

PARALLEL COPROCESSOR ARCHITECTURES FOR MOLECULAR DYNAMICS
SIMULATION: A CASE STUDY IN DESIGN SPACE EXPLORATION


M. Gerber1 T. Gössi2


Swiss Federal Institute of Technology (ETH), CH-8092 Zürich, Switzerland
1Computer Engineering and Networks Lab, gerber@tik.ee.ethz.ch


2Electronics Lab, goessi@ife.ee.ethz.ch


ABSTRACT


The purpose of the paper is to describe a new semi-automated
design space exploration method based on genetic programming.
A new control/dataflow specification method is proposed as well
as appropriate models for hardware parts and algorithms. With
this method we are able to test many different hardware architec-
tures and algorithms against cost, speed, computation time and
other constraints within very short time. The remaining manual
work is to exploit the model parameters of the components of the
architecture and the algorithm. In contrast to other approaches
our method is suited for embedded and distributed systems. The
method, models and application are explained in detail by means
of a comprehensive case study.


1 INTRODUCTION


Molecular systems are characterized as systems of thousands of
particles (molecules or atoms) that interact with each other. Inter-
action is composed of several physical forces, e.g. the Van der
Vaals and Coulombic force. Computer simulations are a common
tool to investigate dynamic, thermal and thermodynamic proper-
ties in molecular systems. The Molecular Dynamics (MD) simu-
lation method [1] [7] is based on numerical integration of
Newton’s equation of motion. Within each time step, the interac-
tion forces between the involved particles must be determined.
After the integration step the velocities of the particles are known
and the new positions can be calculated for the next step. The
result is a spatial trajectory for each particle. With these data and
by the use of statistical physics laws, all interesting molecular
properties can be evaluated. A time step typically represents two
picoseconds and during a run about 100 time steps are simulated.
For large systems with a lot different interaction types the simu-
lation is very time consuming. A system with 36’000 atoms will
take about 40 seconds for one time step (SunUltra1/170). The
following discussion serves to explain the algorithm-architecture
trade-offs in the design of fast MD simulators.


Three different acceleration techniques are in today’s principal
focus of research: (1) A lot of researchers all over the world
make every effort to find new chemical models providing the
same or even a higher numerical accuracy at a lower algorithmic
complexity. (2) The MD simulation program can be parallelised
for simulations on general purpose multiprocessors [4] [6].
(3) The parallelised program runs on a host machine with an
attached dedicated parallel coprocessor. The coprocessor may
consist of risc processors, ASIC’s, or other processing elements
[2] [3] [5].


One example for an algorithmic approach to reduce simulation
time is thepairlist method[8]: The interaction is not calculated
between all possible particle-pairs in the system but only
between particles whose distance is smaller than a certain cutoff
radius. This can be done because the interaction with a far away
particle is very weak and can be neglected. Thus a so-called pair-
list is generated containing all currently interacting pairs. Given
the fact that we only consider simulations of liquids, the particles
do not move far within one time step. Therefore, the pairlist must
not be updated every iteration. With the pairlist concept the
number of pairs and therefore the simulation time can be reduced
significantly. Of course, a small cutoff has an impact on the accu-
racy of the molecular simulation. The user has to choose a trade-
off between accuracy and time consumption of the simulation. A
lot of other algorithmic-oriented acceleration techniques are
well-known and a good simulation tool offers the user a huge
amount of different algorithms.


Special purpose hardware accelerators like the MD-Grape
machine [2] suffer from heavily reduced flexibility: In the MD-
Grape project an ASIC has been developed to calculate the non-
bonded forces. Typically, the non-bonded forces calculation
requires about 80-90% of the overall simulation time. Through
the use of virtual pipelines the ASIC is able to calculate one pair-
wise force per clock cycle. The pairlist concept is supported as
well as arbitrary coefficients of the polynom for the force calcu-
lation. But, in order to keep the glue hardware simple, the sym-
metry of pairwise forces was neglected leading to the situation
that all forces are calculated twice. In addition it is only possible
to calculate forces between the same kind of particles on the
ASIC. This means that if there are two different types of mole-
cules in the system, the interactions of only one of them may be
calculated on the coprocessor. A hardware overcoming these
problems would be too complex to fit in one ASIC. Other special
purpose hardware projects became outdated [3] as a result of the
rapidly increase of computing power of even cheap computers or
are very large consisting of thousands of processors supporting
only the simplest algorithms. A lot of systems are targeted at
general n-body problems (astronomic systems) without the pos-
sibility to exploit the advantages of the homogenous particle dis-
tribution of liquids.


The goal of our interdisciplinary research project at ETH Zürich
is to accelerate MD simulations of liquids by one order of magni-
tude based on the GROMOS (GROningen MOlecular Simulation
package) software [7]. The scope focuses on molecular systems
with 10k - 100k particles with typically one or several proteins







dissolved in liquid. We want to achieve our goal by using a
~10k$ workstation or PC with dedicated MD coprocessor at an
estimated hardware cost of about 10k$.


Typical design trade-offs and problems to find an optimal hard-
ware solution can be summarized as follows:


• The partitioning of the MD algorithm: Which function runs
on the host, which one on dedicated hardware? This mapping
leads to the major factors determining a solution, e.g. the
computation power of the coprocessor, the communication
latency and bandwidth, the architecture of the coprocessor,
its cost and the host performance. Find the optimal hardware
architecture under varying constraints such as cost, maxi-
mum computation time, and the possible mappings.


• Choosing the right algorithms. The choice depends on the
mapping of a function (host or coprocessor), and their archi-
tectures, see the above discussion on algorithm-architecture
trade-offs.


We developed a new semi-automated design space exploration
method. With this method we are able to test many different
hardware architectures and algorithms against cost, speed, com-
putation time and other constraints within very short time. The
remaining manual work is to exploit the model parameters of the
components of the architecture (e.g. communication bandwidth,
computation power of processors) and the tasks of the algorithm
(e.g. the number of floating point operations or execution time).


The paper is organized as follows: In section 2, we describe our
CAD supported control/dataflow specification method as well as
the new models for algorithms, hardware components and com-
munication requirements. In section 3 the design space explora-
tion method using a system synthesis tool based on genetic
programming (GP) is explained. In section 4 we present some
results with respect to our molecular dynamics application.


2 SPECIFICATION MODELS


2.1 Modelling the Algorithm


The algorithm modelling procedure can be subdivided into four
steps:


1. Specification of the algorithm using a combined data/control
flow description (CDFG), see fig. 1.


2. Conversion into a simple dataflow graph (DAG) whose oper-
ations are executed iteratively corresponding to the iterative
nature of the MD simulation (fig. 2, left).


3. Convert the DAG into a problem graph by adding communi-
cation nodes (white). (fig. 3, left)


4. Add function parametersto function and communication
nodes.


For the CDFG specification we use a simplified version of the
flow graph model presented by Gupta [12]. A flow graph is a
polar acyclic graph consisting of operational nodes and edges for
data and control dependencies. A boolean function associated
with all edges determines if an edge is enabled or not. Unlike the
dataflow graph the flow graph operational nodes are of different


types. Our CDFG model uses only a subset of the special flow


graph nodes, as listed in table 1.


An edge may represent a data dependency or a control depend-
ency. Exactly one variable is associated to an edge. In our first
approach, a specific variable may not appear in both edge types.
A node is activated when the input expression, consisting of
either AND or OR operations on the enabling booleans of the
input edges, is true. On completion of the operation one or all of
the booleans of the output edges are set to true. Cond and join
nodes are used if there are more than one predecessor or succes-
sor node, else a nop node is used. Loop nodes indicate hierarchy,
where the hierarchical element may be called once (procedure
call) or multiple times (for-loop). All nodes have a functional
implementation depending on the algorithm. The functional
implementation is either C Code or VHDL.


Figure 1. Sample CDFG


The CDFG description has several advantages: (1) Compared to
other approaches such as a pure dataflow graph (DAG, not allow-
ing control structures), or a synchronous data flow graph (SDF
[9], a control dependent data flow), our model supports the full
specification of complex parallel algorithms such as an MD sim-
ulation. (2) Our molecular dynamics simulation algorithm as
most of control and data flow driven algorithms may be specified
in an easy and straightforward way. (3) During design space
exploration only models of the tasks are associated to the nodes,
the functional implementation is done later (gradual refinement).
(4) The CDFG description is independent of the partitioning into
hardware and software. (5) Not only embedded systems may be
specified in this way, but also distributed parallel systems, e.g. a
workstation cluster. (6) The specification is easy to change, e.g.
to replace algorithms with more efficient ones, or to introduce
more parallelism. (7) The CDFG graphic editor and code genera-
tor are embedded in the CodeSign Tool [13].


The next steps include the conversion of the CDFG to be compli-
ant with the design space exploration process. These tools
require a problem graph (fig. 3,left) whose operations are exe-
cuted iteratively corresponding to the iterative nature of the MD
simulation. The problem graph is derived from a simple DAG


Operation Description


nop No operation


cond Conditional fork


join Conditional join


loop Hierarchical node


Table 1. Operations in the CDFG


loop


cond


nop nop


nop nop nop


join


nop


nop


forces


pairlist


integration


no
pairlist


start


end nop







(fig. 2, left) by adding communication nodes instead of edges.
The DAG represents one possible dataflow in CDFG graph.


Figure 2. Dataflow graph (left) and architecture


In every step, thefunction parametersare added as follows:
Three different models are available to characterize the complex-
ity of a functional node: The number of floating or fixed point
operations depends on theproblem parametersand is a good
measure of function complexity. If the function is neither floating
nor fixed point dominated, the complexity is measured with a
profiling tool resulting in a non-generic model. The amount of
input and output data for one function is constant because
dynamic data types are not supported. Thus, the communication
bandwidth requirement can easily be determined and is associ-
ated to the communication nodes in the problem graph.


2.2 Modelling of Architectures


An architecture including functional resources can also be mod-
elled with a directed graph similar to the problem graph. The
architecture graph contains physical resources like processors,
ASIC’s, buses, etc. (fig. 2, right). Models for cost, performance
and communication bandwidth are associated with the nodes
similar to the problem graph. Theseconstraint parametersare
derived from measurement, data sheet or user specification.


The architecture graph model (fig. 3, right) is a super-set of all
architectures which can be allocated. The knowledge of the
designer is essential to provide suitable architectures.


Figure 3. Specification graph


2.3 Modelling of Algorithm-Architecture Relation


This step comprises the combination of the problem graph with
the architecture graph. The specification graph in fig. 3 consists
of an architecture and problem graph as well as mapping edges
which relate the nodes of the two neighbouring graphs. These


edges describe all possible bindings of tasks to resources. The
insertion of mapping edges is another step requiring the
designer’s knowledge.


The next step concerns optimization: Find an implementation (a
feasible binding plus schedule) with minimal computation time
under cost constraints.


3 EXPLORATION


Our goal during design space exploration is to find not only one,
but a collection of useful architectures. Generally, the following
steps are necessary to obtain one valid implementation: a) select
an architecture (allocation), b) map algorithmic tasks onto its
components (binding) and c) determine an appropriate schedule
of the tasks (scheduling). For step a and b we use a system syn-
thesis tool based on genetic programming (GP) [11], step c is
performed with a heuristic algorithm similar to the well-known
list-scheduling algorithm.


Our exploration technique takes into account: (1) The communi-
cation requirements, (2) finite computation and communication
resources and (3) loop pipelining (iterative schedule).


Exploration is an iterative optimization task repeating the steps a,
b, c. To start an exploration, one has to specify an optimization
goal, e.g. latency minimization (period) under resource con-
straints (cost). The input for the first iteration is a randomly gen-
erated population of feasible bindings. The result of each step is
a set of implementations, illustrated as points in fig. 4.


Figure 4. Pareto points


The best solutions are chosen by afitness function(selection).
The Pareto points indicated by lines in fig. 4 generally achieve a
high score. The initial population size then is restored through
recombination (crossover or mutation) in order to exploit new
points in the search space. Iteration is aborted when no better
implementations are found.


For all solutions in fig. 4 there exist a feasible binding and a
schedule such as the one in fig. 5. Depending on cost or time
constraints, one or two of the Pareto points serve as final imple-


Host PE HWM1


HWM2
shared bus


PTP-bus


1 3


2


4


VBR1


VHost1


5


3


2


4


7


6


VPE


VBR2


VHWM2


VBR3


VHWM1







mentation with the appropriate mapping and schedule. Now
another exploration with a different specification graph and
parameters is performed in order to find more solutions.


4 THE CASE STUDY


In this chapter we present the result for the MD simulation algo-
rithm. As an example we used a problem graph with 19 nodes
and an architecture graph with 8 nodes. The problem graph rep-
resents one MD time step without the pairlist calculation (the
problem graph with pairlist and all other available MD features
contains 35 nodes). According to the previous section, the archi-
tecture graph is a “super architecture“ connected with the host
(one processor) via a bidirectional bus. The super architecture is
composed as a mesh of processors containing some redundant
buses.


Figure 5. Schedule


The model parameters are for a SUN Ultra 1 host, a 10 MBytes
per second host interface and Analog Device’s Sharc DSP as
coprocessors. The Sharc communication parameters are derived
from the data sheets, performance models are deduced from sim-
ulations with Analog Device’s Sharc simulator. Host parameters
are simulation or profiling results. A Sharc processor typically
has six on-chip communication channels. Consequently, a hierar-
chical solution seems obvious for more than five processors. The
architecture graph connects a maximum number of 12 coproces-


sors with the host.


The first three columns in table 2 correspond to the three fastest
Pareto points in fig. 4, where all valid implementations after 30
iterations are listed. The fastest implementation is a hierarchy
with two Sharc’s in the first level connected directly with the host
and five Sharc’s per first level processor in the lower level. The
second column in table 2 is also a two level hierarchy, but with
only one processor in the first level and five in the second. The
third column is just the first level in the hierarchy of the fastest
solution. The last column is derived from another exploration run
with all parameters kept the same except the host performance.


The resulting fastest architecture is the same as this in the first
column, the corresponding schedule is illustrated in fig. 5, where
the step-by-step communication through the hierarchy is appar-
ent. The cycle time is limited by the tasksoluforcewhich is
forced to be executed on the host. To use the performance of 12
coprocessors we need either a faster host or we must allow the
evolutionary algorithm to map soluforce to the coprocessors.


After exploring all problem graphs the most promising solutions
(hierarchical DSP, ASIC processors, workstation cluster, distrib-
uted memory RISC multiprocessor) are further investigated: A
better architecture model is combined with a generic model of
the MD algorithm (CDFG) and implemented in Mathematica.
This task is still manual but necessary if we want to simulate a
real MD step. Further work includes the automation of this task
and the back annotation of schedules (fig. 5) to the CodeSign
tool.


REFERENCES


[1] M.P. Allen, D.J. Tildesley:Computer Simulation of Liq-
uids. Oxford University Press, (1987)


[2] T. Fukushige, M. Taiji:A highly-parallelized special-pur-
pose computer for many-body simulations with an arbi-
trary ventral force: MD-GRAPE. The Astrophysical
Journal, 468: 51-61, (1996)


[3] A.F. Bakker, C. Bruin:Design and Implementation of the
Delft molecular-dynamics processor. Special purpose com-
puters, 183-222, Academic Press Inc. (1988)


[4] W. Scott, A. Gunzinger:Parallel molecular dynamics on a
multi signal processor system. Computer Physics Commu-
nication 75, 65-86, (1993)


[5] H. Bekker, H.J.C. Berendsen:GROMACS: A parallel com-
puter for molecular dynamics simulation. Physics Comput-
ing ‘92 (Conference proceedings)


[6] W. Smith:Molecular dynamics on hypercube parallel com-
puters. Computer Physics Communications 62 (1991)


[7] W.F. van Gunsteren:Biomolecular Simulation: The
GROMOS96 Manual and User Guide. Hochschulverlag
vdf AG an der ETH Zürich, (1996)


[8] W.F. van Gunsteren, H.J.C Berendson:On searching
neighbours in computer simulation of macromolecular sys-
tems. Journal of Computational Chemistry, Vol. 5, No. 3,
272-279, (1983)


[9] E.A. Lee, D.G. Messerschmitt:Synchronous Dataflow.
Proceedings of the IEEE, 75(9): 1235-1245, (1987)


[10] M. Schöbinger, L. Thiele:Synthesis of domain specific het-
erogeneous multiprocessor systems: hybrid video coding
schemes. Proc. IEEE ISCAS Conference, Atlanta, (1996)


[11] T. Blickle, J. Teich, L. Thiele:System-Level Synthesis
using Evolutionary Algorithms. Journal on Design Auto-
mation for Embedded Systems. (1997)


[12] R.K. Gupta:Co-Synthesis of Hardware and Software for
Digital Embedded Systems. Prentice Hall, (1994)


[13] R. Esser: An Object Oriented Petri Net Approach to
Embedded System Design. Hochschulverlag vdf AG an der
ETH Zürich, 1997.
R. Esser:CodeSign - Concepts and Tutorial.
http://www.tik.ee.ethz.ch/~codesign


Host
performance


Number of
coprocessors Iterations Cost Time


Ultra1/170=1 12 30 420 43


1 6 30 220 57


1 2 30 90 143


2 12 30 440 34


Table 2. Comparison






