2: GwAC-S solves all beyond 1−WL benchmarks quasi-perfect even the challenging ones
require long-range propagation (Skip-Cycles) or beyond 3−WL reasoning (Rook-Shrikande)

Dataset GIN PPGN SMP DropGNN ESAN AgentNet GwAC-S

Limits1 0.50±0.00 0.60±0.21 0.95±0.16 1.00±0.00 1.00±0.00 N/A 1.00±0.00
Limits2 0.50±0.00 0.85±0.24 1.00±0.00 1.00±0.00 1.00±0.00 N/A 1.00±0.00
Triangles 0.52±0.15 1.00±0.02 0.97±0.11 0.93±0.13 1.00±0.01 N/A 1.00±0.01
LCC 0.38±0.08 0.80±0.26 0.95±0.17 0.99±0.02 0.96±0.06 N/A 0.96±0.03
MAX 0.05±0.00 0.36±0.16 0.74±0.24 0.27±0.07 0.05±0.00 N/A 1.00±0.00
MEAN 0.28±0.31 0.39±0.21 0.91±0.14 0.58±0.34 0.18±0.08 N/A 1.00±0.00
4-cycles 0.50±0.00 0.80±0.25 0.60±0.17 1.00±0.01 0.50±0.00 1.00±0.00 1.00±0.00
Skip-Cycles 0.10±0.00 0.04±0.07 0.27±0.05 0.82±0.28 0.40±0.16 1.00±0.00 1.00±0.00
Rook-Shrikande 0.50±0.00 0.50±0.00 0.50±0.00 0.50±0.00 1.00±0.00 1.00±0.00 1.00±0.00

2Code for all experiments available at https://github.com/lukasjf/gwac/
3Code for SMP and PPGN from https://github.com/cvignac/SMP
4Code for GIN and DropGNN from https://github.com/KarolisMart/DropGNN
5Code for ESAN from https://github.com/beabevi/ESAN

6

https://github.com/lukasjf/gwac/
https://github.com/cvignac/SMP
https://github.com/KarolisMart/DropGNN
https://github.com/beabevi/ESAN

GwAC: GNNs with Asynchronous Communication

4.3 Graph Classification Experiments

We also run GwAC-S on several graph classification benchmarks: MUTAG, PTC, PROTEINS,
IMDB-B, IMDB-M [64]. Table 3 shows the classification accuracy for GwAC-S and other GNN
methods for these datasets. We obtain results using the protocol from Xu et al. [61]: We report the
test accuracy over the best epoch of a 10− fold split. Biological datasets use 16 or 32 hidden units;
social datasets use 64. For GwAC-S, we very the number of messages per starting node (15 or 25)
and test a variant of skip connections that allows nodes to consider more than only their last state.
GwAC-S achieves results that comparable to other powerful GNN models.

Table 3: Graph classification accuracy (%). Lower GNNs can separate graphs beyond 1-WL. GwAC-
S produces competitive results. *multiple versions, the score is the best-performing model

Model MUTAG PTC PROTEINS IMDB-B IMDB-M

GraphSAGE [23] 90.4±7.8 63.7±9.7 75.6±5.5 76.0±3.3 51.9±4.9
GCN [28] 88.9±7.6 79.1±11.4 76.9±4.8 83.4±4.9 57.5±2.6
GAT [53] 85.1±9.3 64.5±7.0 75.4±3.8 74.9±3.8 52.0±3.0
GIN [61] 89.4±5.6 66.6±6.9 76.2±2.6 75.1±5.1 52.3±2.8

1-2-3 GNN [39] 86.1 60.9 75.5 74.2 49.5
DropGNN [42] 90.4±7.0 66.0±9.8 76.3±6.1 75.7±4.2 51.4±2.8
PPGN [36]* 90.6±8.7 66.2±6.5 77.2±4.7 73±5.8 50.5±3.6
ESAN [7]* 92.0±5.0 69.2±6.5 77.3±3.8 77.1±2.6 53.7±2.1
AgentNet [37] 93.6±8.6 67.4±5.9 76.7±3.2 75.2±4.6 52.2±3.8
GwAC-S 90.4±4.1 63.7±9.1 76.7±7.1 74.6±3.6 52.1±3.6

5 Underreaching and Oversmoothing.
5.1 Theoretical Analysis

Underreaching and Oversmoothing come into play when we want to propagate information through
many hops in the graph. In the synchronous framework, this requires computing many synchronous
rounds, for example, through many GNN layers. Let G be a directed graph with n nodes and m
edges, and we want to pass information from node u to node v. Let d be the distance from u to v. A
synchronous GNN model generally needs to perform at least d rounds of computation to pass the
information (Shortcut edges which help tremendously but only if there is no important information
along the way). In the simple case without a GATE function, a GNN sends dm messages. For
example, gating can help nodes lying on the path from u to v that forwarded the message can decide
to terminate. However, nodes that did not yet send their message need to keep a steady state. In
the synchronous framework, this means sending and receiving messages. Worst case, we still need
O(dm) messages. Generally, d depends on n and grows with graph size.

Lemma 6 Let G be a graph with n nodes and m edges. GwAC can send a message from any node u
to any node v in O(m) messages.

Proof 1 The following protocol sends a message from u to v. Any number of nodes w1, w2, . . . wn

may receive an initial message seek. Every node w ̸= u will forward a seek message exactly once.
When u receives a seek message it emits a send message instead. Every node also forwards send
messages exactly once. In the worst case, we have one seek and one send message traveling over
every edge, which is 2m messages total. The actual number may be lower: If nodes receive a send
message first, they do not need to propagate seek messages.

Importantly, the number of messages is independent of d. When graphs and distances become larger,
GwAC is clearly more message-efficient to propagate information. The messages that GwAC saves
do not carry any information which might smooth important messages (Oversmoothing), which
means it is easier to message far away nodes (Underreaching).

5.2 Experiments

Let us experimentally validate this observation by computing shortest path lengths from a node
s. Computing shortest paths is a commonly-used benchmark [51, 54, 63] that needs to propagate
information to the entire graph. We reduce the shortest path problem to emphasize on the propagation:

7

GwAC: GNNs with Asynchronous Communication

Table 4: Accuracy for predicting the parity of shortest paths to a starting node. Columns show
different test graph sizes. Training size was 10 nodes. GwAC models outperform synchronous
baseline, even the simpler GwAC-S without termination logic.

Model 10 25 50 100 250 500 1000

GCN 0.54±0.07 0.50±0.03 0.50±0.01 0.50±0.01 0.50±0.01 0.49±0.01 0.49±0.00
GAT 0.64±0.07 0.52±0.03 0.51±0.02 0.50±0.00 0.50±0.01 0.50±0.00 0.49±0.01
GIN 0.97±0.01 0.80±0.05 0.59±0.04 0.52±0.03 0.50±0.01 0.49±0.00 0.50±0.00

NEG 0.73±0.14 0.59±0.11 0.53±0.07 0.52±0.04 0.51±0.03 0.49±0.02 0.50±0.01
Universal 0.87±0.03 0.71±0.04 0.62±0.03 0.56±0.02 0.52±0.01 0.51±0.00 0.50±0.00
IterGNN 0.98±0.03 0.86±0.05 0.74±0.03 0.65±0.04 0.57±0.01 0.53±0.01 0.51±0.00

GwAC-S 0.99±0.00 0.91±0.05 0.82±0.07 0.76±0.10 0.64±0.10 0.58±0.13 0.53±0.10
GwAC-UT 1.00±0.00 0.99±0.00 0.98±0.02 0.97±0.03 0.96±0.05 0.95±0.05 0.94±0.06
GwAC-Iter 1.00±0.00 0.99±0.01 0.99±0.01 0.98±0.03 0.98±0.05 0.97±0.05 0.97±0.05

We make edge lengths integers, and every node predicts if its distance to s is even or odd. This binary
problem removes the need for arithmetics, which can be tricky to learn properly [17, 25, 35]. We
train on small graphs and increase graph size during inference. Larger graphs pose more challenging
problems since the diameter grows, and information needs to travel longer distances. We provide the
exact data creation and model parameters in Appendix E.2.

As baselines, we run GCN [28], GAT [54], GIN [61], NEG (Neural Execution of Graph Algo-
rithms) [54], UT (Universal Transformers [14]), and IterGNNs [51].6 We reuse the simple GwAC-S
from the previous set of experiments, as well as conversions of UT and IterGNNs into the asyn-
chronous framework. We call these GwAC-UT and GwAC-Iter, respectively. UT and GwACT-UT
use the idea of adaptive computation time [22] for GATE. IterGNNs and GwAC-Iter use a similar idea,
but combine gates multiplicatively instead of additively [51].Table 4 shows test set accuracies by test
graph size for all architectures. All GwAC models perform consistently better than all synchronous
architectures, confirming the hypothesis that asynchronous communication does indeed help for
propagating information over long distances. Let us try to understand these results better in the
context of Underreaching and Oversmoothing.

To investigate Underreaching, we measure accuracy split by the nodes’ distances to the starting
node. If we see a drop in accuracy with increasing distance, we can suspect Underreaching. At some
distance, models collapse and constantly predict 0 or 1. Therefore, we bucket distances in pairs, for
example, 1 and 2. Figure 3a shows the accuracy per distance. Here we see that GwAC outperforms
synchronous methods, which drives the differences in Table 4. To investigate Oversmoothing, we
limit the evaluation to close nodes. We define close nodes as nodes having a distance that also exists
in the training set, which models generally solve correctly. When we increase the graph size, the
model requires more computation to propagate information to nodes further away. A model suffers
from Oversmoothing if information in the embeddings of close nodes is smoothed away and the
embeddings stop being informative. A constant accuracy for close nodes suggests resistance to
Oversmoothing. Most models show strong resistance against Oversmoothing 3b.

6 Runtime analysis
6.1 Complexity

Let us compare the complexity of GNNs (Algorithm 1) and GwAC as in Algortihm 2. We measure
complexity as number of messages and node updates. Computational complexity equals node update
complexity (plus a constant factor) in case of uniform messages and message complexity when we
learn messages based on sender plus receiver. Let G be a graph with n nodes and maximum degree
D. Per layer, a synchronous GNN sends a message for every edge and updates every node. For L
layers, the GNN sends O(LnD) messages and does O(Ln) node updates. L is usually a constant.

More expressive GNN variants, such as ESAN [7] or DropGNN [42], perform multiple computations
on slightly perturbed variants on the graph. ESAN computes at least n permutations, removing one
node or edge per permutation or restricting the graph to a node’s ego-net. DropGNN computes r
permutations, each with randomly dropped nodes. The overall complexity is O(LnDr) messages and

6Code for IterGNN from https://github.com/haotang1995/IterGNN

8

https://github.com/haotang1995/IterGNN

GwAC: GNNs with Asynchronous Communication

0 1-2 3-4 5-6 7-8 9-10 11-12 13-14 15-16 17-18
Node distance

0.5

0.6

0.7

0.8

0.9

1.0

Ac
cu

ra
cy

(a)

10 25 50 100 250 500 1000
Graph size

0.5

0.6

0.7

0.8

0.9

1.0

Ac
cu

ra
cy

(b)

Figure 3: (a) Accuracy per distance for the shortest path parity problem. Declining accuracy suggests
Underreaching. (b) Accuracy for nodes with a training set distance for different graph sizes. Declining
accuracy suggests Oversmoothing.

O(Lnr) node updates. In an asynchronous GNN, we process M messages. Each processed message
does one node update and sends up to D messages for totals of O(MD) messages and O(M) node
updates. M should be in Ω(n) to obtain informative representations. For example, for Table 2, we
used M = 5n2 which is comparable to ESAN. For Table 3, we used linearly many messages with
M = 15n or M = 25n, which is comparable to simple GNNs.

6.2 Implementation Considerations

2 4 6 8 10 12
Processes

0

50

100

150

200

Ti
m

e(
s)

 p
er

 E
po

ch PROTEINS
MUTAG
GINPTC
IMDB-BINARY
IMDB-MULTI

Figure 4: Runtime (y-axis) is inversely propor-
tional to the number of processes avialable for
GwAC (axis): doubling compute halves the com-
putation time.

While complexity of GwAC is comparable to
synchronous GNNs we found running times to
be much slower. To a large extent, we can at-
tribute this to missing library suppport. GNNs
can leverage existing libraries that lift most of
the computation into libraries written in fast pro-
gramming languages. On the other hand our pro-
totypical implementation runs mostly in Python.
But there is also a systemic disadvantage to
GwAC. Synchronous execution in GNNs, al-
lows to batch and parallelize computation and
benefit from GPU hardware acceleration. The
asynchronous communication model does not
lend itself as obviously to parallelization. How-
ever, parallelization is still possible: We can exe-
cute Algorithm 2 in parallel on different graphs.
We implement a proof of concept in Python and
show the runtime versus available parallelism for the datasets from Section 4.3 in Figure 4. Runtime is
inversely proportional to the number of available processes (within bounds because of synchronization
overhead). However, the runtime is still not comparable to current GNNs and libraries.

7 Conclusion, Limitations, and Future Work
We presented a new GNN framework: GwAC. GwAC proposes one answer how to implement asyn-
chronously communicating GNNs. GwAC treats every message individually so that no information
is lost in aggregation. Furthermore, every node can, in principle, act at different times and a different
number of times. We showed theoretically and practically that GwAC’s communication benefits
Expressiveness, Underreaching, and Oversmoothing.

The current version of GwAC struggles with high-feature node classification tasks like Cora because
it strongly overfits. In addition to improving libraries and therefore runtime, promising future work
should investigate how we can learn GwAC models well. For example, batch normalization often
helps to stabilize learning, but what would be a notion of batches in the asynchronous framework?
Anoother interesting question could be how to effectively transfer residual information or how to
realize dropout-based methods.

9

GwAC: GNNs with Asynchronous Communication

References
[1] Aksenov, V., Alistarh, D., Korhonen, J.H.: Scalable belief propagation via relaxed scheduling.

Advances in Neural Information Processing Systems (2020) 3

[2] Alon, U., Yahav, E.: On the bottleneck of graph neural networks and its practical implications.
In: International Conference on Learning Representations (ICLR) (2021) 3

[3] Amizadeh, S., Matusevych, S., Weimer, M.: Learning to solve circuit-sat: An unsupervised
differentiable approach. In: International Conference on Learning Representations (ICLR)
(2018) 3

[4] Awerbuch, B.: Complexity of network synchronization. Journal of the ACM (1985) 4

[5] Barceló, P., Kostylev, E., Monet, M., Pérez, J., Reutter, J., Silva, J.P.: The logical expressiveness
of graph neural networks. In: International Conference on Learning Representations (ICLR)
(2020) 2, 3

[6] Battaglia, P.W., Hamrick, J.B., Bapst, V., Sanchez-Gonzalez, A., Zambaldi, V., Malinowski, M.,
Tacchetti, A., Raposo, D., Santoro, A., Faulkner, R., et al.: Relational inductive biases, deep
learning, and graph networks. arXiv preprint arXiv:1806.01261 (2018) 1, 2, 3

[7] Bevilacqua, B., Frasca, F., Lim, D., Srinivasan, B., Cai, C., Balamurugan, G., Bronstein,
M.M., Maron, H.: Equivariant subgraph aggregation networks. In: International Conference on
Learning Representations (ICLR) (2022) 2, 6, 7, 8

[8] Bian, T., Xiao, X., Xu, T., Zhao, P., Huang, W., Rong, Y., Huang, J.: Rumor detection on social
media with bi-directional graph convolutional networks. In: AAAI conference on artificial
intelligence (AAAI) (2020) 1

[9] Brody, S., Alon, U., Yahav, E.: How attentive are graph attention networks? In: International
Conference on Learning Representations (ICLR) (2022) 2

[10] Brüel-Gabrielsson, R., Yurochkin, M., Solomon, J.: Rewiring with positional encodings for
graph neural networks. arXiv preprint arXiv:2201.12674 (2022) 3

[11] Chen, D., Lin, Y., Li, W., Li, P., Zhou, J., Sun, X.: Measuring and relieving the over-smoothing
problem for graph neural networks from the topological view. In: AAAI Conference on Artificial
Intelligence (AAAI) (2020) 2

[12] Chen, M., Wei, Z., Huang, Z., Ding, B., Li, Y.: Simple and deep graph convolutional networks.
In: International Conference on Machine Learning (ICML) (2020) 2

[13] Chen, Z., Chen, L., Villar, S., Bruna, J.: On the equivalence between graph isomorphism
testing and function approximation with gnns. In: Conference on Neural Information Processing
Systems (NeurIPS) (2019) 2, 6

[14] Dehghani, M., Gouws, S., Vinyals, O., Uszkoreit, J., Kaiser, L.: Universal transformers. In:
International Conference on Learning Representations (ICLR) (2018) 4, 8

[15] Dudzik, A., von Glehn, T., Pascanu, R., Veličković, P.: Asynchronous algorithmic alignment
with cocycles. arXiv preprint arXiv:2306.15632 (2023) 3

[16] Elidan, G., McGraw, I., Koller, D.: Residual belief propagation: Informed scheduling for
asynchronous message passing. arXiv preprint arXiv:1206.6837 (2012) 3

[17] Faber, L., Wattenhofer, R.: Neural status registers. arXiv preprint arXiv:2004.07085 (2020) 8

[18] Feng, W., Zhang, J., Dong, Y., Han, Y., Luan, H., Xu, Q., Yang, Q., Kharlamov, E., Tang, J.:
Graph random neural networks for semi-supervised learning on graphs. In: Conference on
Neural Information Processing Systems (NeurIPS) (2020) 2, 3

[19] Garg, V., Jegelka, S., Jaakkola, T.: Generalization and representational limits of graph neural
networks. In: International Conference on Machine Learning (ICML) (2020) 2, 6

[20] Gasteiger, J., Groß, J., Günnemann, S.: Directional message passing for molecular graphs. In:
International Conference on Learning Representations (ICLR) (2020) 2

[21] Gilmer, J., Schoenholz, S.S., Riley, P.F., Vinyals, O., Dahl, G.E.: Neural message passing for
quantum chemistry. In: International Conference on Machine Learning (ICML) (2017) 1, 2, 3

[22] Graves, A.: Adaptive computation time for recurrent neural networks. arXiv preprint
arXiv:1603.08983 (2016) 8

10

GwAC: GNNs with Asynchronous Communication

[23] Hamilton, W., Ying, Z., Leskovec, J.: Inductive representation learning on large graphs. In:
Conference on Neural Information Processing Systems (NeurIPS). vol. 30 (2017) 1, 2, 7

[24] Hasanzadeh, A., Hajiramezanali, E., Boluki, S., Zhou, M., Duffield, N., Narayanan, K., Qian,
X.: Bayesian graph neural networks with adaptive connection sampling. In: International
Conference on Machine Learning (ICML) (2020) 2, 3

[25] Heim, N., Pevny, T., Smidl, V.: Neural power units. In: Conference on Neural Information
Processing Systems (NeurIPS) (2020) 8

[26] Jumper, J., Evans, R., Pritzel, A., Green, T., Figurnov, M., Ronneberger, O., Tunyasuvunakool,
K., Bates, R., Žídek, A., Potapenko, A., et al.: Highly accurate protein structure prediction with
alphafold. Nature (2021) 1

[27] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. In: International Conference
on Learning Representations (ICLR) (2015) 20

[28] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In:
International Conference on Learning Representations (ICLR) (2017) 1, 2, 7, 8

[29] Klicpera, J., Weißenberger, S., Günnemann, S.: Diffusion improves graph learning. In: Confer-
ence on Neural Information Processing Systems (NeurIPS) (2019) 3

[30] Knoll, C., Rath, M., Tschiatschek, S., Pernkopf, F.: Message scheduling methods for belief
propagation. In: Joint European Conference on Machine Learning and Knowledge Discovery in
Databases (ECML PKDD (2015) 3

[31] Li, G., Muller, M., Thabet, A., Ghanem, B.: Deepgcns: Can gcns go as deep as cnns? In: IEEE
international conference on computer vision (ICCV). pp. 9267–9276 (2019) 2

[32] Li, Q., Han, Z., Wu, X.M.: Deeper insights into graph convolutional networks for semi-
supervised learning. In: AAAI Conference on Artificial Intelligence (AAAI) (2018) 2

[33] Li, Y., Tarlow, D., Brockschmidt, M., Zemel, R.S.: Gated graph sequence neural networks. In:
International Conference on Learning Representations (ICLR) (2016) 4

[34] Loukas, A.: What graph neural networks cannot learn: depth vs width. In: International
Conference on Learning Representations (ICLR) (2020) 2, 6, 16

[35] Madsen, A., Johansen, A.R.: Neural arithmetic units. In: International Conference on Learning
Representations (ICLR) (2020) 8

[36] Maron, H., Ben-Hamu, H., Serviansky, H., Lipman, Y.: Provably powerful graph networks. In:
Conference on Neural Information Processing Systems (NeurIPS) (2019) 2, 6, 7

[37] Martinkus, K., Papp, P.A., Schesch, B., Wattenhofer, R.: Agent-based graph neural networks.
In: The Eleventh International Conference on Learning Representations, ICLR 2023, Kigali,
Rwanda, May 1-5, 2023. OpenReview.net (2023) 3, 6, 7

[38] Morris, C., Geerts, F., Tönshoff, J., Grohe, M.: Wl meet vc. arXiv preprint arXiv:2301.11039
(2023) 2

[39] Morris, C., Ritzert, M., Fey, M., Hamilton, W.L., Lenssen, J.E., Rattan, G., Grohe, M.: We-
isfeiler and leman go neural: Higher-order graph neural networks. In: AAAI Conference on
Artificial Intelligence (AAAI) (2019) 2, 7

[40] Niepert, M., Ahmed, M., Kutzkov, K.: Learning convolutional neural networks for graphs. In:
International conference on machine learning (ICML) (2016) 2

[41] Oono, K., Suzuki, T.: Graph neural networks exponentially lose expressive power for node
classification. In: International Conference on Learning Representations (ICLR) (2020) 2

[42] Papp, P.A., Martinkus, K., Faber, L., Wattenhofer, R.: Dropgnn: random dropouts increase the
expressiveness of graph neural networks. In: Conference on Neural Information Processing
Systems (NeurIPS) (2021) 2, 6, 7, 8, 20

[43] Peleg, D.: Distributed computing: a locality-sensitive approach. SIAM (2000) 2

[44] Rong, Y., Huang, W., Xu, T., Huang, J.: Dropedge: Towards deep graph convolutional networks
on node classification. In: International Conference on Learning Representations (ICLR) (2020)
2, 3

11

GwAC: GNNs with Asynchronous Communication

[45] Sarma, A.D., Holzer, S., Kor, L., Korman, A., Nanongkai, D., Pandurangan, G., Peleg, D.,
Wattenhofer, R.: Distributed verification and hardness of distributed approximation. SIAM
Journal on Computing (2012) 3

[46] Sato, R., Yamada, M., Kashima, H.: Approximation ratios of graph neural networks for
combinatorial problems. In: Conference on Neural Information Processing Systems (NeurIPS)
(2019) 2

[47] Sato, R., Yamada, M., Kashima, H.: Random features strengthen graph neural networks. In:
SIAM International Conference on Data Mining (SDM) (2021) 2, 6

[48] Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The graph neural network
model. IEEE transactions on neural networks (2008) 2, 3

[49] Schaefer, S., Gehrig, D., Scaramuzza, D.: Aegnn: Asynchronous event-based graph neural
networks. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR) (2022) 3

[50] Shervashidze, N., Schweitzer, P., Van Leeuwen, E.J., Mehlhorn, K., Borgwardt, K.M.:
Weisfeiler-lehman graph kernels. Journal of Machine Learning Research (2011) 2

[51] Tang, H., Huang, Z., Gu, J., Lu, B.L., Su, H.: Towards scale-invariant graph-related problem
solving by iterative homogeneous gnns. Conference on Neural Information Processing Systems
(NeurIPS) (2020) 4, 7, 8

[52] Topping, J., Di Giovanni, F., Chamberlain, B.P., Dong, X., Bronstein, M.M.: Understanding
over-squashing and bottlenecks on graphs via curvature. In: International Conference on
Learning Representations (ICLR) (2022) 3

[53] Veličković, P., Cucurull, G., Casanova, A., Romero, A., Lio, P., Bengio, Y.: Graph attention
networks. In: International Conference on Learning Representations (ICLR) (2018) 1, 2, 7

[54] Velickovic, P., Ying, R., Padovano, M., Hadsell, R., Blundell, C.: Neural execution of graph
algorithms. In: International Conference on Learning Representations (ICLR) (2020) 7, 8

[55] Vignac, C., Loukas, A., Frossard, P.: Building powerful and equivariant graph neural networks
with structural message-passing. In: Conference on Neural Information Processing Systems
(NeurIPS) (2020) 2, 6

[56] Wang, Q., Chen, D.Z., Wijesinghe, A., Li, S., Farhan, M.: N-WL: A New Hierarchy of
Expressivity for Graph Neural Networks. In: The Eleventh International Conference on Learning
Representations, ICLR, Kigali, Rwanda (May 2023) 2

[57] Wattenhofer, R.: Mastering Distributed Algorithms. Inverted Forest Publishing (2020) 2
[58] Wijesinghe, A., Wang, Q.: A new perspective on" how graph neural networks go beyond

weisfeiler-lehman?". In: International Conference on Learning Representations (2021) 2
[59] Wu, Z., Jain, P., Wright, M., Mirhoseini, A., Gonzalez, J.E., Stoica, I.: Representing long-range

context for graph neural networks with global attention. In: Conference on Neural Information
Processing Systems (NeurIPS) (2021) 3

[60] Wu, Z., Pan, S., Chen, F., Long, G., Zhang, C., Philip, S.Y.: A comprehensive survey on graph
neural networks. IEEE transactions on neural networks and learning systems (2020) 1

[61] Xu, K., Hu, W., Leskovec, J., Jegelka, S.: How powerful are graph neural networks? In:
International Conference on Learning Representations(ICLR) (2019) 2, 4, 6, 7, 8

[62] Xu, K., Li, C., Tian, Y., Sonobe, T., Kawarabayashi, K.i., Jegelka, S.: Representation learning on
graphs with jumping knowledge networks. In: International Conference on Machine Learning
(ICML) (2018) 2

[63] Xu, K., Zhang, M., Li, J., Du, S.S., Kawarabayashi, K.i., Jegelka, S.: How neural networks
extrapolate: from feedforward to graph neural networks. In: International Conference on
Learning Representations (ICLR) (2021) 7

[64] Yanardag, P., Vishwanathan, S.: Deep graph kernels. In: ACM SIGKDD Conference on
Knowledge Discovery & Data Mining (KDD) (2015) 7

[65] Zhang, B., Luo, S., Wang, L., He, D.: Rethinking the expressive power of gnns via graph
biconnectivity. In: The Eleventh International Conference on Learning Representations, ICLR
2023, Kigali, Rwanda, May 1-5, 2023 (2023) 2

12

GwAC: GNNs with Asynchronous Communication

[66] Zhao, L., Akoglu, L.: Pairnorm: Tackling oversmoothing in gnns. In: International Conference
on Learning Representations (ICLR) (2020) 2

[67] Zhou, K., Huang, X., Li, Y., Zha, D., Chen, R., Hu, X.: Towards deeper graph neural networks
with differentiable group normalization. In: Conference on Neural Information Processing
Systems (NeurIPS) (2020) 2

13

GwAC: GNNs with Asynchronous Communication

A An Example of Asynchronous Simulation
Let us look at an example to understand the function in Table 1 better. Let us look at the example
graph
G = (V = {v1, v2, v3, v4}, E = {{v1, v2}, {v1, v3}, {v4, v2}, {v4, v3}}). We will track the node
states in tabular form.

Message State of v1 State of v2 State of v3 State of v4
⊥ (s1,0,1,2,1,L) (s2,0,1,2,1,L) (s3,0,1,2,1,L) (s4,0,1,2,1,L)

Now we send the first message (of type origin) to node v2, which updates as follows and sends a
pulse message in return.

v2 ← origin (s2,0,1,2,0,L)
Let us assume that v1 receives this message first. The state i is still true so we evaluate with the
fourth equation. This leads to the following update and v1 also sends a pulse message.

v1 ← pulse(v2) (s1,s2,0,2,0,L)
Let us now assume that v2 receives this message (and the message from v2 to v4 is still in transit).
Unlike v1, the node v2 has already received one message before, so i is false and v2 updates
differently to the following state. Furthermore v2 now sends a noop instead of a pulse. This
message will be ignored by every node.

v2 ← pulse(v1) (s2,s1,0,2,0,L)
Next, let us assume v3 receives the pulse message from v1. This is v3’s the first message and v3 will
also emit a pulse message in return. The message from v2 to v4 is still in transit.

v3 ← pulse(v1) (s3,s1,0,2,0,L)
Now, v1 may receive this pulse message by v3. Since this is the last missing message from a
neighbor, v1 now computes s′1 = UPDATE(s1, s2 + s3), the same update as the synchronous GIN.
Further v1 now sends an ack message.

v1 ← pulse(v3) (s′1,0,1,1,0,L)
Nodes v2 and v3 receive this ack message each and update to

v2 ← ack(v1) (s2,s1,0,1,0,L)
v3 ← ack(v1) (s3,s1,0,1,0,L)

Let the message from v2 to v4 arrive next. Then v4 send pulse messages and transitions to:

v4 ← pulse(v2) (s4,s2,0,2,0,L)
Node v3 receives this pulse from v4 and transitions to the following state and sending ack messages.
Next, v1 receives this ack message. At this step, only an ack from v2 is left before v1 can proceed to
the next iteration.

v3 ← pulse(v4) (s′3,0,1,0,0,L)
v1 ← ack(v3) (s′1,0,1,0,0,L)

So let us assume that v2 receives the pulse message from v4 next, and updates and sends an ack:

v2 ← pulse(v4) (s′2,0,1,0,0,L)
Node v1 now receives this ack message and proceeds to simulate the next GIN layer. It decrements
the layer counter and emits a pulse for its neighbors. Since these neighbors already received all
data (but not all ack messages) from the previous iteration they can safely store this message in the
accumulator. For example, let v2 receive the pulse from v1.

v1 ← ack(v2) (s′1,0,1,2,0,L− 1)
v2 ← pulse(v1) (s′2,s′1,0,0,0,L− 1)

For the network to proceeed further, v4 needs to receive the pulse from v3, so it can complete the
first layer simulation and send ack. This will allow v2 and v3 to start simulation the next layer.

14

GwAC: GNNs with Asynchronous Communication

B GwAC with Random Message Delays

Algorithm 3: GNNs in the asynchronous model.
1 openMessages = [] ; # Triples (delay, receiver, message)
2 initializeList() ; # e.g., a message to single or all nodes
3 repeat M times # M is the number of processed messages
4 delay, v, message = openMessages[0]
5 gi+1

v = GATE(hi
v),message

6 zi+1
v = UPDATE(hi

v,message)
7 hi+1

v = gi+1
v · zi+1

v + (1− gi+1
v) · hi

v newMessage = MESSAGE(hi+1
v , message)

8 foreach w in NB(v) do
9 openMessage.add(delay + randomDelay(), w, newMessage)

We will now look at a variant of GwAC where message delays are not uniform but random.
Algorithm 3 shows an adapted algorithm where we use a delay-sorted heap instead. These delays
can act as symmetry breakers in symmetric graphs like star graphs. The problem we need to solve
is bringing order in the equal neighbors of center node v, which we do by exploiting the random delays.

We connect the neighbors of v.7 When v offers an ID, nodes without an ID will reply to try to
claim it. Some nodes will receive this reply before they receive the message from v. These nodes
will surrender this ID. After some attempts to offer the ID, all but one node will surrender. Then v
gives the ID to the one non-surrendering node (implicitly by starting to offer the next ID). Then the
protocol restarts for the next ID (minus the nodes that are done and have an ID). We will transform
this idea into a network:

We have four states, offering (which is only used by v), claiming and surrendering (which are
used by the outer nodes), and done used by all nodes that no longer need to participate. We have five
message types offer, confirm, claim, surrender, origin, and noop.

Nodes have states that are tuples (state, try, ID, c, w, x): state is one of above states, try identi-
fies different ID assignment attempts from each other, and ID is the ID of the node. The following
three entries are only used by central node v: c a binary feature if the ID was already claimed in the
current attempt, w contains the number of neighbors in the current attempt that did not reply yet, x
contains the number of neighbors that do not have an ID yet. Initially, every node starts in the state
(surrendering, -1, -1, 0, 0, 0).

Messages are tuples (type, CID, attempt): type is one of the above messages types, CID is a
candidate ID that v tries to currently assign, attempt is the current attempt to assign an ID.

Table 5 shows the node update and message functions in GwAC for the center node, Table 6 for the
outer nodes. There is actually only one function. Nodes judge by their state if they are the center node
or node. For readability, we split them here. If the reaction function ρ decides to ignore a message,
the tables show a row of blanks (⊥).

Lemma 7 GwAC with the functions in Table 5 and 6 can create unique identifiers (IDs) for every
node in a star graph.

Proof 2 We prove that (i) that no two nodes receive the same identifier and (ii) every node receives
an identifier.

(i) The center node takes ID 0 for itself and only proposes IDs of 1 and above to its neighbors. If
a neighbor does not change its ID, it stays with −1. Thus ID 0 is unique. Suppose that two nodes
w1, w2 received the same ID. Since IDs are increasing w1 and w2 must have received the ID at the
same time. Since the confirm message is only sent when there was exactly one node left, w1 and w2

must have received the ID via the second to last condition in Table 6a. This is only possible if they

7We can do without those edges since v could propagate messages between outer nodes, but they make the
idea more concise and the algorithm faster

15

GwAC: GNNs with Asynchronous Communication

Table 5: UPDATE (a) and MESSAGE function (b) for the central node v in GwAC to assign unique IDs
in a star graph.

(a)

Condition state try ID c w x

noop ⊥ ⊥ ⊥ ⊥ ⊥ ⊥
done ⊥ ⊥ ⊥ ⊥ ⊥ ⊥

try ̸= attempt ⊥ ⊥ ⊥ ⊥ ⊥ ⊥
origin offering 0 0 0 D-1 D-1

claim ∧ c = 0 offering try 0 1 w-1 x
claim ∧ c > 0 offering try+1 0 0 x-1 x

surrender offering try 0 c w-1 x
w = 0 ∧ x > 0 offering try+1 0 0 x-2 x-1

x = 0 done 0 0 0 0 0

(b)

type CID attempt

⊥ ⊥ ⊥
⊥ ⊥ ⊥
⊥ ⊥ ⊥

offer 1 0
noop ⊥ ⊥
offer CID try+1
noop ⊥ ⊥
offer CID+1 try+1

confirm ⊥ ⊥

Table 6: UPDATE (a) and MESSAGE function (b) for the outer nodes in GwAC to assign unique IDs in
a star graph.

(a)

Condition state try ID c w x

noop ⊥ ⊥ ⊥ ⊥ ⊥ ⊥
done ⊥ ⊥ ⊥ ⊥ ⊥ ⊥

surrendering ∧ offer ∧ CID=ID surrendering attempt ID ⊥ ⊥ ⊥
offer ∧ attempt > try claiming attempt CID ⊥ ⊥ ⊥

claiming ∧ attempt > try surrendering attempt CID ⊥ ⊥ ⊥
claiming ∧ offer ∧ ID ̸= CID done 0 ID ⊥ ⊥ ⊥

claiming ∧ confirm done 0 ID ⊥ ⊥ ⊥

(b)

type CID attempt

⊥ ⊥ ⊥
⊥ ⊥ ⊥

surrender CID attempt
claim CID attempt

surrender CID attempt
noop ⊥ ⊥
noop ⊥ ⊥

were in state claiming, which means that they both send a claim message. However, in such cases,
v would have started another try with that ID.

(ii) The center node receives ID 0. We have to show all other nodes also receive an ID. Node v counts
internally how many IDs it could offer successfully and only stops when this counter reaches 0. We
initialize the counter with v’s degree. Therefore, v will offer sufficiently many IDs. Let us suppose
that w did not receive an ID. Node w will always try to claim an ID unless it is already surrendering
this ID. Therefore w surrenders for all IDs, even the last one. However, this is not possible since
there is only w left, and no node could have sent a claim message to make w surrender.

We can generalize this proof from star graphs to arbitrary connected graphs. We start with any node
that assigns IDs in its 1-hop neighborhood (a star graph). Next, the node with the next-highest ID
repeats the process — skipping nodes that already have an ID. Eventually every node is adjacent to
a center node and receives an ID. The algorithm stops after every node assigned IDs, and finding a
successor is not longer possible.

We can further extend this algorithm to unconnected graphs by initally adding a master node that is
connected to every node. We can conclude:

Lemma 8 GwAC with random message delays can create IDs in arbitrary graphs.

We can now define the expressiveness of GwAC with random message delays.

Lemma 9 (Graph Isomorphism) Given two connected graphs G1, G2 that we connect via a node
u to a graph G and diameter δG, GwAC with random message delays that has a width in O(n2 !n

2)
can solve graph isomorphism for any graphs G1, G2 simulating an appropriate GNN for δG many
rounds.

Proof 3 We are reducing Lemma 9 to Corollary 3.1 from Loukas [34]. The author shows that if
we have (i) unique identifiers for every node in a graph and (ii) we have a message passing GNN
that has no bound in width and is at least as deep as the graph’s diameter δG, this GNN is Turing

16

GwAC: GNNs with Asynchronous Communication

universal and can compute any function on this graph (including graph isomorphism).

Let G1, G2 be two connected graphs for which we want to test graph isomorphism. We create the
graph G by adding a unique node u8 that we connect to a random node from G1 and G2 each.
Further, let G be a GNN of unbounded width that has at least δG many layers. If the GNN has access
to IDs, this GNN is Turing universal and can compute any computable function. Therefore, this GNN
can compute if G1 and G2 are isomorphic. Let us consider an GwAC model with unbounded width,
which can compute graph isomorphism on G as follows: First, we employ Lemma 9 to assign every
node a unique identifier. Then we leverage the synchronous Simulation Lemma 3 and simulate G
with the identifiers for δG many rounds. Whatever representations G finds to be able to compute
graph isomorphism between G1 and G2, GwAC can compute the same representations by simulation.
Thus, GwAC can also compute graph isomorphism on any graph G.

Finally, let us tackle the unbounded width requirement. We are not interested in any algorithm on
G, but only in determining graph isomorphism. We can estimate the required width for this problem
as follows: One example algorithm to compute graph algorithms is to use the δG layers to build a
complete representation of G in every node. If we use adjacency matrices, this requires width O(n2).
Now we enumerate all possible assignments π from nodes in G1 to G2 — of which there are O(n2 !)

many. For each candidate, we write the permuted adjacency matrix, requiring O(n2 !n
2) space. If

any permuted adjacency matrix equals that of G1, the graphs are isomorphic, otherwise, they are
not. We can check this by subtracting the matrices and comparising against 0. This check requires
constant width for each of the O(n2 !n

2) candidates. We can conclude that the GNN can solve graph
isomorphism on G with O(n2 !n

2) width. This is the same bound for GwAC that needs only a constant
factor in state and message size for simulation.

Despite the impressive theoretical results, we found that uniform delays work better in practice.
Random delays cause different executions with different embeddings on repeated runs over the same
graphs. This creates noisy gradients and destabilizes training. Let GwAC-SR be a variant of GwAC-S
that uses random and not uniform delays. Table 7 compares the results of GwAC-SR with the results
of GwAC-S on the datasets in Table 2. We can see that GwAC-S trains stably and consistently
performs better.

Table 7: Comparing GwAC-S with a random delay version GwAC-SR on several expressiveness
benchmarks. The random delays create too much noise. The non-random GwAC-S consistently
performs better.

Dataset GwAC-S GwAC-R

Limits1 1.00±0.00 0.89±0.11
Limits2 1.00±0.00 0.98±0.01
Triangles 1.00±0.01 0.88±0.15
LCC 0.96±0.03 0.80±0.04

MAX 1.00±0.00 0.37±0.10
MEAN 1.00±0.00 0.71±0.11
4-cycles 1.00±0.00 0.99±0.02
Skip-Cycles 1.00±0.00 0.56±0.18
Rook-Shrikande 1.00±0.00 0.50±0.50

8We can also start the ID assignment in GwAC at node u, this node would always have ID 0 without loss of
generality.

17

GwAC: GNNs with Asynchronous Communication

C Simulation Proofs
C.1 Proof for Lemma 1

We are first need to proof an additional Lemma:

Lemma 10 Nodes receive a pulse message when executing the i = 1 condition.

Proof 4 Messages of type noop and origin are captured by a preceding condition. A node u could
only receive an ack message from a neighbor v after v received a pulse message from every neighbor,
including u. By elimination the message type must be pulse.

Now we can proof Lemma 1 via induction over i.

Proof 5 We start with i = 1, i.e., when nodes emit their first pulse message. After initialization, all
nodes will send a pulse message after receiving one origin (third condition) or pulse message
(Lemma 10).

Suppose the lemma holds for node v that just sent its i-th pulse. Before v another pulse, it must
reach the seventh condition in Table 1. For this, u must be decremented to 0, which requires reaching
the fifth condition. In turn, this requires decrementing w to zero for which v must receive D − 1
pulse messages in the sixth condition and one further one in the fifth. In total, v has now received
(i− 1) ·D + 1 +D = i ·D + 1 pulse messages.

C.2 Proof for Lemma 2

Proof 6 We prove this by induction. The lemma holds for i = 1, when the nodes state s is Xv = h0
v

based on initialization.

Suppose the lemma holds for node v that just sent its i-th pulse. We know from Lemma 1, that v
now needs to receive D pulse messages (Lemma 1), one from each neighbor(Corollary 1) before
it can send pulse i+ 1. According to the induction hypothesis, node v receives zl−i−1

w from every
neighbor w in their ith pulse message. Upon receiving the last of these messages, v computes
locally UPDATE(zl−i−1

v ,
∑

w zl−i−1
w) = zl−i

v following the fifth condition. This state is unchanged
until v emits pulse i+ 1.

18

GwAC: GNNs with Asynchronous Communication

D Expressiveness Proofs
D.1 Proof for Lemma 4

Proof 7 Let v1, v2, . . . vk be a cycle of k nodes and let computation start from node v. Every node
executes the following protocol. If a node receives a message COUNT-i and it never received a
message before, it stores i and messages COUNT-(i+ 1). If the same node then receives a COUNT-j
message with j > i, the node ignores the message. Node v starts the computation by sending
COUNT-0. The nodes on both paths store numbers as in a BFS from v. Eventually, the two BFS
branches meet when one node w that first received a COUNT-i message receives a COUNT-j message
with i ≥ j. Then, w knows the circle is closed and sends a FOUND-(j + i) that every node forwards
once. Thus, all nodes become aware of the cycle and its length.

D.2 Proof for Lemma 5

Proof 8 Let v1, v2, . . . vk be in a k clique. The nodes iteratively find out they are in 2, 3, . . . k + 1
cliques. The starting node v will coordinate the other nodes. Initially, every node stores that they are
in a 1-clique. To find a clique of size j, node v sends a CLIQUE-j message, which every neighbor
of v forwards once. If neighbors of v receive j − 1 such messages and are in a j − 1 clique
according to their state, they send a CLIQUE-j-ACK message to all neighbors (including v) and
update their state to be in a j-clique. If v receives k many CLIQUE-j-ACK messages, it sends out a
CLIQUE-(j + 1) message. Upon receiving k many CLIQUE-(k + 1)-ACK messages, v knows there
exists a (k + 1)-clique and can propagate this information to its neighbors.

19

GwAC: GNNs with Asynchronous Communication

E Experiment Details
E.1 Expressiveness Benchmarks

We follow the training setup by Papp et al. [42] and use four layers of synchronous GNNs. For
Skip-Cycles, we additionally try 9 layers and take the better result. For GwAC, we allow a total of 5n
messages, with n being the size of the graph. Similar to DropGNN or SMP, we execute multiple runs
for GwAC, starting with each node once. Each run computes the final embedding for the starting node.
For all architectures, we use 16 hidden units for Limits1, Limits2, Triangles, LCC, and 4-cycles; and
32 units for MAX, MEAN, and Skip-Cycles. We use the Adam [27] optimizer with a learning rate of
0.01 and train for 1000 epochs.

E.2 Long-Range Communication

We create 100 graphs with n = 10 nodes. The base of each graph is a random spanning tree to which
we add (n5) random extra edges. We randomly pick a starting node s. We mark s for synchronous
GNNs or send it the initial GwAC message. We learn over 1000 epochs with the Adam optimizer
with a learning rate of 0.01 and use embeddings sizes of 30. For testing, we sample 10 graphs with
10, 25, 50, 100, 250, 500, and 1000 nodes, respectively.

20

	1 Introduction
	2 Related Work
	3 GwAC: GNNs with Asynchronous Communication
	3.1 Asynchronous versus Synchronous
	3.2 Other Simulation Scenarios

	4 Expressiveness
	4.1 Theoretical Analysis
	4.2 Expressiveness Experiments
	4.3 Graph Classification Experiments

	5 Underreaching and Oversmoothing.
	5.1 Theoretical Analysis
	5.2 Experiments

	6 Runtime analysis
	6.1 Complexity
	6.2 Implementation Considerations

	7 Conclusion, Limitations, and Future Work
	A An Example of Asynchronous Simulation
	B GwAC with Random Message Delays
	C Simulation Proofs
	C.1 Proof for Lemma 1
	C.2 Proof for Lemma 2

	D Expressiveness Proofs
	D.1 Proof for Lemma 4
	D.2 Proof for Lemma 5

	E Experiment Details
	E.1 Expressiveness Benchmarks
	E.2 Long-Range Communication

