On Consistent Migration of Flows in SDNs

Sebastian Brandt, Klaus-Tycho Förster, Roger Wattenhofer
April 12, 2016 @ INFOCOM 2016 – San Francisco
The Internet

- General Idea: Separate data & control plane in a network
- Centralized controller updates networks rules for optimization
 - Controller (control plane) updates the switches/routers (data plane)
Central Control?

- General Idea: Separate data & control plane in a network
- Centralized controller updates networks rules for optimization
 - Controller (control plane) updates the switches/routers (data plane)
Own WAN = Expensive

Think: Google, Amazon, Microsoft
Software Defined Networking (SDN)
Network Updates

old network rules

network updates

new network rules
Network Updates

State of the art: (Partial) moves of flows using linear programming (LPs), e.g.,
- **SWAN** [Hong et al., SIGCOMM 2013],
- **zUPDATE** [Liu et al., SIGCOMM 2013]
- **Dionysus** [Jin et al., SIGCOMM 2014]
Network Updates

Open problems:
When are network updates in a consistent manner possible?
How can we decide fast?
Network Updates

old network rules

network updates

new network rules

This paper: Addresses the case of splittable multi-commodity flows
A Small Sample Network
Green wants to send as well
Congestion!
This would work
So let's go back
But Red is a bit Slow..
Congestion Again!
"Data plane updates may fall behind the control plane acknowledgments and may be even reordered."
Kuzniar et al., PAM 2015

"...the inbound latency is quite variable with a [...] standard deviation of 31.34ms..."
He et al., SOSR 2015

"some switches can ‘straggle,’ taking substantially more time than average (e.g., 10-100x) to apply an update”
Jin et al., SIGCOMM 2014
So lets go Back ...
First, Red switches
Then, Blue ...
And then, Green ...
Done
Consistent Migration of Flows

Introduced in SWAN (Hong et al., SIGCOMM 2013)

Idea: Flows can be on the old or new route

For all edges: $\sum_{VF} \max(\text{old, new}) \leq \text{capacity}$
Consistent Migration of Flows

Introduced in SWAN (Hong et al., SIGCOMM 2013)

Idea: Flows can be on the old or new route

For all edges: \(\sum_{VF} \max(\text{old, new}) \leq \text{capacity} \)

No ordering exists \((2/3 + 2/3 > 1)\)
Consistent Migration of Flows

Approach of SWAN: use slack x (i.e., %)

Here $x = 1/3$

Move slack $x \Rightarrow [1/x] - 1$ staged partial moves
Consistent Migration of Flows

Approach of \textit{SWAN}: use slack x (i.e., \%)

Here $x = 1/3$

Move slack $x \Rightarrow [1/x] - 1$ staged partial moves

\textit{Update 1 of 2}
Consistent Migration of Flows

Approach of SWAN: use slack x (i.e., %)
Here $x = 1/3$
Move slack $x \Rightarrow [1/x] - 1$ staged partial moves

Update 1 of 2
Consistent Migration of Flows

Approach of SWAN: use slack x (i.e., %)

Here $x = 1/3$

Move slack $x \Rightarrow \lfloor 1/x \rfloor - 1$ staged partial moves

Update 2 of 2
Consistent Migration of Flows

No slack on flow edges?
Consistent Migration of Flows

Alternate routes?
Consistent Migration of Flows

Think: variable swapping of b & g

1. $x := b$, 2. $b := g$, 3. $g := x$
Consistent Migration of Flows

Think: variable swapping of b & g

1. $x := b$, 2. $b := g$, 3. $g := x$
Consistent Migration of Flows

Think: variable swapping of b & g

1. $x := b$, 2. $b := g$, 3. $g := x$
Consistent Migration of Flows

SWAN: LP-approach with binary search
1 update? 2 updates? 4 updates? ...
Consistent Migration of Flows

SWAN: LP-approach with binary search
1 update? 2 updates? 4 updates? ...
Consistent Migration of Flows

SWAN: LP-approach with binary search

$\Theta(1/\varepsilon)$ updates 😞
Consistent Migration of Flows

Open problem: Can we decide in (polynomial) time?

Flow migration \rightarrow \text{"Halting Problem"} \rightarrow \text{LP}

- yes
- no
Overview of the Remaining Talk

1. Yes, we can (decide in polynomial time)

2. What to do if we cannot migrate consistently?

3. Last: NP-hardness for unsplittable flows
To Slack or not to Slack?

Slack of x on all flow edges?

$\left\lceil \frac{1}{x} \right\rceil - 1$ updates
To Slack or not to Slack?

What if not?
Try to create slack
To Slack or not to Slack?

Combinatorial approach

Augmenting paths
Combinatorial Approach

Move single commodities at a time
Combinatorial Approach

Where to increase flow?
Combinatorial Approach

Where to push back flow?
Combinatorial Approach

Resulting residual network
Combinatorial Approach

We found an augmenting path ⇒ create slack on e
High-level Algorithm Idea

No slack on flow edges? Find augmenting paths
 On both initial and desired state
 Success? Use SWAN method to migrate

Can’t create slack on some flow edge?
 Consistent migration impossible
 By contradiction (else augmenting paths would create slack)

Runtime: $O(Fm^3)$
 (F being #commodities, m being #edges)
Overview of the Remaining Talk

1. Yes, we can (decide in polynomial time)

2. What to do if we cannot migrate consistently?

3. Last: NP-hardness for unsplittable flows
What to do if we cannot Migrate Consistently?

Option 1: Migrate, but reduce congestion

B4: Optimize (Jain et al., SIGCOMM 13)

Dionysus: Rate-limit some flows (Jin et al., SIGCOMM 14)

Time-based updates (E.g., Mizrahi et al., INFOCOM 15/16)

...
What to do if we cannot Migrate Consistently?

Option 1: Migrate, but reduce congestion

B4: Optimize (Jain et al., SIGCOMM 13)

Dionysus: Rate-limit some flows (Jin et al., SIGCOMM 14)

Time-based updates (E.g., Mizrahi et al., INFOCOM 15/16)

...
Option 2: Increase Demands Consistently

Maximize \(\sum_{i:e_i \in \text{out}(s_1)} x_{i1} \)
subject to

1) \(\forall 1 \leq j \leq k \forall v \in V \setminus \{s_j, t_j\} : \sum_{i:e_i \in \text{out}(v)} x_{ij} = \sum_{i:e_i \in \text{in}(v)} x_{ij} \),
2) \(\forall 2 \leq j \leq k : \sum_{i:e_i \in \text{out}(s_j)} x_{ij} = d_j = \sum_{i:e_i \in \text{in}(t_j)} x_{ij} \),
3) \(\forall 1 \leq j \leq k : \sum_{i=1}^{k} x_{ij} \leq c(e_j) \),
4) \(\forall 1 \leq i \leq m \text{ s.t. } e_i \in E_{\text{fix}} \forall 1 \leq j \leq k : x_{ij} = F_j(e_i) \),
5) \(\sum_{i:e_i \in \text{in}(s_1)} x_{i1} = 0. \)

Idea: Don’t change where no slack is possible
Overview of the Remaining Talk

1. Yes, we can (decide in polynomial time)

2. What to do if we cannot migrate consistently?

3. Last: NP-hardness for unsplittable flows
NP-Hardness for Unsplittable Flows

Reduction from 3-Satisfiability

(here: \((x_1) \land (\neg x_1))\)
Summary

Consistent migration of flows
Decidable in polynomial time

No consistent migration possible?
Can use LP to maximize demands

Unsplittable flow migration
NP-hard
On Consistent Migration of Flows in SDNs

Sebastian Brandt, Klaus-Tycho Förster, Roger Wattenhofer
April 12, 2016 @ INFOCOM 2016 – San Francisco