Lars Schor, Hoeseok Yang, Iuliana Bacivarov, Devendra Rai, and Lothar Thiele
Computer Engineering and Networks Laboratory, ETH Zurich, CH-8092 Zurich, Switzerland
firstname.lastname@tik.ee.ethz.ch

Distributed Application Layer: Adaptive Mapping of Multiple Streaming Applications onto On-Chip Many-Core Systems

How to program and design such a system so that it is analyzable and efficient?

Workload Specification
- Execution scenarios to deal with multiple applications
- Each application is specified as a Kahn process network

Architecture Specification
- Hierarchically organized
- Non-uniform memory access (NUMA) design
- Examples: Intel SCC / Xeon Phi
- STThorn (P2012)
- NVIDIA Fermi architecture

Run-Time
- Hierarchically organized run-time manager:
 - One controller per communication layer
 - Each controller has an individual database with its relevant mapping information
 - Events processed by the first controller that can handle the event
- Fault management:
 - Mapping towards virtual architecture
 - Redundant tiles to remap the processes

Hierarchical Decomposition
- How does hierarchical decomposition affect the performance of the mapping strategy?
- Performance of holistic mapping optimization relative to hierarchical mapping optimization:

Evaluation
- Fully automated tool chain targeting Intel’s SCC processor

Deployment
- Hierarchical Decomposition
- Different Levels of Parallelism
 - Motion-JPEG (MJPEG) decoder application
 - How does the degree of parallelism affect the throughput?

References:

Acknowledgement
- EU FP7 project GRAND (grant number 248460)
- Korean Science and Technology Cooperation Program
- National Research Foundation of Korea (MIP-2011-002-E005)
- Intel Doctoral Student Honor Programme

http://www.tik.ee.ethz.ch/~euretile