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Abstract

We study valuing the data of a data owner/seller for a data
seeker/buyer. Data valuation is often carried out for a specific
task assuming a particular utility metric, such as test accu-
racy on a validation set, that may not exist in practice. In this
work, we focus on task-agnostic data valuation without any
validation requirements. The data buyer has access to a lim-
ited amount of data (which could be publicly available) and
seeks more data samples from a data seller. We formulate the
problem as estimating the differences in the statistical prop-
erties of the data at the seller with respect to the baseline data
available at the buyer. We capture these statistical differences
through second moment by measuring diversity and relevance
of the seller’s data for the buyer; we estimate these measures
through queries to the seller without requesting the raw data.
We design the queries with the proposed approach so that the
seller is blind to the buyer’s raw data and has no knowledge to
fabricate responses to the queries to obtain a desired outcome
of the diversity and relevance trade-off. We will show through
extensive experiments on real tabular and image datasets that
the proposed estimates capture the diversity and relevance of
the seller’s data for the buyer.

Introduction
Data is the main fuel of the modern world enabling artifi-
cial intelligence and driving innovation and technological
growth. The demand for data has grown substantially, and
it is extremely valuable for sectors to acquire high quality
data to discover knowledge and improve their products and
services. As the demands for data have grown substantially,
data products have become valuable assets to purchase and
sale. This calls for establishing a data marketplace that con-
nects different parties and facilitates trading data.

A data marketplace mainly includes three components,
data sellers, broker, and data buyers; data sellers own the
data and share it with the broker in exchange for rewards;
data buyers want to acquire data, and broker facilitates trad-
ing data. As a valuable resource, it is important to estab-
lish a principled method to quantify the worth of the sellers’
data and its value for the buyers. This is addressed via data
valuation which is the essential component for realization
of a fair marketplace for sellers and buyers. Data valuation
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arises in various applications such as collaborative machine
learning (Sim et al.; Tay et al.), federated learning (Song
et al.; Richardson et al.), data marketing (Schomm et al.;
Muschalle et al.), advertisement (Bergemann et al.; Zheng
et al.), recommendation systems (Immorlica et al.; Che et
al.), and data sharing (Rasouli et al.; Gradwohl et al.).

Data valuation is carried out either based on “intrinsic”
or “extrinsic” factors; intrinsic data valuation is data-driven
and based on the quality of dataset (Niu et al.; Raskar et al.),
while extrinsic data valuation considers demand-supply and
game-theoretic mechanisms (Luong et al.; Zhang et al.). It
is a common practice to couple intrinsic data valuation with
a utility metric for validation (Ghorbani et al.; Jia et al.), or
with a specific machine learning (ML) task (Agarwal et al.;
Chen et al.). In particular, for ML applications, data is of-
ten valued assuming existence of a validation set using val-
idation accuracy as a metric (Wang et al.; Yan et al.). Also,
ML models trained with a target task are used to estimate
the value of the data used for training the models (Pei; Liu
et al.). On the other hand, extrinsic data valuation techniques
consider external factors such as competition and demands
(Agarwal et al.; Bimpikis et al.), which requires estimating
costumers’ demands for products and competitors price lev-
els to price a product (Toni et al.; Cong et al.).

Enforcing a close coupling between intrinsic data valu-
ation and existence of a validation set may not be practi-
cal since a validation set that all the parties agree on may
not exist, and a particular validation set may not sufficiently
represent the data distribution for a learning task (Xu et al.).
Furthermore, having a validation set may provide the chance
to malicious sellers to modify their datasets to overfit on the
validation set. Also, considering a specific ML model/task
for data valuation may not be aligned with the interests of
all the parties. We instead take a step back and consider
an intrinsic data valuation without any validation require-
ments and before performing any tasks such as training a ML
model. We take a step towards addressing the challenge of
formulating a model- and task-agnostic intrinsic valuation of
data at a seller for a buyer. The authors in (Xu et al.) develop
a technique independent of validation based solely on the
diversity of seller’s data, which captures the variation/dis-
similarity across data samples; this provides the same value
of data at a seller for all the buyers. However, we believe
that diversity of data alone may not be sufficient for data
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valuation for two reasons. First, performing data valuation
independent of the buyers makes it hard to realize the rel-
evance of the seller’s data for the buyer. Consider the case
when a buyer is interested in health data, such as chest X-
ray images, while a seller has a very diverse set of images of
animals. Thus, the inherently diverse dataset at the seller is
irrelevant for the buyer, and this needs to be captured by data
valuation. Additionally, a seller can fabricate data to increase
its diversity through, for example, adding random noise.

We focus on an intrinsic task-agnostic data valuation con-
sidering the fact that data at each seller has a distinct value
for each buyer (Raskar et al.). We measure the value of data
at a seller in dependence with the already available data at
the buyer, some of which may be publicly available, which
stays local at the buyer and is not shared with any parties.
This provides a unique valuation of a seller’s data for each
buyer. We aim to value the data through comparing the sta-
tistical properties of the two datasets and formulate the prob-
lem as estimating diversity and relevance of the seller’s data
for the buyer. We then estimate diversity and relevance by
measuring the differences and similarities in the statistical
properties of the two datasets through second moment. This
is carried out through queries from the buyer to the seller
designed such that it is infeasible for the seller to fabricate
responses to the queries and manipulate the data to achieve
a desired outcome of diversity and relevance pair.

Notations: A multi-variate normal distribution with mean
vector µ and covariance matrix Σ is denoted by N (µ,Σ);
0n represents an all-zero vector of dimension n; l2 norm of
a vector is denoted by ∥ · ∥; Diag(λ1, ..., λd) returns a d× d
diagonal matrix with diagonal entries λ1, ..., λd. Cardinality
of a set is shown by | · |.

Problem Motivation and Formulation
We consider a data marketplace with an arbitrary number of
buyers and sellers, assuming that each buyer (she) has access
to some data samples1 and wants to buy extra data from one
or multiple sellers. The goal is to measure the value of the
data at a seller (he) for a buyer without focusing on a specific
task for which the buyer is buying data. Data as a random
variable is entirely defined by its distribution, and data distri-
bution contains all the statistical information about the data.
As a result, comparing data distributions at the buyer and
seller could provide a comprehensive means for data valua-
tion. However, in practice (as for ML applications), the data
distribution is unknown, and it is often computationally im-
possible to approximate it using only a limited number of
samples. Hence, we may instead directly use the data sam-
ples as the realizations of their distribution to capture their
statistical properties. We further argue that the differences
and similarities in the statistical properties of the data at dif-
ferent parties are reflected by two metrics, diversity and rel-
evance. Accordingly, we aim to estimate these two metrics
using the data at the seller and the buyer for data valuation.

Diversity measures how much of different statistical prop-
erties the seller’s data adds to the buyer’s data, where we

1This could be private data at each buyer or a publicly available
dataset or a combination of both.

note that her data is limited to capture all the statistical prop-
erties of the original distribution. Whereas, relevance cap-
tures the similarity in the statistical properties of the two
datasets. Consider a buyer with some cat and dog images,
both with only black color. Intuitively, images of colorful
cats and dogs seem to be a perfect addition to the buyer’s
data, where it provides some statistical properties that the
buyer’s data has not seen (because of the difference in col-
ors), and some similarity in the statistical properties (hav-
ing the same animals). Other images (except cats and dogs)
could provide highly diverse data for the buyer; however, the
relevance may be very limited, which prevents the buyer’s
data to capture the entire distribution. On the contrary, a
dataset with black cats and dogs is highly relevant to the
buyer’s data, while it may not add any new statistics to it.

Another example is that of sample complexity in ML,
which, given a data distribution, is defined as the minimum
number of independent and identically distributed samples
required for the ML model to generalize to that distribu-
tion without overfitting. Adding diverse data to the buyer’s
data helps the ML model to cover a wider range of statisti-
cal properties; however, this will require a larger sample size
to guarantee that the model can generalize well to the new
(statistically more diverse) dataset. While, after receiving a
more relevant dataset at the buyer, it is likely that the ML
model generalizes well (satisfy the sample complexity re-
quirements) to the (limited) data statistics. As a result, there
is a trade-off between the amount of diversity and relevance
that the buyer is willing to receive and the performance (in
this case whether the model generalizes well to capture all
the statistical properties of the data).

Our goal is to develop a task-agnostic data valuation
through measuring diversity and relevance between two
datasets. We consider buyer’s data as the baseline dataset
and measure the diversity and relevance of a seller’s data
with respect to this baseline. Let us denote the buyer’s and
seller’s data with matrices B ∈ Rnb×d and S ∈ Rns×d,
respectively. The underlying assumption is that the datasets
at the buyer and seller have the same feature space and as
in ML applications have been zero-centered and normalized
(this will guarantee that the datasets have the same support
set). Data valuation is defined assuming that data could be
readily used at the buyer without any computationally heavy
post-processing (except zero-centering and normalization).

Considering the buyer’s dataset B as the baseline, we de-
note the diversity and relevance of another dataset with re-
spect to the baseline dataset by DB and RB , respectively,
such that DB : Rns×d → [0, 1] and RB : Rns×d → [0, 1].
Accordingly, both diversity and relevance accept a dataset S
(seller’s data matrix) as input and map it to a real number
in the interval [0, 1]. According to the above definition, the
output of DB and RB is general enough, since any bounded
interval can be normalized to the interval [0, 1]. A larger
DB (RB) indicates a larger diversity (relevance) of a dataset
with respect to B. As a result, for any specific realization of
the measures DB and RB defined above, being close to 0 in-
dicates the minimum diversity (relevance), while a measure
close to 1 translates into the maximum diversity (relevance)
of a dataset compared to the baseline dataset B.
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(a) Buyer (b) Seller 1 vs. buyer (c) Seller 2 vs. buyer (d) Seller 3 vs. buyer

Figure 1: Data scatters illustration in 2-D for buyer and sellers 1 to 3’s data with covariance matrices [[1, 0.1], [0.1, 0.25]],
[[0.9, 0.2], [0.2, 0.15]], [[0.1, 0.05], [0.05, 2]], and [[0.5, 0.1], [0.1, 0.5]], respectively.

Any realization of DB and RB should satisfy the follow-
ing two intuitive cases:

• Case 1: DB(B) = 0; RB(B) = 1; that is, the same
dataset has no diversity and maximum relevance.

• Case 2: Using any distance measure, if the distance
between the distributions of B ∈ Rnb×d and S ∈
Rns×d is unbounded2, we have DB(S) = 1; RB(S) =
0; that is, for distributions Pb and Ps of data at the
buyer and seller, respectively, with their distance de-
noted by ℓ(Pb, Ps), limℓ(Pb,Ps)→∞ DB(S) = 1 and
limℓ(Pb,Ps)→∞ RB(S) = 0.

Unlike the above task-agnostic data valuation formula-
tion, a task-dependent data valuation may be a function of
a learning algorithm, which takes as input a training dataset
and outputs a ML model; also, it may depend on a utility
function which takes as input the output of the learning algo-
rithm (ML model) and/or a dataset and outputs a real value
score (Sim et al.). Next we motivate our approach to measure
diversity and relevance through a simple example.

Motivating Example
Here we focus on a 2-D feature space, i.e., d = 2, where
B ∈ Rnb×2 and S ∈ Rns×2. We consider the case where
entries of data matrices B and S are distributed according to
N (02,Σb) and N (02,Σs), respectively, where we note that
data distribution is unknown to the nodes. For simplicity, we
assume that the number of data samples at the buyer and
each seller is 104, i.e., nb = ns = 104. We aim to measure
the diversity and relevance of various datasets with respect to
the baseline dataset (buyer’s data) with a covariance matrix
Σb = [[1, 0.1], [0.1, 0.25]]. Fig. 1a illustrates the scatters of
the buyer’s data in 2-D. We observe that the buyer’s data is
scattered mostly across the first dimension.

We consider five sellers with various datasets. The
datasets in the first three sellers have covariance matrices
Σs1 = [[0.9, 0.2], [0.2, 0.15]], Σs2 = [[0.1, 0.05], [0.05, 2]],
and Σs3 = [[0.5, 0.1], [0.1, 0.5]], respectively. Figs. 1b, 1c,
and 1d demonstrate the scatters of the first three sellers’ data

2This is for any reasonable distance metric between two
datasets, for instance Kullback–Leibler divergence, or Rényi
divergence. For distance metrics with upper bound, such as
Jensen–Shannon divergence, this could be rewritten as the maxi-
mum distance between the two datasets.

compared to the buyer’s data in 2-D. Accordingly, it is in-
tuitive to conclude that, for the buyer, seller 1’s data is the
most similar compared to the data of the other two sellers,
while seller 2’s data has the least similarity among the three
sellers. We expect seller 3’s data to have some level of sim-
ilarity and some level of difference compared to the buyer’s
data. We further consider sellers 4 and 5 with datasets with
covariance matrices Σs4 = [[1, 0.1], [0.1, 0.25]] and Σs5 =
[[50, 0], [0, 50]], respectively. Given the covariance matrix of
the buyer’s data, it is expected that seller 4’s data should
result in Case 1, i.e., minimum diversity and maximum rele-
vance, while seller 5’s data should lead to Case 2, i.e., max-
imum diversity and minimum relevance.

We need a metric to capture the differences in the statis-
tical properties of various datasets compared to the buyer’s
data and reflect it in diversity and relevance. Our approach
focuses on the second moment to capture the variations in
distribution. In particular, we consider principal component
analysis (PCA) applied to the covariance matrix of data at
different nodes, where it measures the variance of data in
directions corresponding to the principal components. We
first find the principal components, together with their cor-
responding variance values, of the covariance matrix at the
buyer. Then, the principal components of the buyer’s data
are shared with each seller, and he reports the variance of his
covariance matrix in those directions. We then use the vol-
ume corresponding to the difference and intersection of the
variances in the principal components directions to estimate
diversity and relevance of the seller’s data for the buyer’s
data, respectively. This is demonstrated in Fig. 2.

To be precise, the buyer first applies eigendecompo-
sition to the covariance matrix 1

nb
BTB, which results

in 1
nb
BTB = [u1 u2]Diag(λ1, λ2) [u1 u2]

T , where

u1 = [0.99 0.13]
T and u2 = [−0.13 0.99]

T are the
eigenvectors (principal components), and λ1 = 1.01 and
λ2 = 0.23 are the eigenvalues (variance in the direction
of their corresponding eigenvectors). Next, the seller aims
to find the variance of his data in both directions u1 and
u2, the eigenvectors of buyer’s data. Having vectors u1

and u2 shared with a seller, he estimates the variance of
his data in these directions by first computing the covari-
ance matrix 1

ns
STS, then the l2-norm of this matrix pro-

jected onto the directions as follows λ̂1 = ∥ 1
ns
STSu1∥,
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Figure 2: Variance of the buyer’s and seller 3’s data in the
directions of the principal components of buyer’s data.

λ̂2 = ∥ 1
ns
STSu2∥. We note that, if u1 and u2 are the

eigenvectors of 1
ns
STS, then λ̂1 and λ̂2 are the eigenvalues

of this matrix. Accordingly, at seller 3 with data generated
with N (02, [[0.5, 0.2], [0.2, 0.5]]), after receiving vectors u1

and u2 from the buyer, we have λ̂1 = 0.53 and λ̂2 = 0.47.
Fig. 2 illustrates vectors λ1u1 and λ2u2, the principal

components of the buyer’s data, as well as λ̂1u1 and λ̂2u2,
the variance estimate of seller 3’s data in the directions of
u1 and u2. The goal is to estimate diversity and relevance
of seller 3’s data for the buyer based on the knowledge
of λ1, λ2 and λ̂1, λ̂2. We argue that the volume measur-
ing the difference (shown by red dots) represents diversity,
while the intersection volume (shown by green dots) rep-
resents the relevance that seller 3’s data has for the buyer.
The rationale behind these choices is that the volume cap-
turing the difference (|λ1 − λ̂1| × |λ2 − λ̂2|) represents
the dissimilarity between the two distributions measured
through the second moment on principal components of the
buyer’s data, which is translated into the diversity of seller
3’s data for the buyer. Whereas, the intersection volume
(min{λ1, λ̂1} × min{λ2, λ̂2}) measures the similarity be-
tween the two distributions through second moment, which
is translated to the relevance of seller 3’s data for the buyer.

In order to limit diversity and relevance values to the in-
terval [0, 1], we divide each of the difference and intersec-
tion volumes by the whole volume, i.e., max{λ1, λ̂1} ×
max{λ2, λ̂2}. Furthermore, we take the square root of the
result to account for the geometric mean; that is, we esti-
mate diversity and relevance, respectively, as follows:

Div. =
( ∣∣λ1 − λ̂1

∣∣× ∣∣λ2 − λ̂2

∣∣
max{λ1, λ̂1} ×max{λ2, λ̂2}

)1/2

, (1a)

Rel. =
(

min{λ1, λ̂1} ×min{λ2, λ̂2}
max{λ1, λ̂1} ×max{λ2, λ̂2}

)1/2

. (1b)

We will show in the Appendix that, with the above esti-
mates of diversity and relevance, we have Div. + Rel. ≤ 1.
With the proposed measures, in general the desired output
of (Div.,Rel.) pair may be around (0.5, 0.5), i.e., the buyer
may desire moderate levels of diversity and relevance jointly
instead of sacrificing one for the other, although this depends
on the buyer’s desire which may vary across the buyers.

Fig. 3 shows the diversity and relevance of various sell-
ers’ data for the buyer estimated based on our approach
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s1 = [[0.9, 0.2], [0.2, 0.15]]
s2 = [[0.1, 0.05], [0.05, 2]]
s3 = [[0.5, 0.1], [0.1, 0.5]]
s4 = [[1, 0.1], [0.1, 0.25]]
s5 = [[50, 0], [0, 50]]

Figure 3: Diversity versus relevance of various datasets with
2-D zero-mean Gaussian distributions with various covari-
ance matrices Σs with respect to the baseline dataset with
covariance matrix Σb = [[1, 0.1], [0.1, 0.25]].

given that the buyer has Gaussian samples with covari-
ance matrix Σb = [[1, 0.1], [0.1, 0.25]]. As expected in-
tuitively, data at seller 1 with covariance matrix Σs1 =
[[0.9, 0.2], [0.2, 0.15]] resembles buyer’s data and adds lit-
tle diversity to it. Whereas, seller 2 with data with co-
variance matrix Σs2 = [[0.1, 0.05], [0.05, 2]] provides the
buyer with a diverse data with little relevance. Unlike these
two sellers, seller 3’s data with covariance matrix Σs3 =
[[0.5, 0.1], [0.1, 0.5]] has a moderate level of diversity and
relevance for buyer with the pair very close to (0.5, 0.5).
These results indicate that the proposed estimates of diver-
sity and relevance corroborate our intuition. Also, the pro-
posed approach returns the expected results for the scenarios
in Case 1 and Case 2 given the estimated diversity-relevance
pair for seller 4’s and seller 5’s data, respectively.

Diversity and Relevance Estimation
In this section, we present our approach in estimating di-
versity and relevance of dataset S ∈ Rns×d (seller’s data)
compared to the baseline dataset B ∈ Rnb×d (buyer’s data).
This is carried out by comparing the statistical properties of
the two datasets through second moment.

The buyer employs eigendecomposition to the covariance
matrix 1

nb
BTB; i.e., 1

nb
BTB = U Diag(λ1, ..., λd) UT ,

where λi is the i-th largest eigenvalue, and U = [u1 · · ·ud]
with ui ∈ Rd denoting the eigenvector corresponding to the
i-th eigenvalue. We note that λi ≥ 0 since 1

nb
BTB is pos-

itive semi-definite. The buyer shares the principal compo-
nents u1, ...,ud with the seller, while λ1, ..., λd stay local at
the buyer. The seller estimates the variance of its covariance
matrix 1

ns
STS along u1, ...,ud. This is carried out as

λ̂i =
∥∥ 1

ns
STSui

∥∥, i = 1, ..., d, (2)

where the covariance matrix 1
ns
STS is first projected into

ui and then l2-norm of the resultant vector provides the es-
timate of the variance (the data matrices are zero-centered).
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We note that if ui is an eigenvector of 1
ns
STS, then λ̂i is

its corresponding eigenvalue. Next, seller and buyer share
λ̂i and λi, for i = 1, ..., d, respectively, with the broker. The
broker then tries to estimate the diversity and relevance of
the seller’s data for the buyer according to λ̂i and λi.

We estimate diversity and relevance based on the volume
of the space specified by the coordinates corresponding to
the principal components (eigenvectors) of the covariance
matrix of buyer’s data. We have λi and λ̂i as the value of
buyer’s and seller’s data on the i-th coordinate, respectively.
We estimate the relevance through the volume occupied by
both buyer’s and seller’s data in these coordinates; that is,∏d

i=1 min{λi, λ̂i}. Our justification is that this volume cap-
tures the similarity in the statistical properties of the two
datasets since this is a space occupied by both datasets. On
the other hand, diversity is estimated through the volume
of the difference between the variance of the buyer’s and
seller’s data in each coordinate; that is,

∏d
i=1 |λi − λ̂i|. We

argue that this volume captures the amount of dissimilarity
in the statistical properties of the two datasets. We normalize
these estimates through dividing it by the entire volume, i.e.,∏d

i=1 max{λi, λ̂i}. This yields the following estimates for

diversity and relevance, respectively,
∏d

i=1

(
|λi−λ̂i|

max{λi,λ̂i}

)
,∏d

i=1

(
min{λi,λ̂i}
max{λi,λ̂i}

)
, where each is the product of d terms

each ≤ 1; so for large enough d, these estimates may be
very close to 0. To address this issue, we take the geometric
mean and estimate diversity and relevance of seller’s data S
for buyer with data B, respectively, as follows:

DB(S) =
d∏

i=1

( ∣∣λi − λ̂i

∣∣
max{λi, λ̂i}

)1/d

, (3a)

RB(S) =

d∏
i=1

(
min{λi, λ̂i}
max{λi, λ̂i}

)1/d

. (3b)

Fig. 4 shows the proposed approach with the interactions
between different parties to value a seller’s data for a buyer.

It is easy to verify that the proposed diversity and rele-
vance estimates satisfy the conditions in Case 1 and Case 2.
We will show in the Appendix that the proposed estimates
validate additional intuitive properties. Generally speaking,
with the proposed approach a safe default target is to have
a diversity-relevance pair close to (0.5, 0.5). However, this
may change depending on a buyer’s desire. For instance for
a buyer with a relatively small amount of data, acquiring a
highly diverse dataset may not be desirable since it is likely
that the sample complexity requirements will not be satisfied
given her own limited data samples (in other words, adding
diverse data samples complexifies the underlying distribu-
tion, which increases the already excessive sample complex-
ity). While, a buyer with a relatively large amount of data
may prefer acquiring a more diverse data since most likely
she already has enough samples to generalize to her own
data distribution (she has enough room to diversify her un-
derlying distribution and increase her sample complexity).
Partial Components. We remark that the proposed ap-
proach can be readily extended to the scenario where diver-

sity and relevance could be estimated using the variance in
the directions of only partial main components rather than all
the d directions; that is, assuming a subset D ⊂ {1, ..., d},

DB(S) =
∏
i∈D

( ∣∣λi − λ̂i

∣∣
max{λi, λ̂i}

)1/|D|

, (4a)

RB(S) =
∏
i∈D

(
min{λi, λ̂i}
max{λi, λ̂i}

)1/|D|

. (4b)

This is valid with high dimensional data since not all the
principal components carry significant information (Shlens).
Representations. Assuming that different parties have ac-
cess to the same publicly available pre-trained model (such
as VGG16 trained on the ImageNet dataset (Deng et al.)), the
proposed estimates to measure diversity and relevance can
be employed to the representations of data, instead of raw
data. To be precise, different parties can forward propagate
the data to the (same) pre-trained model and obtain the acti-
vations of the last hidden layer of the model, and then apply
the proposed algorithm to estimate diversity and relevance
between different datasets. We highlight that the last hidden
layer output provides a compact representations of data by
capturing its most significant attributes (Zhang et al.).

Experiments
We evaluate our estimates for diversity and relevance using
real datasets, namely Adult (Kohavi), MNIST (LeCun et al.),
fashion-MNIST (Xiao et al.), Cifar-10 (Krizhevsky) and
FairFace (Karkkainen et al.). For the experiments, we esti-
mate diversity and relevance through the partial components
analysis, given in (4), where only the principal components
of buyer’s data with corresponding eigenvalues more than
10−2 are chosen. We will observe in the experiments that
the proposed approach can capture the increase in diversity
(relevance) when reducing (enhancing) the overlaps in de-
mographics or labels between seller’s and buyer’s datasets.

We first consider the Adult dataset which has various fea-
tures such as education level, age, occupation, etc., predict-
ing whether an individual’s annual income is over 50k or
not. We consider a buyer with a dataset of individuals with
doctorate degree and annual salary over 50k. We consider
various sellers with datasets of individuals with: i) no more
than 20 years old; ii) annual salary over 50k and working for
less than 40 hours per week; iii) 60 years of age and older;
iv) annual salary more than 50k; v) annual salary more than
50k and education level of at least bachelors, i.e., bachelors,
masters, prof-school, or doctorate; vi) ducation level of prof-
school or doctorate; vii) education level of doctorate.

Fig. 5 illustrates the diversity-relevance pair of each
seller’s data for the buyer using the proposed estimates. As
expected, we observe that the seller with data only from the
individuals not older than 20 years provides the most diverse
and least relevant data; it is highly likely that none of these
individuals hold a doctorate degree and earn at least 50k per
year. Also, it is likely that most of those with doctorate de-
gree and annual salary of at least 50k work for more than
40 hours per week; that is why the seller with information
about individuals working less than 40 hours per week while
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Figure 4: The proposed interaction between different parties to estimate diversity and relevance of seller’s data for buyer.
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Figure 5: Diversity versus relevance of datasets at various
sellers compared to buyer’s dataset considering the Adult
dataset, where the buyer has data of individuals with doctor-
ate degree earning an annual salary of at least 50k.

earning more than 50k annually has more diversity than rel-
evance for the buyer. We also expect that most people over
the age of 60 years do not hold doctorate degree and/or earn
more than 50k per year. However, as we expect, for the buyer
the relevance of data at the 3rd seller is more than that at the
first seller which is also reflected in our estimates.

Considering a seller with data of individuals earning at
least 50k annually, this provides a slightly more diversity
than relevance for the buyer, since most of these individu-
als may not hold a doctorate degree; the diversity however
is smaller than the data of individuals older than 60 years
which includes people with more diverse education levels.
Limiting the dataset of high income individuals to those
holding bachelors degree or higher academic degree (mas-
ters, prof-school, doctorate) reduces the diversity and in-
creases the relevance to the buyer’s data. On the other hand,
the seller with data of individuals having doctorate degree
provides a relatively high relevance for the buyer (since most
of those probably earn more than 50k annually), while the
relevance reduces considering a seller with information of
people holding degree from a professional school or doctor-
ate. We observe that our estimates capture these differences.

Fig. 6 evaluate our estimates of diversity and relevance
using MNIST and fashion-MNIST datasets. We assume that
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Figure 6: Diversity versus relevance of data at various sellers
with data from MNIST, fashion-MNIST and noisy images
compared to buyer’s data from MNIST with classes 0 to 4.

the buyer has ∼ 6000 images and sellers have ∼ 10000 im-
ages, and each party has access to distinct images. We con-
sider buyer with images of only classes 0 to 4 from MNIST,
and five sellers with images from MNIST with different
classes, precisely classes 0 to 4 (same as the buyer), 1 to
5, 0 to 9, 3 to 9, and 5 to 9. It is evident that the diversi-
ty/relevance should increase/decrease from seller 1 to seller
5, where the proposed estimates illustrate these changes. It
is interesting to note that the seller with data from all the
classes 0 to 9 provides a diversity-relevance pair close to
point (0.5, 0.5). To further evaluate the proposed estimates,
we consider sellers with images of a different dataset than
the images at the buyer. In particular, we consider two sellers
with images of Sandal and Coat classes, respectively, from
fashion-MNIST dataset. As expected, we observe that these
two sellers provide a more diverse data for the buyer com-
pared to the sellers having images from MNIST. Further-
more, we consider a seller with only noisy images where
each pixel (in a 28 × 28 image in this case) is assumed to
have a zero-mean unit-variance Gaussian distribution. Ob-
serve that this seller provides the largest diversity and small-
est relevance to the buyer compared to other sellers. We note
that by increasing the noise variance, the diversity-relevance
pair will get closer to (1, 0), i.e., corresponding to Case 2.
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Figure 7: Diversity versus relevance of data at various sell-
ers from Cifar-10, FairFace and noisy images compared to
buyer’s data from FairFace with images of class White.

Next we consider a buyer with images from the FairFace
dataset, which contains face images of different race groups,
namely White, Black, Indian, Middle Eastern, Asian (com-
bining East Asian and Southeast Asian). We assume that the
buyer and all the sellers have access to the publicly avail-
able VGG16 model pre-trained on the ImageNet dataset, and
apply the proposed scheme to estimate diversity and rele-
vance to the output of the last hidden layer of this pre-trained
model (feature representations of data). We assume that the
buyer has images of only White group, and six sellers each
has images of one group (the images of White group at a
seller are different than the ones at the buyer). We observe
in Fig. 7 that the images of Black group provides the most
diversity for the buyer, and images of Indian and Asian (East
Asian + Southeast Asian) have respectively more diverse
than relevant data for the buyer. Whereas, sellers with im-
ages of Middle Eastern and Latino groups are more relevant
for the buyer compared to the other three groups, and, as ex-
pected, the seller with White group images has the least di-
verse data for the buyer. Overall, human face images follow
a particular pattern and does not vary significantly across in-
dividuals. To further capture the differences, we consider a
seller with Ship images from Cifar-10 passed through the
pre-trained VGG16 model on ImageNet. We observe that
this seller provides a relatively small relevant data for the
buyer. Also, observe that data of the seller with only noisy
images is highly diverse and not relevant for the buyer.

Discussions
Here we discuss about various aspects of the proposed ap-
proach ranging from its properties to possible extensions.
Privacy Enhancing. With the proposed approach, the only
information about buyer’s data that is shared with the seller
is all/partial principal components of its covariance matrix.
This could be easily modified to enhance the privacy of
buyer’s data by sharing extra directions, in addition to the
principal components, with the seller. This can hide the prin-
cipal components of buyer’s data, which are the only direc-
tions used to estimate diversity and relevance at the broker.

Robustness to Malicious Seller(s). With the proposed ap-
proach, the seller does not have any information about the
variance of buyer’s data in different directions. This provides
a robust mechanism to malicious sellers who try to fabricate
their data resulting in a particular diversity-relevance pair
and/or add noise to their data; that is, the seller does not have
enough information about the buyer’s data to manipulate the
algorithm to output a specific diversity-relevance pair. Also,
adding random noise to the data at the seller may increase
the diversity for the buyer, however it reduces the relevance.
Thus, the trade-off between diversity and relevance controls
a malicious seller in adding noise to his data.
Number of Data Samples. We assume that sellers have
large enough data compared to the buyer, and we do not in-
corporate the size of data at the sellers into the proposed data
valuation formulation. This can be extended by considering
the size of data at the sellers as an additional metric for data
valuation. We can further extend the approach by consider-
ing the mean of data samples at different parties.
Weighted Averaging. The proposed diversity and relevance
estimates could be extended by weighting the ratios at vari-
ous principal components of the buyer’s data differently. For
weights ω1, ..., ωd with 0 ≤ ωi ≤ 1 and

∑d
i=1 ωi = 1, we

can estimate diversity as DB(S) =
∏d

i=1

( |λi−λ̂i|
max{λi,λ̂i}

)ωi

and relevance as RB(S) =
∏d

i=1

(
min{λi,λ̂i}
max{λi,λ̂i}

)ωi

. This is
useful when the variance in one particular direction may be
of more importance for the buyer. Furthermore, we can out-
put a single value as the data value computed as the com-
bination of diversity and relevance specified by the buyer.
For example, if the buyer prefers to have ratio α diverse and
(1 − α) relevant data, for 0 ≤ α ≤ 1, data value of a seller
for the buyer can be computed as αDB(S)+(1−α)RB(S).
Maximum Diversity Maximum Relevance. With the pro-
posed approach, the diversity and relevance estimates are
not independent since their sum can not exceed 1. Although
ideally maximum diversity and maximum relevance are de-
sired, we argue that this may not be feasible. Maximum di-
versity encompasses all the randomness that could be added
to the data for more diversity, i.e., when adding more ran-
domness does not increase the diversity. Having maximum
relevance in this case may not be feasible.

Conclusions
We studied task-agnostic valuation of data at a seller for a
buyer. This is specifically relevant when the buyer has ac-
cess to data samples apriori which could be used to measure
usefulness of seller’s data for the buyer. We formulated the
problem as the diversity and relevance of the seller’s data
for the buyer in the efforts to compare the statistical proper-
ties of the two datasets. We then provided estimates for the
diversity and relevance by measuring the difference and sim-
ilarity volumes using the space of the principal components
of the buyer’s data as the baseline; this technique focuses
on the second moment analysis by comparing the variance
of each dataset on these components. We show that the pro-
posed estimates are successful in capturing the diversity and
relevance of two datasets using various real datasets.
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