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ABSTRACT

Technology scaling is a common trend in current embed-
ded systems. It has promoted the use of multi-core, multi-
processor, and distributed platforms. Such systems usually
require run-time migration of distributed applications be-
tween the different nodes of the platform in order to bal-
ance the workload or to tolerate faults. Before an appli-
cation can be migrated, it needs to be brought to a stable
state such that restarting the application after migration
does not violate its functional correctness. An application
in a stable state does not change its context any further, and
therefore, stabilization is a prerequisite for any application
migration. Process networks are a common model of com-
putation for specifying distributed applications. However,
most results on the migration of process networks do not
provide an algorithm to put a general process network into
a stable state, suitable for migration. This paper proposes
a technique which efficiently and correctly brings a process
network executing on a distributed system to a known sta-
ble state. The correctness of the technique is independent
of the temporal characteristics of the system and the topol-
ogy of the process network. The required modifications of
a process network are lightweight and preserve its original
functionality. A model characterizing the timing properties
of the technique is provided. The feasibility and efficiency
of the proposed approach and the respective model are val-
idated with experimental results on Intel’s SCC platform.

1. INTRODUCTION
Nowadays, increasing computational demands in the em-

bedded systems domain have required the use of distributed
many-core platforms. One example is the automotive in-
dustry where a contemporary car has many driver assistant
systems with tens of cameras, each of them supplying a video
stream that needs to be processed in real-time.

However, the increased performance from such platforms
comes at the price of increased power consumption per unit
area. Such systems may experience high chip temperatures
which may require that applications are migrated at runtime
between different processing nodes in order to cool down
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parts of the chip. Moreover, load-balancing also requires
runtime migration in order to optimize the performance.

Migration requires that upon detecting an event, an ap-
plication can be brought to a stable state where all processes
involved in migration have stopped their execution, collected
all data packets sent to them, do not send any new data, and
all local variables have been saved, including the program
counters. Only when such a consistent state is reached, con-
texts can be saved correctly, applications (or parts of them)
can be migrated and safely restarted from the point where
they have been interrupted.

Bringing an application (or parts of it) to a stable state
is not trivial when the application is distributed, composed
of many asynchronously executing processes which do not
share clocks or memory, with possibly asynchronous com-
munication, and no prior knowledge of the amount of data
being produced (or consumed) by a process in any given in-
terval of time. Such is the case for applications specified as
Kahn Process Networks (KPNs) [12]. The model is quite
often used for specification and design of control and signal-
processing applications which are ubiquitous today.

The paper focuses on the stabilization problem. Given
a process network executing on a distributed memory sys-
tem, upon the detection of an event, the process network
needs to be brought to a stable state which is suitable for
the migration of any of its processes. The technique should
be lightweight, safe, correct, and work independently of the
timing properties of the system or the topology of the pro-
cess network.

The contributions of the paper are summarized as follows:
1) A technique is proposed that brings a process network ex-
ecuting on a distributed memory system to a stable state;
2) Timing analysis for the technique is provided; 3) Exper-
iments are performed on a state-of-the-art multiprocessor
system (Intel SCC [11]). They validate the efficiency and
applicability of the technique, and the correctness of the
provided timing model.

2. RELATED WORK
Lots of research results have been published on process

migration techniques, see e.g. [1,2,4,13], however, they usu-
ally target shared memory systems or do not provide any
details on how to bring a general process network to a sta-
ble state where contexts can be saved correctly. Moreover,
timing models are rarely provided or discussed. Similarly,
this is the case for load-balancing literature [15,18,20].

A process migration technique for Polyhedral Process Net-
works (PPNs) has been proposed in [5]. PPNs are a re-
stricted form of KPNs since all loop bounds, array indices,
and index expressions must be affine expressions and a pro-



cess cannot change these parameters at run-time. There-
fore, the technique proposed in [5] is not applicable to gen-
eral KPNs. In the proposed technique, a process execution
can be stopped at any time. However, this may require re-
execution of the same code after migration which is in con-
trast to our solution which does not require re-executions.
Moreover, the approach in [5] relies on a complex middle-
ware system that continues to run on the processing node
even if the application is migrated which makes the tech-
nique unsuitable in cases the reason for migration is high
temperature. In contrast, in our approach, the affected core
can completely stop, after a known time, the stabilization
time. Furthermore, the authors do not discuss memory re-
quirements, timing properties, or the correctness of their
stabilization technique.

Kernel-based approaches to do process migration usually
require the usage of specific features of an operating system
(OS) or modifications to the OS kernel making them non-
portable, e.g. [6,16]. In this paper, we focus on solutions that
work in user-space so that they do not depend on any specific
OS features, guaranteeing the portability of the solution.

Checkpointing provides a means to manage the context of
a migrating process, e.g., the Berkeley Labs Checkpointing
and Restore (BLCR) algorithm [19]. However, checkpoint-
ing requires a fairly complex bookkeeping process where all
processes must log all incoming tokens, all calculations, and
all output tokens between each checkpoint. Thus, check-
pointing can easily overwhelm the computational capabili-
ties of a typical embedded system [21]. In this paper, we
focus on a lightweight approach which avoids rolling back,
but is able to bring the process network to a stable state
which is ready for migration.

Chandy and Lamport [7] have proposed an approach to
taking snapshots of a process network on a distributed sys-
tem which is similar to the stabilization problem that we
handle. However, they restrict themselves to (theoretical)
systems with infinite FIFO channels and rule out the pos-
sibility that a process may block when attempting to write
on a full output channel. In contrast, our technique is ap-
plicable to practical systems with bounded FIFO channels.
Furthermore, we provide an implementation and a timing
model which are validated with experiments.

3. MOTIVATIONAL EXAMPLES
In this section, we illustrate the challenges involved in the

stabilization of a process network executing on a distributed
memory system by using two simple examples.

Example 1: Decentralized Stabilization. Consider
the process network shown in Fig. 1, with three processes
v1, v2, and v3 and the possibility that v1 and v2 must be sta-
bilized. Assume that v1 exits successfully, but v3 is blocked
when it attempts to read from the input FIFO F(v3, 1) due
to insufficient number of tokens. On the other hand, v2
blocks when attempting to write to the full FIFO F(v3, 2).
This creates a deadlock and v2 can never proceed to collect
its context. In principle, process v3 can be unblocked when
process v1 resumes normal operation after migration, allow-
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Figure 1: Example 1.
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Figure 2: Example 2.

ing v2 to also stabilize, and then migrate. However, such an
approach serializes the stabilization of the process network,
which may be unacceptable. The example shows that it
should be possible to unblock processes that are performing
possibly blocking operations (read/writes). Also some form
of coordination is needed between processes v1, v2, and v3
in order to lead them to stable states.

Example 2: Coordinated Stabilization. For the
given discussion, assume that a separate master process is
connected to all processes via event channels and it initiates
the stabilization of the processes by sending a stop event.
Consider the producer (v1) and consumer (v2) process net-
work shown in Fig. 2. Once the affected processes receive
the stop event, they can start the stabilization procedure.

Suppose that the master sends the stop event to both v1
and v2. Let v2 receive the event before v1. Stabilization re-
quires that v2 must not receive anymore data tokens from its
parents, it must stop any further computation, and it must
not transmit any tokens to its children. However, v1 is not
aware that v2 is entering stabilization, and hence, v1 keeps
transmitting data tokens until it receives the stop event or
its output channel becomes full. Process v2 cannot go into
a stable state because it does not know if v1 has already re-
ceived the stop event and which data token will be the last
data token transmitted by v1. If v2 ignores any data tokens
which continuously arrive over its input channels, then the
execution context for v2 cannot be calculated correctly and
tokens may be lost.

The example shows that simply having a master which
tries to bring all processes to a stable state is not sufficient.
Due to different network latencies, processes may go into
stable states at different times. Therefore, the correctness
of the coordination technique needs to be time insensitive.
Further, a mechanism is needed which indicates when all
processes have stopped and special tokens have to be sent to
child processes to notify that the last data token has arrived.

4. MODEL AND DEFINITIONS
A process network N is defined as the tuple N =

(V,C, I,O, F, i , o, c, f ), where V is a set of processes, C is
a set of data channels, I is a set of input ports, O is a set
of output ports, and F is a set of bounded first-in first-out
(FIFO) buffers. The function i : V → P(I) maps a process
to a set of input ports, where P(S) denotes the power set
of a set S. The function o : V → P(O) maps a process
to a set of output ports. Processes cannot share input or
output ports, i.e., i(vk) ∩ i(vj) = ∅ and o(vk) ∩ o(vj) = ∅
for all vk, vj ∈ V, vk 6= vj . A process v ∈ V reads data
tokens from its input ports i(v) and writes data tokens to
its output ports o(v). The function c : U → C, where
U = {(a, b) : a ∈ o(vk), b ∈ i(vj), vk, vj ∈ V, vk 6= vj},
maps pairs of output and input ports, belonging to different
processes, to a data channel.

The function par : V → P(V ) returns the set of parent
processes for a given process, and the function ch : V →
P(V ) returns the set of child processes for a given process.

The function f : V × I → F provides a FIFO buffer
F(v,m) to an input port m of a process v. The buffer has
a finite size denoted as |F(v,m)|. A process attempting to
write to an output port connected to an input port with a
full FIFO will block until there is sufficient space available.
Similarly, a process attempting to read data tokens from an
input port with an empty FIFO will block until there are suf-
ficient tokens available. Conventionally, KPNs [12] assume
unbounded FIFOs, however, practical systems with finite



resources impose maximum sizes on the FIFOs [9, 10, 17].
Therefore, the notation adheres more closely to the typical
implementation of a process network.

Bringing a process network N into a state that is ready
for migration requires that each process v ∈ V reaches a
stable state which is defined as follows:

Definition 1. (Stable State) A process v ∈ V enters
a stable state if it does not perform any more computations,
parents par(v) do not send any new data tokens, v does not
send any new data tokens to its children ch(v), and it has
received all data tokens already sent by its parents par(v).

Once such a stable state has been reached, the context
of each process can be saved and migrated. The context
of a process includes all unread tokens (all not yet pro-
cessed input tokens), all produced but unsent tokens, and
the program state. Given this context, a process can be
safely restarted.

Having the ability to bring each process to a stable state
may require that the original processes are slightly modified.
Such modifications should preserve the correct functionality
of the network. Thus, it must be ensured that the original
process network N is functionally equivalent to the modi-
fied process network N ′. In other words, the solution must
comply with the notion of Correctness defined as:

Definition 2. (Correctness) Given two process net-
works N and N ′, where N ′ is a modified version of N such
that it has mechanisms to be brought to a stable state. We
say that N ′ is correct, if for any process v′ ∈ V ′ of N ′ which
corresponds to process v ∈ V of N , for any vector of input
sequences of data tokens In, the following relationship holds:

In −−−−→
(v∈V )

Out =⇒ In −−−−−→
(v′∈V ′)

Out (1)

where In −−−−→
(v∈V )

Out means that process v produces the vec-

tor of output sequences of data tokens Out, when given with
the vector of input sequences of data tokens In.

Thus, the overall problem of this paper can be summarized
as: Extend the process network N to N ′, such that:

1. N ′ is functionally equivalent to N ;

2. N ′ can be brought into a stable state independent of
computation or communication delays.

5. PROPOSED TECHNIQUE
Interrupting the normal execution of a process network

is initialized and coordinated by a central authority, which
can be either an external process or a process of the existing
network. Without loss of generality, we assume that the
central authority is an external process called the “master”.

We start by defining a set of coordination events which
will be used by the master for the communication with all
processes. The set of coordination events E contains the
stop event: a process receiving this event will eventually
stop any computations and data transmissions to children,
and must then acknowledge the reception of the event; and
the proceed event: a process receiving this event must pro-
ceed to collect its context. The master sends the proceed

event only when it has received all acknowledgments for the
stop events.

In this paper we focus on stabilizing the entire process net-
work, therefore, the master process always broadcasts the
stop event to all processes in the network. However, the
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Figure 3: Process, companion process, master, event
channel, and signal.

algorithm can be easily extended to stop only specific pro-
cesses in the network, see Appendix B. Furthermore, a proto-
type implementation of the proposed stabilization technique
is discussed in Appendix A.

The master uses a (bidirectional) event channel ej ∈ E
to communicate with process vj . If the process is blocked
because of reading from an empty FIFO or writing to a full
FIFO, it will not be able to detect (and process) events from
the master, therefore the event channel ej ∈ E is not directly
connected to process vj , but to a companion process compj ,
as shown in Fig. 3. The companion process compj is very
lightweight. It only receives and processes events from the
master and makes them available to its process via a shared
variable shared. When compj receives the stop event, it
sets the shared variable shared to stop and sends a signal
unblock process to vj that cancels any blocking read or
write of process vj .

Process vj checks the variable shared at the beginning of
each communication primitive (a read or write statement)
and exits normal execution if shared is set to stop. If pro-
cess vj is blocked and receives the signal unblock process,
it also exits normal execution, otherwise the signal has no
effect. Once the process exits execution, it sets the shared
variable shared to done, and then, the companion process
can send an acknowledgment back to the master.

The above mechanism is only a conceptual description
of our technique. The actual implementation of a separate
companion process or unblocking signals will depend on the
underlying platform.

5.1 Collecting Data Tokens
When a process exits normal execution, it executes a spe-

cial function called Wrapup. Here no more data transmis-
sions or computations are performed. First, the function
waits until the process has received the proceed event from
the master, i.e., meaning that all processes have suspended
their normal computational activity. Then, it collects the
process context and performs any other housekeeping steps
such as returning any allocated memory.

During the collection of the context, a process must collect
all tokens that are sent by its parents. If these tokens are not
collected, the data tokens are “lost”, which leads to incorrect
behavior. This is further complicated by the fact that there
might be a number of tokens arriving late due to late arrival
of stop events in parent processes. Therefore, it must be
ensured that there are no data tokens which are “in flight”,
i.e., written by a parent process but not yet received in the
local FIFO of the child process. Otherwise, the technique
would not be delay-independent.

In order to remedy this problem, in the Wrapup func-
tion, each process, after receiving the proceed event, sends
an end-of-stream (EOS) token to all its children. Thus, a
process must continue to collect late arriving tokens from its
input channels until the EOS marker has been received on
each channel.



5.2 Bounding the Size of Contexts
For the purpose of discussion, the FIFO Fv(m) for an in-

put port m of process v is divided into two FIFOs: Mv(m)
and Lv(m). The size of Fv(m) is the sum of sizes of Mv(m)
and Lv(m). Tokens move from Mv(m) to Lv(m) when there
is sufficient space in Lv(m). The separation is made in or-
der to reflect more closely real implementations of process
networks, where Mv(m) refers to buffers of the interprocess
communication layers and the capacity of communication
links, while Lv(m) refers to the FIFO local to a process.
The process has only the knowledge of the current status of
L but not of M.

We assume that the number of late-arriving tokens to each
process can be bounded. This is the case for any NoC-based
communication where the network capacity can be stati-
cally calculated (or at least upper bounded) by analyzing
its topology, and it is the case for many communication li-
braries where the buffer sizes of data links are finite.

The memory space to absorb all late-arriving tokens is
provided by a statically allocated set of “backup FIFOs” B,
in particular, one for each input port FIFO. The maximum
number of late arriving tokens that a process v must absorb
on each input port m and store in a backup FIFO is upper
bounded by: |Bv(m)| = |Mv(m)| + |EOS| where |Mv(m)|
denotes the size of FIFO Mv(m), and |EOS| denotes the size
of the EOS marker. The bound is correct even if the local
FIFO Lv(m) is full, since tokens in the input FIFOs are not
considered as late arriving tokens and therefore not saved
in the backup FIFOs. The backup FIFOs B are not avail-
able during the normal course of operation. Upon reception
of the proceed event and before sending the EOS tokens, a
process vj swaps all regular FIFOs Lvj (m) with the corre-
sponding backup FIFOs Bvj (m).

Consequently, an upper bound on the size of the context
of process v is:

D
∗
v =

∑

∀j

{|Lv(j)|+ |Bv(j)|}+ |LN|+ |LV| (2)

where |LN| is the memory space required to store the line
number of the program when v exited the normal execution,
and |LV| is the memory space required to store all local
variables (loop indexes, unsent tokens, etc.).

Note that many existing solutions for migration do not
rely on backup FIFOs but simply use a constantly running
middle-ware system that will re-direct any late arriving data,
no matter how late it is. However, such solutions are not
always feasible if, for example, a processing node is close to
reaching peak temperature and any processing activity on it
needs to be stopped after a certain time.

5.3 Timing Analysis
The correct behavior of the proposed algorithm to sta-

bilize a process network is delay-independent. However, in
case that the maximum time to transmit a token between
two processing nodes and the maximum time that a process
is executing without calling a communication primitive are
known, an upper bound on the overall stabilization time for
a process network can be calculated. Such timing param-
eters can be obtained either with formal analysis and then
the computed bounds would be hard real-time ones, or by
measurements (or simulations), and then the bounds would
be soft real-time ones.

In order to analyze the timing, we consider two phases
of the algorithm. In the first one (denoted as phase1), the
master (denoted as M) broadcasts the stop token to all

processes and waits for all acknowledgments. In the second
one (denoted as phase2), it broadcasts the proceed token
and then each process waits until it receives an EOS marker
on its input ports.

The maximum time between the instance when the master
broadcasts the stop token and the instance it receives the
acknowledgment from process v is composed of four time
periods: (a) the maximum time t∗M→v for the stop token to
travel from the processing node of the master to the one of
process v, (b) the maximum time t∗read,v|write,v that process
v requires to perform a single read or write of a data packet
of maximum size, (c) the maximum time t∗c,v that process v
is executing without calling a communication primitive, and
(d) the maximum time t∗v→M for the ack token to travel from
the processing node of process v to the one of the master. In
other words, the master receives the acknowledgment from
process v no later than after the following time period:

t
∗
phase1,v = t

∗
M→v + t

∗
read,v|write,v + t

∗
c,v + t

∗
v→M (3)

and can broadcast the proceed token no later than after the
following time period:

t
∗
phase1,N = max

v∈V

{

t
∗
phase1,v

}

. (4)

Afterwards, each process waits until it receives the
proceed token, swaps all regular FIFOs with the backup
FIFOs, and waits until it receives an EOS marker on each of
its input ports. The time between the instance the master
broadcasts the proceed token and the instance process v can
start to collect its context is upper bounded either by the
sequence that v receives the proceed token, swaps all regu-
lar FIFOs, and waits until it receives an EOS marker, or by
the sequence that a parent of v receives the proceed token
and then process v receives an EOS. Thus, phase2 takes no
longer than the following time period:

t
∗
phase2,v =max

{

t
∗
M→v + max

u∈par(v)
{t∗u→v} ,

max
u∈par(v)

{t∗M→u + t
∗
u→v}

} (5)

where t∗u→v is the maximum time for the EOS marker to
travel from the processing node of process u to the one of
process v.

Finally, the stabilization time of process v and process
network N is upper bounded by:

t
∗
stab,v = t

∗
phase1,N + t

∗
phase2,v (6)

t
∗
stab,N = t

∗
phase1,N +max

v∈V

{

t
∗
phase2,v

}

. (7)

The property of Correctness. The proposed technique
requires three modifications of the process network, namely
the addition of a companion process, a Wrapup function,
and a conditional check before proceeding with a blocking
read or write. The addition of the companion process compj
to process vj does not change the order of any tokens in any
channel for any process. It only retains the information that
an event {stop, proceed} ∈ E was dispatched from the mas-
ter. The Wrapup function simply stores late-arriving tokens
in backup FIFOs, maintaining the relative order of arrival
of tokens. Finally, the conditional check before proceeding
with a blocking read or write does not interfere with com-
putations or the tokens that are already read or need to be
written. Thus, all three modifications preserve the origi-
nal functionality of the process network and the correctness
property is satisfied.



Table 1: Measured stabilization time tstab,v vs. its upper bound t∗stab,v for each process of the Demosaicing
application. In addition, the maximum context size Dv is compared to its upper bound D∗

v .

process tphase1,v t∗phase1,v tphase2,v t∗phase2,v tstab,v t∗stab,v Dv D∗

v

avg max avg max avg max max

load image 0.024 s 0.13 s 0.13 s 19.46µs 21.39µs 29.33µs 0.77 s 3.26 s 4.20 s 52 B 52B
pre processing 0.042 s 0.16 s 0.16 s 40.80µs 44.39µs 48.12µs 0.77 s 3.26 s 4.20 s 632472 B 632472 B
pre demosaicing 0.32ms 0.55ms 0.55ms 77.07µs 78.03µs 79.74µs 0.77 s 3.26 s 4.20 s 36 B 632484 B
demosaicing 0 0.41 s 1.04 s 1.05 s 60.58µs 61.54µs 66.91µs 0.77 s 3.26 s 4.20 s 157704 B 163370 B
demosaicing 1 0.53 s 1.05 s 1.07 s 60.30µs 62.63µs 66.91µs 0.77 s 3.26 s 4.20 s 160296 B 163370 B
demosaicing 2 0.61 s 1.04 s 1.07 s 58.70µs 60.98µs 66.91µs 0.77 s 3.26 s 4.20 s 160296 B 163370 B
demosaicing 3 0.60 s 1.05 s 1.05 s 58.86µs 61.32µs 66.91µs 0.77 s 3.26 s 4.20 s 157704 B 163370 B
post demosaicing 0.70 s 2.28 s 2.40 s 149.09µs 159.04µs 179.65µs 0.77 s 3.26 s 4.20 s 338964 B 2538900 B
post processing 0.77 s 3.26 s 4.20 s 73.63µs 76.26µs 80.43µs 0.77 s 3.26 s 4.20 s 620750 B 1255992 B
write result 0.36ms 0.53ms 0.57ms 37.02µs 37.32µs 56.37µs 0.77 s 3.26 s 4.20 s 368 B 623460 B

process network 3.26 s 4.20 s 159.04µs 179.65µs 3.26 s 4.20 s 2176.4KB 6188.3KB

6. EXPERIMENTS
The feasibility and efficiency of the proposed stabiliza-

tion technique are validated using two representative mul-
tiprocessing benchmarks: Demosaicing and a distributed
Motion-JPEG (MJPEG) decoder algorithm, detailed in Ap-
pendix C. We aim to measure the time to bring the bench-
mark applications into a stable state, and to compare
the time with the (theoretical) upper bound described in
Section 5.3. The experiments were performed on Intel’s
SCC platform [11], a 48-cores (24-tiles) experimental proto-
type of future on-chip many-core platforms detailed in Ap-
pendix C.1.

Experimental Setup. Both benchmarks are running
bare-metal to avoid timing jitter due to the operating sys-
tem. Cache-related timing variations are reduced by hosting
one process per tile. Since the SCC implements a deter-
ministic X-Y routing, timing variations due to router con-
tention are reduced by carefully binding the processes onto
the tiles. Inter-process communication is implemented us-
ing the iRCCE library [8]. For the timing measurements,
all tiles establish a common time reference when they boot
using the barrier operation available in the communication
library. L2 caches and interrupts are disabled on all tiles.
Data messages are at most of size 3KB each (longer ones
are split) and control tokens are of size 16B. The master
process was placed on a separate tile so that it does not
interfere with the application.

In order to achieve our goal, i.e., to compare the observed
stabilization time with its upper bound, we proceed in three
steps: 1) Calibration experiments are performed to derive
a communication model of the target platform and to ob-
tain the characteristics of the benchmark applications. As a
result of this step, we calculate the upper bounds t∗phase1,v ,
t∗phase2,v , D

∗
v for each process v, and t∗stab,N for the network,

see Section 5. 2) Stabilization experiments of the bench-
marks are executed to observe the actual time taken by a
process v to complete phase1 and phase2, the time tstab,v to
stabilize, and the context size Dv. 3) The observed values
are compared with the bounds calculated in Step 1.

Calibration. The communication model was derived by
observing the time taken to deliver a packet with size ranging
from 4B through 3KB over hop distances ranging from one
through eight. A total of 585 observations were made. The
communication latency under high cross-traffic between any
two processes u and v (including the master) mapped onto
different tiles, was observed to be upper bounded by:

t
∗
u→v = 5.182|P | + 9935 (cl.cycles) (8)

where |P | is the size of the payload in bytes. Because of the
high cross-traffic, a dependency on the number of hops be-

load image

pre-processing

pre-demosaicing

demosaicing(0)

demosaicing(1)

demosaicing(2)

demosaicing(3)

post-demosaicing

post-processing

write-result

Figure 4: The Demosaicing application.

tween the processing nodes of the communicating processes
is not observed.

Another set of calibration experiments was performed in
order to obtain the maximum computation time t∗c,v for each
process. The Demosaicing application was executed using
five RAW images of different sizes and for the MJPEG de-
coder, the execution time of each process was measured over
each frame. The detailed results of all calibration experi-
ments are reported in Appendix C.

Demosaicing. Demosaicing [14] is both a compute and
data intensive application consisting of 10 processes, see
Fig. 4. To measure the stabilization times, the experiment
was repeated 20 times with different inputs and randomly
varying the instants at which the master starts a stop token
broadcast. Both the average and maximum values of the 20
runs are reported.

Table 1 compares the measured stabilization time tstab,v
with the calculated upper bound t∗stab,v. It can be seen that
all processes did indeed stabilize before the expected time
bounds. For some of the processes, the observed measure-
ments are very close to the expected upper bounds. This
means that the estimated bounds can be very accurate. The
gaps between observed values and bounds are explained by
the fact that t∗stab,v is mainly composed of the time the mas-
ter waits until it receives all acknowledgments, and considers
that a process can be in its longest computation section t∗c,v.
As shown in Table 1, t∗c,v is particularly large for the post
processing process.

In addition, the maximummeasured size of the contextDv

is compared in Table 1 with its upper bound D∗
v calculated

using Eq. (2). For some of the processes, the observed mea-
surements are equal to the estimated upper bounds which
means that equation (2) is tight. The total size of the upper
bound is about three times larger than the measured maxi-
mum size. The former assumes that all FIFO channels are
full when the context is calculated, but in practice, some of
the channels are only partly filled.

MJPEG Decoder. The second example is a parallelized
version of the MJPEG decoder application taken from the
benchmark suite of the Artist Network of Excellence [3].



Table 2: Measured stabilization time tstab,v vs. its upper bound t∗stab,v for each process of the MJPEG decoder.

process tphase1,v t∗
phase1,v tphase2,v t∗

phase2,v tstab,v t∗
stab,v

avg max avg max avg max

trigger 55.5µs 129µs 155 µs 20.1µs 23.7µs 24.1µs 401 µs 671 µs 899 µs
splitstream 102µs 157µs 167 µs 31.1µs 44.8µs 47.7µs 412 µs 698 µs 923 µs
splitframe 48.8µs 96.6µs 98.9µs 49.4µs 76.4µs 77.5µs 430 µs 699 µs 952 µs
iqzigzagidct 380µs 653µs 875 µs 47.5µs 74.2µs 78.4µs 428 µs 716 µs 953 µs
mergeframe 71.1µs 116µs 116 µs 43.1µs 65.1µs 66.9µs 424 µs 683 µs 942 µs
mergestream 53.8µs 107µs 114 µs 24.7µs 37.2µs 37.6µs 405 µs 687 µs 913 µs

process network 653µs 875 µs 76.4µs 78.4µs 699 µs 953 µs

Table 3: Overhead in terms of execution time and
binary code size for adding the ability to stabilize
compared to the original implementation.

application memory overhead time overhead

Demosaicing 8624 B 43.01µs(< 0.05%)
MJPEG decoder 7104 B 43.01µs(< 0.05%)

The application consists of six processes and its structure is
outlined in Fig. 5.

Similar to the first benchmark example, we compare the
measured stabilization time tstab,v of each process v with
its upper bound t∗stab,v, see Table 2. The experiment was
repeated 20 times and the average and maximum results
are reported in Table 2. The results confirm the trend ob-
served with the Demosaicing application. In particular, all
processes stabilized before the expected time bounds. In
many cases, the bounds are actually very accurate. For
the MJPEG decoder application, the upper bound is mainly
composed of the maximum execution time t∗c,v of the iqzigza-
gidct process.

Time and Memory Overheads. The time and mem-
ory overhead generated by the additional code required to
accomplish process network stabilization is presented in Ta-
ble 3. The time overhead is mainly due to the additional
logic to check for the stop token from the master and re-
lated housekeeping activities. In particular, an individual
checking for the stop token has taken on average 43.01 µs.

Summary. Using realistic applications, it has been
shown that the proposed technique can bring a process net-
work to a stable state. Performance metrics such as upper
bounds on the maximum stabilization time and maximum
context sizes are also presented. The maximum stabilization
time is dominated by the maximum time a process can exe-
cute without calling any communication primitive, i.e., pro-
cess compute time. It may be possible to further reduce the
stabilization time by inserting additional checks for events
in the process’ compute segments. Finally, detailed results
from experiments on the Intel SCC baremetal platform were
presented, validating the ideas presented in this paper.

7. CONCLUSION
The paper presented a technique to bring a process net-

work executing on a distributed system into a stable state,
suitable for migration. The proposed technique has been
shown to be lightweight, and preserves the original function-
ality of the network. The correctness of the technique has
been shown to be independent of the temporal characteris-
tics of the system and the topology. We have shown that
if the token communication time and process compute time

trigger

splitstream

splitframe

iqzigzagidct

mergeframe

mergestream

Figure 5: The MJPEG application.

are upper bounded, then an upper bound on the overall sta-
bilization time can be calculated. Finally, we validated the
feasibility and efficiency of the proposed approach and the
respective timing models with representative experiments on
Intel’s SCC platform.
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APPENDIX

A. PROTOTYPE IMPLEMENTATION
In this section, we illustrate a prototype implementation

of the proposed stabilization technique.

A.1 Process Network Specification
We start with illustrating a high-level API for specifying

process networks. A process v ∈ V starts executing by first
initializing itself at Line 2 in Algorithm 1, and then repeat-
edly invoking the Fire function at Line 4. The function can
consist of any number and order of data-token read/write
steps, and compute steps (e.g. branches, loops, assignments,
etc.) depending on the actual functionality of the process.

Algorithm. 1: Basic structure of a process v ∈ V .
1: process v
2: Init(); ⊲ Initialization
3: while true do ⊲ Call Fire repeatedly
4: Fire(); ⊲ Communication and computation
5: end while
6: end process

A.2 Integrating the Stabilization Mechanism
Next, we will illustrate how the original process network

specification from Algorithm 1 can be extended to integrate
the stabilization mechanism. The structure of a process net-
work should be minimally modified so that each process ob-
tains the ability to go into the stable state and collect its
context. The modifications discussed in Section 5 are incor-
porated into the pseudo-code shown in Algorithm 2. First,
notice that Lines 10-19 are thread-safe. Line 10 checks for
the stop event before starting a potentially blocking data
token read or write step. If no event has been posted, the
process starts the data-token read or write step. If the pro-
cess is blocking on a read or write step while the stop event
from the master is received, the signal unblock process will
unblock the process.

Algorithm. 2: New Structure of process vj .
1: process vj
2: Init(); ⊲ Initialization
3: while !cancelled do ⊲ Until the stop event cancels further

execution
4: cancelled ← Fire(); ⊲ Communication and computation
5: end while
6: Wrapup(); ⊲ Call the Wrapup function to finish stabilization
7: function Fire
8: · · ·

9: ⊲ Must not start read or write step if shared is stop
10: if shared = stop then
11: shared ← done
12: return (cancelled← true);
13: else
14: Start a blocking R/W step
15: if unblocked by signal then
16: shared ← done
17: return (cancelled← true)
18: end if
19: end if
20: · · ·

21: end function
22: end process

Unblocking upon reception of an event is easily accom-
plished by using user-space signals from threading libraries
such as the POSIX library. Thus, the reception of the stop

event by a process effectively cancels the currently blocked
token-write or token-read operation.

A.3 The Wrapup Function
The Wrapup function is introduced in Section 5.1.

Pseudo-code illustrating the function is given in Algo-
rithm 3. First, in Line 2, it waits until it receives the proceed
event from the master. It swaps all regular FIFOs L(vj ,m)
with the corresponding backup FIFOs B(vj ,m) in Line 3.
Afterwards, it sends an end-of-stream (EOS) token to all its
children and waits in Line 5 until it receives an EOS marker
from all its parents. Finally, some cleanup operations are
performed to return the memory to the system.

Notice that swapping of the local FIFO L(vj ,m) with the
backup FIFO B(vj ,m) preserves the correctness of the pro-
cess network. This is because:

• A backup FIFO is brought online only after reception
of the proceed signal. Note that a companion process
transmits the acknowledgement only when the process
changes the shared variable to done. Thereafter, the
algorithm guarantees that the process will not transmit
any more tokens. Therefore, in the worst case, the
backup FIFO must be able to accommodate the tokens
which are still in flight, which are upper bounded to
|M(m)|+ |EOS|.

• The only token that a process transmits post-reception
of the proceed event is the |EOS| marker, which is ac-
commodated in the backup FIFO.

Therefore, it can be seen that (assuming that the com-
munication network is lossless), none of the data tokens are
lost in the process of stabilization. Further, the FIFO data
structure maintains the relative ordering on the tokens on
each channel.

Algorithm. 3: Basic structure of the Wrapup func-
tion.
1: function Wrapup
2: Wait-to-proceed(); ⊲ Wait for proceed event from master
3: Switch L(vj , k) with B(vj , k);

4: Forward-EOS(); ⊲ Forward EOS token to all children
5: Collect-tokens(); ⊲ Collect ”late-arriving” tokens
6: Cleanup(); ⊲ Return memory to the system, etc.
7: end function

A.4 The Companion Process
The companion process compj of process vj is responsible

for the communication of process vj with the master pro-
cess. Algorithm 4 describes the companion process compj ,
which is executed independently of process vj . The assump-
tion is that stop events from the master cannot overlap. In
particular, the companion process waits for an event of the
master. If it finds a stop event, it updates the shared vari-
able and waits until the variable is set to done. Afterwards,
it sends an acknowledgement to the master and waits until
it receives the proceed event.

It is possible to optimize this structure such that not ev-
ery process in the process network has a companion process,
but instead a group of processes residing on one processing
element share a companion process. However, such opti-
mization is beyond the scope of the paper.

As a process vj might be blocked because of reading from
an empty FIFO or writing to a full FIFO channel, the com-
panion process compj has to be implemented as an addi-
tional object that is running in parallel to process vj and
just shares a single variable with process vj . In case the
platform supports multi-threading, the companion process



Algorithm. 4: Pseudo-code illustrating the function-
ality of the companion process compj.

1: process compj ⊲ Runs as a separate concurrent process

2: while true do
3: Read event from event channel
4: if found stop then
5: shared← stop
6: end if
7: Sleep on the shared variable until it is changed to done
8: Send acknowledgment to master
9: Read event from event channel
10: if found proceed then
11: shared← proceed;
12: end if
13: end while
14: end process

compj can be implemented as an additional thread. Other-
wise, one can use stack-less threads as described in section
A.6. As the companion process is in a known state when
the stabilization is completed, the companion process is not
part of the context of process vj , but can be re-initialized
after migration.

A.5 Additional Note on Stabilization Time
It can be seen from (7) that the overall stabilization time

depends on the time it takes for phase 1 and phase 2 to com-
plete. The length of phase 1 is dominated by the maximum
process compute time. The length of phase 2 is dominated by
network speed, with time taken to swap FIFO being negligi-
ble. Notice from Algorithm 2, lines 14 - 17 that the a write
by a process can be canceled by a signal, and therefore, the
stabilization time is (largely) independent of the amount of
data written by a process. The network speed accounts for
a small part in the overall duration of the stabilization time,
since a maximum of |Mv(m)| tokens need to be collected in
phase 2 before the stabilization is complete.

A.5.1 |EOS| Send and Receive Times

Equation (5) does not consider the |EOS| send and receive
times by a process individually. This is because the time it
takes for a process v to receive the |EOS| token from its parent
already covers the time it takes for v’s parent to send the
|EOS| tokens (plus a small communication time), and thus
the use of t∗u→v.

A.6 Implementing Unblocking
Finally, we present an overview of how the unblocking

functionality is implemented in the prototype implementa-
tion used in Section 6. There are various mechanisms that
provide the ability to cancel a blocked read or write opera-
tion. For example, one could separately schedule each block
of code between two communication calls using a kernel-
space thread. However, this might lead to a large schedul-
ing overhead due to the full preemption and memory pro-
tection, both undesired when scheduling such code blocks.
Another option is to use stack-less threads as, for example,
protothreads [1]. Protothreads have already been success-
fully applied to KPNs to provide lightweight scheduling [2].
The functionality of protothreads is implemented as a set of
macros that enclose the communication calls. The embed-
ding of a KPN process into a protothread process can also
be automated at the software synthesis step.

In protothread, a control structure is used to store the
local data of a process together with a variable that repre-
sents the line number of the process. Whenever the process
exits the Fire function, it updates this variable either to the

current line number or, if the process has reached the end of
the Fire function, to the beginning of the Fire function. On
the other hand, at the beginning of the Fire function, the
line number variable of the control structure is read and the
program counter jumps to this line. In order to extend the
protothread library with the unblocking functionality, we
change the process structure in two ways: First, we extend
the PT WAIT UNTIL macro of protothreads with the abilities
to check for the shared variable and to be unblocked by the
unblock process signal, as outlined in Algorithm 2. Origi-
nally, the PT WAIT UNTIL macro just blocked a process until
the read or write is successful. Second, we enclose each com-
munication call with the extended PT WAIT UNTIL macro to
obtain the functionality described in Algorithm 2.

A.7 Summary of Distributed Process Net-
work Stabilization Approach

A short summary of the approach is presented here:

1. The algorithm stabilizes the distributed process net-
work correctly, i.e., no tokens are lost, and relative or-
dering amongst tokens in each channel is maintained.
All tokens not consumed by a process v are stored in
the process context in the correct order.

2. POSIX signals are used to unblock a process blocked
on a full output FIFO or an empty input FIFO. The In-
tel SCC implementation uses a custom communication
layer with the following properties:

• Blocks a process on an empty input FIFO or a full
output FIFO;

• Unblocks the process upon receiving the signal
from the master. All messages are broken into
chunks. The maximum chunk-size is carefully se-
lected so that the each core has guaranteed space
to receive the messages from the master. The com-
munication layer intersperses normal message read
and write steps with checking for control messages
from the master.

3. The stabilization procedure is composed of two phases,
phase 1 and phase 2.

• Phase 1 brings all processes in the process network
into a known state. The completion of phase 1
guarantees that no process in the network performs
any further compute, write, or read steps. The
length of phase 1 is dominated by process compute
times.

• Phase 2 required each process to swap local FIFO
with backup FIFOs. The backup FIFOs are sized
appropriately in order to accommodate all possible
in-flight tokens from each of process’ parents, plus
the |EOS| token. Phase 2 is determined by the com-
munication times, and hence dependent upon the
network characteristics.

4. The algorithm is independent of the size of local FIFOs,
and is the same as in the original process network. The
size of backup FIFOs are statically determined.

B. STABILIZING INDIVIDUAL PRO-

CESSES
Our main section introduced an approach in which the

entire process network was stabilized. However, the same
principles can be applied to stabilize a part of the process
network. Consider a process v ∈ V , which must stabilized.



Therefore, all parents of v are informed of the stabilization
of v, and as a result, process v receives the EOS from all its
parents. The process v must also send EOS to all its chil-
dren, so that v’s children do not continue to expect tokens
from the previous location of v. Once process v stabilizes,
it can migrate. Subsequently, new channels must be estab-
lished between the parents of v and v’s children. Since the
network structure is statically known, recreating channels is
straightforward.

C. ADDITIONAL EXPERIMENTAL RE-

SULTS
In addition to the results presented in Section 6, we sum-

marize the Intel SCC platform and other experimental re-
sults in this section.

C.1 Intel Single-Chip Cloud Computer
The Intel Single-chip Cloud Computer (SCC) is a proto-

type of future embedded on-chip many-core platforms [3].
The processor consists of 24 tiles that are organized into a
4 × 6 grid and linked by a 2D mesh on-chip network. A
tile contains a pair of P54C processor cores, a router, and a
16KB block of SRAM. Each core runs at 533MHz and each
router runs at 800MHz. The on-tile SRAM block is also
called “message passing buffer” (MPB) as it enables the ex-
change of information between cores in the form of messages.
Figure 6 schematically outlines the SCC processor.
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Figure 6: Schematic representation of Intel’s SCC
processor [3].

C.2 Additional Calibration Results
In Section 6, we have shown that the communication la-

tency under high cross-traffic between any two processes u
and v can be upper bounded. In particular, we have seen
that the latency is independent of the number of hops be-
tween the processing nodes of the communicating processes.
In addition, we observed the communication latency under
low data traffic conditions, which is bounded by:

t
low traffic
u→v = 5.182|P | + 307.4H + 531 (cl.cycles) (9)

Here, the latency depends on the number of hops H between
the nodes of the communicating processes. However, this
model cannot be used as an upper bound as it considers
only low data traffic in the network.

C.3 The Demosaicing Benchmark: Addi-
tional Results

Table 4 summarizes the characteristics of the Demosaic-
ing application obtained when measuring the computation
and read/write times of the individual processes. The bind-
ing reports the identification number of the SCC core, on
which the process is executed. The maximum execution

Table 4: Characteristics of the Demosaicing appli-
cation.
process bind- max. exec- port max. data /

ing ution time iteration

load image 26 0.13 s 0 618KB

pre processing 12 0.13 s 0 618KB

pre demosaicing 14 0.4ms

1 160KB
2 2B
3 160KB
4 2B
5 160KB
6 2B
7 160KB
8 2B

demosaicing 0 28 1.05 s
2 160KB
3 471KB

demosaicing 1 18 1.07 s
2 160KB
3 471KB

demosaicing 2 02 1.07 s
2 160KB
3 471KB

demosaicing 3 40 1.05 s
2 160KB
3 471KB

post demosaicing 30 2.4 s
8 618KB
9 618KB

post processing 20 4.2 s 2 618KB

write result 22 0.5ms

time corresponds to the maximum time that a process is
executing without calling a communication primitive and is
calculated when the Demosaicing application was executed
under five RAW images of different sizes. Finally, the maxi-
mum amount of data that is transmitted per outgoing chan-
nel and iteration is reported. The values given in Table 4
have been used in Table 1 to calculate the upper bounds on
the stabilization times.

Context Sizes: More Details.
The overall context sizes reported in Table 1 is the sum

of:

• The space required to store the line number (in order to
restore the context), local variables (except those which
store unsent output data tokens, and unread input data
tokens), denoted as S1.

• The space required for storing unsent output data to-
kens, and unread input data tokens, denoted as S2.

Therefore, S2 can be considered as the application-
dependent context storage requirement, while S1 is largely
independent of the application. The contribution due to S1

in the overall context sizes reported in Table 1 is presented
in Table 5. It is clear from Table 5 that the total size of the
context is dominated by the nature of the application itself.

C.4 The MJPEG Benchmark: Additional Re-
sults

Next, the characteristics of the MJPEG decoder appli-
cation are summarized in Table 6. The following values are
shown: The identification number of the SCC core, on which
the process is executed; the maximum time that a process
is executing without calling a communication primitive; and
the maximum amount of data that is transmitted per outgo-
ing channel and iteration. The time of the longest compute
segment was measured over each frame of an example video
with resolution 320× 240 pixels.



Table 5: Context size exclusively due to S1.

process context size for S1

load image 48

pre processing 24

pre demosaicing 36

demosaicing 0 72

demosaicing 1 72

demosaicing 2 72

demosaicing 3 72

post demosaicing 84

post processing 152

write result 68

Table 6: Characteristics of the MJPEG decoder ap-
plication.

process binding max. exec- port max. data /
ution time iteration

trigger 02 58µs 0 4B

splitstream 04 167µs
0 4B
1 10KB

splitframe 06 98µs

2 307.2KB
3 64B
4 4B
5 8B

iqzigzagidct 18 875µs 3 76.8KB

mergeframe 20 116µs
2 7.68KB
3 8B

mergestream 22 114µs
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