Ordered Multicast and Distributed Swap
preliminary report

Maurice Herlihy* Srikanta Tirthapura*
Roger Wattenhofer†
March 30, 2000

Abstract

A multicast protocol is ordered (or totally ordered) if it ensures that messages multicast to a group of nodes are delivered in the same order at each destination node, even when those messages are generated concurrently from several sources. Ordered multicast is a natural foundation for push-based cache coherence and certain kinds of middleware.

This paper shows how to reduce the complex problem of enforcing multicast ordering to a simpler distributed coordination problem we call distributed swap. Any distributed swap protocol can transform an unordered reliable multicast into an ordered multicast in a modular way.

We introduce two novel distributed swap protocols, and discuss their corresponding ordered multicast protocols. These protocols have lower latency than more obvious approaches based on distributed counting.

Submitted on 29 March 2000 to the Middleware Symposium. Contact author: herlihy@cs.brown.edu. Intended for regular proceedings. Word count: below 4,000.

*Computer Science Department, Brown University, Providence, RI 02912; {herlihy, snt}@cs.brown.edu.
†Microsoft Research, roger@cs.brown.edu
1 Introduction

The ordered multicast problem is the problem of ensuring that messages multicast to a group of nodes are delivered in the same order everywhere, even when these messages are generated concurrently at several sources. (This kind of multicast is sometimes called totally ordered.) We are interested in scalable multicast protocols that allow nodes to enter or leave the multicast group without the need for global reconfiguration.

To understand why ordered multicast can be useful, consider a distributed object cached at multiple nodes in a network, where each node multicasts updates to the cached copies, a technique called push-based cache coherence. If several nodes issue concurrent updates, each of the cached copies must apply those updates in the same order. More generally, ordered multicast is useful in any kind of middleware where the order of events originating at different nodes in a distributed system must be reflected consistently among the nodes “listening” to such events.

The contribution of this paper is to point out a simple reduction from the ordered multicast problem to a much simpler distributed coordination problem, called distributed swap, and to explore the consequences of this reduction. Our intent is to draw the attention of the community to this approach, and to encourage others to work on this problem and related problems. We have found this reduction helpful in designing two novel ordered multicast protocols, the arrow multicast and the combining multicast, both described below.

The reduction works as follows. A distributed swap protocol can be combined with any reliable multicast protocol from the literature (such as SRM [5] or RMTP [9]), to yield a reliable ordered protocol. This reduction is of interest because distributed swap has not been widely studied, and there is some evidence that ordered multicast protocols based on distributed swap may be more efficient than more obvious approaches based on distributed counting.

We believe that any truly scalable multicast protocol must be anonymous, in the sense that a node performing a multicast may not be aware of the identities of the recipients. IP multicast [12], SRM [5], and RMTP [9] are all anonymous in this sense. If all nodes (or even some nodes) must know every group member, then entering or leaving the group requires a global reconfiguration, which is clearly not scalable beyond local area networks. Our approach to ordered multicast thus differs in fundamental ways from
that employed by systems based on notions of *virtual synchrony* [1, 3, 11, 14], in which each node knows the exact group membership. In these systems, each node entering or leaving the group provokes a global reconfiguration (called a “view change”). These systems trade fault-tolerance for scalability, while we do the opposite.

2 Model

We now describe our assumptions about the underlying system and the services it provides. Formally, a distributed system is a connected undirected graph G, where processors correspond to graph nodes, and edges to direct communication links. We assume that there is

- a reliable FIFO unicast service (such as TCP), and

- a reliable single source FIFO\(^1\) (but otherwise unordered) multicast service (such as SRM [5] or RMTP [9]).

Our goal is to provide a layer on top of these services that forces a total order on message delivery.

We believe that a layered approach, in which we focus exclusively on ordering, reflects a sensible separation of concerns. Many existing proposals for reliable multicast [5, 9, 10] stack a repair layer on top of an unreliable multicast layer. In the same spirit, we stack an ordering layer on top of reliable multicast so we can focus on ordering independently of repair and retransmission.

As usual, we distinguish between *receiving* a message at a node, which typically involves placing the message in a buffer, and *delivering* the message to the application running at the node. Ordered multicast requires only that message deliveries be totally ordered.

We do not consider fault tolerance for now. We assume here that nodes do not crash, and that with sufficient retransmission, any message can eventually cross any link. Fault-tolerance is discussed briefly in the conclusions.

\(^1\)“Single-source FIFO” means that messages sent by any single processor are delivered in the order sent.
3 The Reduction

In the distributed swap problem, a collection of processes have to implement
a distributed swap object, which encapsulates a value, initially the distin-
guished value ⊥. The object provides a single operation, \(\text{swap}(v) \), which
changes the object’s value to \(v \) and returns the previous value.

It is straightforward to use a distributed swap to impose a total order on
reliable multicasts. Each multicast group has an associated swap object. For
each message \(m \), the source node \(u \) generates a unique id \(\text{id}(m) \). Node \(u \) then
calls \(\text{swap}(\text{id}(m)) \), which returns \(\text{id}(m') \), the identifier of \(m' \), the immediate
predecessor to \(m \). Node \(u \) then calls the reliable multicast service to send
the pair \(\langle \text{id}(m'), m \rangle \) to each member of the multicast group. A node that
receives \(\langle \text{id}(m'), m \rangle \) delivers \(m \) only after delivering \(m' \). (A message with
predecessor id \(⊥ \) is delivered immediately.)

To see why it may be advantageous to focus on swap, let us consider
another, perhaps more obvious reduction. The distributed counting problem
requires issuing successive integers to requesting processes. One could imple-
ment ordered multicast simply by using any distributed counting protocol\[2,
13, 15\] to assign a sequence number to each message, and delivering a message
only after all lower-numbered messages have been delivered.

Nevertheless, it may sometimes be faster to identify a message’s immedi-
ate predecessor than to discover the number of predecessors of that message.
Both distributed swap protocols examined in this paper are actually “trunc-
cated” versions of counting protocols, in which each participant quits early,
after discovering its immediate predecessor, but without waiting to count its
other predecessors. In these swap-based protocols, the task of finding order-
ing information imposes less latency than the corresponding counting-based
protocols.

We present two techniques for ordered multicast based on distinct dis-
tributed swap protocols. The first protocol, the arrow multicast, is based
on the arrow distributed directory protocol \[4, 8\]. The arrow protocol was
originally developed as a scalable way for tracking the location of mobile
objects. It uses a simple path-reversal technique to construct a distributed
queue of access requests. The corresponding distributed swap protocol is a
“truncated” version of the directory protocol, in which a message is multicast
as soon as it chooses a position in the distributed queue.

The second protocol, the combining multicast, is based on a combining
tree structure. The combining multicast protocol is a “truncated” version of a
distributed counting protocol. In the basic combining-tree protocol, messages
move from leaves to the root, combining wherever possible. In the counting
protocol, each message is assigned a value only after a round trip to the root
and back. The swap protocol is a truncated version of the counting protocol:
when two messages are combined, one becomes the other’s predecessor and
can be broadcast immediately.

4 Arrow Multicast

The arrow directory protocol [4] ensures mutually exclusive access to mobile
objects. This protocol is designed to avoid scalability problems inherent in
many directory services currently used in distributed shared object systems.
We now show how to adapt this protocol to support distributed swap, and
hence ordered multicast.

Recall that the network is modeled as a graph G. The protocol maintains
a tree T, a subgraph of G, spanning the nodes in the multicast group. Each
node v in the tree has two attributes: $\text{link}(v)$ is a node, either v itself, or a
neighbor of v in T, and $\text{value}(v)$ is a value. A node v is a sink if $\text{link}(v) = v$.
The component $\text{value}(v)$ is meaningful only if v is a sink. The directory tree
is initialized so that following the the $\text{link}()$ variables from any node leads
to a unique sink v such that $\text{value}(v) = \bot$. Informally, except for the unique
sink node, a node knows only in which “direction” the sink lies.

When a node v initiates a $\text{swap}(a)$, where a is a value, it sends a $\text{swap}(a)$
message to $u_i = \text{link}(v)$ and sets $\text{link}(v)$ to v and $\text{value}(v)$ to a. When
node u_i receives a $\text{swap}(a)$ message from node u_{i-1}, where $u_{i+1} = \text{link}(u_i)$,
it immediately “flips” $\text{link}(u_i)$ to u_{i-1}. If $u_{i+1} \neq u_i$, then u_i forwards the
message to u_{i+1}. Otherwise, u_i is a sink, and it returns $\text{value}(u_i)$ to the
originating node v.

Ordered multicast is performed in a similar way. When a node u multi-
casts m, it initiates $\text{swap}(\text{id}(m))$, sending m along with the swap message.
When this message reaches a sink u_i, instead of returning $\text{value}(u_i)$ to u, u_i
immediately performs an unordered multicast of $\langle \text{value}(u_i), m \rangle$, indicating
that the message with id $\text{value}(u_i)$ is the immediate predecessor of m in the
total order. This protocol is illustrated in Figures 1 through 5.

It is not hard to show that every message eventually finds a sink, and
that the maximal number of links traversed from source to sink is at most
the diameter of the tree T. Moreover, the protocol never waits between the
time a message is multicast and the time it is received at the destination nodes. (Once a message \(m \) is received, however, a node may need to wait for earlier messages to catch up before it can deliver \(m \).)

Note that this protocol can be considered as a truncated version of a distributed counting based protocol. Interpret \(\text{value}(v) \) as a mobile sequence number, initially 0. Each sink either has the sequence number, or is waiting to receive it. When a message arrives at a sink, it waits for the sequence number to arrive, increments it, and then performs an unordered multicast.

If requests occur sequentially, the counting-based and swap-based multicast protocols are the same, but in the presence of concurrency, the swap-based multicast will always have lower latency because messages do not need to wait to count their predecessors.
Figure 3: Arrow multicast. \(w \) sends \(m_2 \), now on its way to \(x \).

Figure 4: Arrow multicast. \(m_1 \) and \(m_2 \) follow the arrows, flipping them back on the way. Note that \(m_2 \) has been “deflected” towards \(v \).

Figure 5: Arrow multicast. Both \(m_1 \) and \(m_2 \) find their predecessors concurrently and are multicast along with that information. Note that \(value(v) \) and \(value(u) \) are no longer valid.
5 The Combining Multicast

Combining trees [6, 7] are a well-known technique for distributed counting in which concurrent requests are combined. We now show how a distributed counting protocol based on combining trees can also be truncated to yield a distributed swap.

The directory maintains a tree T, a subgraph of G, spanning the members of the multicast group. The tree includes a fixed root r, and edges of the tree are oriented toward r. The root stores a value $\text{value}(r)$, initially \bot.

To execute $\text{swap}(a)$, where a is a value, a node v sends a $\text{swap}(v, a, a)$ message to its parent in T. If two messages $\text{swap}(u, a, b)$ and $\text{swap}(w, c, d)$ meet at a non-root node y, b is designated to be the result of w’s swap, the messages are combined into a single message $\text{swap}(u, a, d)$, and the combined message is sent to y’s parent. (Multiple messages can be combined in this way.) When a $\text{swap}(u, a, b)$ message arrives at the root, the root’s value $\text{value}(r)$ is designated to be the result of u’s swap, and $\text{value}(r)$ is set to b.

An ordered multicast is performed in the same way, except that message ids replace values, and a node performs an unordered multicast as soon as it identifies a message’s predecessor.

This swap protocol can also be viewed as a truncated counting protocol. If we were to use the combining tree to generate sequence numbers, then a message would be assigned a sequence number only after it had completed a round trip to the root (possibly combined with other messages). Moreover, counting requires that messages lock nodes on the way up the tree, and unlock them on the way down, and a message that fails to combine with another concurrent message might have to wait for the latter to unlock a node. Finally, nodes need to maintain additional state information, for counting.

6 Discussion

In this section, we compare the two ordered multicast protocols and suggest a hybrid scheme which uses ideas from both. We also discuss how to enter and leave multicast groups and fault tolerance.
Figure 6: Combining multicast. Messages m_1, m_2 and m_3 start their journey towards the root.

Figure 7: Combining multicast. m_1 and m_2 combine. m_2 is multicast as m_1’s successor. m_1m_2 is shorthand for the message $\text{swap}(m_1, \text{id}(m_1), \text{id}(m_2))$

Figure 8: Combining multicast. m_1m_2 and m_3 combine. m_1 is multicast as m_3’s successor. $m_3m_1m_2$ continues towards the root.
Figure 9: Combining multicast. $m_3m_1m_2$ reaches the root. m_3 is multicast as the successor of \bot (i.e. the first message in the total order). The value $id(m_2)$ is swapped into $value(r)$.

6.1 Comparison

It is possible to combine both swap protocols to construct a *hybrid* protocol. The arrow multicast has a nice *locality* property: swap-related message traffic occurs only on links between multicasting nodes, so if there is only one multicasting node, there is no swap-related traffic. In the combining tree, however, all swap-related message traffic passes through the root, even if there is only one multicaster.

The combining tree root node is thus a potential bottleneck. In the arrow multicast, there is no distinguished root, but any node might become a bottleneck under certain circumstances. If u splits the directory tree into subtrees T_0 and T_1, and nodes in T_0 and T_1 take turns multicasting, then all message traffic passes through u.

Here is one way to alleviate possible bottlenecks. Consider a combining tree protocol in which the root node has been replaced by a sufficiently large collection of nodes running the arrow protocol. Such a “virtual root” could have a large in-degree, and still provide high throughput. Nodes lower in the combining tree could be represented by smaller arrow groups.

There are a variety of ways to combine distributed swap protocols to yield new protocols, and we think the area deserves further attention.
6.2 Entering and Leaving

We now briefly discuss how a node might enter or leave a multicast group. Both the arrow and the combining protocols use spanning trees for connecting the member nodes. Either way, joining the group is straightforward: a node u just links itself as a leaf adjacent to any node v already in the tree, and informs v that it has done so. In the arrow protocol, u’s arrow points to v, while in the combining protocol, v is u’s parent in the tree.

Leaving a group is similar. In the arrow protocol, node u first “locks” its immediate neighbors in the tree, ensuring that message traffic between u and the neighbors has quiesced. If u is a sink, it chooses a neighbor v and makes v a sink in its place, setting $\text{link}(u) = v$, $\text{value}(v) = \text{value}(u)$ and $\text{link}(u) = u$. For each neighbor w such that $\text{link}(w) = v$, it sets $\text{link}(w) = \text{link}(u)$. Node u then unlocks its neighbors and leaves the group. The combining protocol is similar, except that the sink issue does not arise.

There are others ways of entering and leaving groups, but the important point is that group membership changes are local operations whose complexity depends on the degree of the node, not the size of the group.

6.3 Fault Tolerance

Fault tolerance is the subject of current research. It is straightforward to incorporate redundant links in either the arrow or combining tree protocols, permitting messages to circumnavigate some failed nodes. In the arrow protocol, however, it is more difficult to tolerate a sink node crash, and in the combining tree protocol, a root node crash.

We think that the challenge here is to define a sensible failure semantics, specifying the kind of behavior that can occur in the presence of node and link failures. We favor the following variation of the “total order with gaps” guarantee. If m_0 and m_1 are both delivered at nodes u and v, then they are of course delivered in the same order at both. If m_0, m_1 and m_2 are delivered at u, but only m_0, and m_2 at v, then the application at v is notified that there may be one or more missing messages between m_0 and m_2. This kind of fault-tolerance is consistent in spirit with that currently provided by modern reliable multicast protocols. It is relatively easy to implement, it is consistent with scalability (no global searches or transactions), and yet it leaves the application free to undertake more heroic recovery and repair methods if needed.
6.4 Conclusions

We have found the notion of distributed swap to be helpful in designing and analyzing scalable ordered multicast protocols. We think this approach merits more attention from the research community, and we hope to convince others to explore this approach.

References

