Homophily and the Glass Ceiling Effect in Social Networks

Chen Avin, Barbara Keller, Zvi Lotker, Claire Mathieu, Yvonne-Anne Pignolet, David Peleg
Do you notice something?
What is happening?

The "glass ceiling"... is the unseen, yet unbreakable barrier that keeps minorities and women from rising to the upper rungs of the corporate ladder, regardless of their qualifications or achievements.

PhD Students and their Advisor

Unequal Entry Rates

The Rich get Richer (Preferential Attachment)

Homophily
How does such a Network look like?

$r = 0.5, \rho = 0.7$
How does such a Network look like?

$r = 0.3, \rho = 1$
How does such a Network look like?

\[r = 0.3, \rho = 0 \]
How does such a Network look like?

$r = 0.3, \rho = 0.7$
Glass Ceiling: How is it defined?

Tail glass ceiling: $G(n)$ exhibits glass ceiling effect for the red nodes if:

$$
\lim_{G \to \infty} \frac{\text{top}_k(R)}{\text{top}_k(B)} \to 0
$$

while: $$\text{top}_k(B) \to \infty$$
Does this Produce a Glass Ceiling?

\[r = 0.5, \rho = 0.7 \]
Does this Produce a Glass Ceiling?

\[r = 0.3, \quad \rho = 1 \]
Does this Produce a Glass Ceiling?

$r = 0.3, \rho = 0$
Does this Produce a Glass Ceiling?

$r = 0.3$, $\rho = 0.7$
Formal Results

Theorem:
Let $0 < r < \frac{1}{2}$ and $0 < \rho < 1$ then $G(n, r, \rho)$ exhibits a glass ceiling effect (for any starting condition).
Formal Results

Theorem:

G(n, r, ρ) will not have glass ceiling effect in the following cases:

1. If the rate \(r = \frac{1}{2} \) (and for any value of \(ρ \)).

2. If \(ρ = 0 \) or \(ρ = 1 \) (and for any value of \(r \)).

3. If a new vertex at time \(t \) selects its advisor uniformly at random from all nodes at time \(t-1 \) (and for any value of \(r \) and \(ρ \)).
Proof Overview

1. Fast convergence of sum of degrees of red nodes in expectation (independent of starting condition)
2. High probability convergence
3. Power law degree distribution of each gender
DBLP top players graph
PhD and Supervisor Network
PhD and Supervisor Network

![Graph showing the number of authors in each bin against degree (number of mentees + 1). The graph includes data for Both, Male, and Female supervisors, with different slopes indicated by the lines: -2.62, -2.58, and -2.91.]
Summary

1. Definitions for glass ceiling effect in networks

2. Simple Mathematical model:
 - Unequal entry rate, “rich get richer”, homophily

3. Proof for glass ceiling emergence
 - three assumptions → glass ceiling
 - any two assumptions → no glass ceiling.

4. Analyzed the DBLP
Future Work

• Include nodes leaving the network
• Evaluate network with higher percentage of females
תודה רבה