
Published as a conference paper at ICLR 2024

GRAPHCHEF: DECISION-TREE RECIPES TO EXPLAIN
GRAPH NEURAL NETWORKS

Peter Müller, Lukas Faber, Karolis Martinkus, Roger Wattenhofer
ETH Zurich, Switzerland
{lfaber,mkarolis,wattenhofer}@ethz.ch

ABSTRACT

We propose a new self-explainable Graph Neural Network (GNN) model:
GraphChef. GraphChef integrates decision trees into the GNN message pass-
ing framework. Given a dataset, GraphChef returns a set of rules (a recipe) that
explains each class in the dataset unlike existing GNNs and explanation methods
that reason on individual graphs. Thanks to the decision trees, the GraphChef
recipes are human-comprehensible. We also present a new pruning method to
produce small and easy-to-digest trees. Experiments demonstrate that GraphChef
reaches comparable accuracy to non-self-explainable GNNs, and the produced de-
cision trees are indeed small. We further validate the correctness of the discovered
recipes on datasets where explanation ground truth is available: Reddit-Binary,
MUTAG, BA-2Motifs, BA-Shapes, Tree-Cycle, and Tree-Grid.

1 INTRODUCTION

Graphs abstractly represent complex relational data in a myriad of applications and play a crucial role
in, e.g., chemistry, engineering, social sciences, or transportation. Graph Neural Networks (GNNs) are
a popular but black-box machine learning model for graph-based domains. GNNs classify individual
graphs, as in “Is this protein (represented as a graph) an enzyme?” Naturally, explaining how these
black-box GNNs make their predictions is also important. Most existing works aim to explain GNN
predictions by identifying key nodes (Figure 1a) and edges (Figure 1b) or by finding similar examples
or subgraphs (Figure 1c). Each of these existing methods can highlight the importance of the double
“Sheet” motive, but no method helps us to understand why it is important. In this paper, we want
to drive explanation further and 1) understand not only which inputs are important, but also how
they are used and 2) understand the dataset as a whole as to really answer the question “What makes
a protein an enzyme?”. GraphChef builds a recipe in the form of decision trees (Figures 1d+1e).
The recipe shows hows Sheets contribute to the Enzyme class. The PROTEINS dataset shown is an
easy example dataset without intermediate layers. In further experiments, we show that GraphChef
works equally well for various explanation benchmarks that require graph reasoning. In summary,
our contributions are as follows:

• While traditional GNNs are based on synchronous message passing (Loukas, 2020), we
propose a new layer that is inspired by a simplified distributed computing model known
as the stone-age model (Emek and Wattenhofer, 2013). In this model, the nodes use a
small categorical space for states and messages. The stone-age model is simple and as such
suitable for interpretation while retaining a high theoretical expressiveness. We call our new
layer dish (DIfferentiable Stone-“H”).

• We distill the multi-layer perceptrons in all dish layers to decision trees. We call the resulting
model GraphChef. GraphChef abstractly expresses the reasoning of the dish GNN with a
series of decision trees (the recipe). See Figure 1 for a complete example.

• We propose a way to collectively prune the decision trees in GraphChef. Pruning may
affect accuracy, but also gives simpler explanations. GraphChef hence allows for a trade-off
between accuracy and simplicity.

• We introduce an importance propagation scheme through the recipes to allow GraphChef to
compute node-level importance scores similar to orthodox GNN explanation methods.

1

Published as a conference paper at ICLR 2024

(a) (b) (c) (d) (e)

Figure 1: PROTEINS is a graph classification dataset. Nodes are secondary structural elements
of amino acids, either helixes (H, input 0), sheets (S, input 1), or turns (T, input 2). Graphs are
classified whether they are an enzyme or not. (a) shows a node-level explanation for an Enzyme; (b)
an edge-level explanation; (c) a subgraph explanation. With all three of these prior approaches, we
can deduce that the two sheets are important, but we do not know why. The explanation does not
answer questions such as “Do the sheets have to be connected?” or “Must there be exactly two? (d)
The GraphChef recipe for PROTEINS reads as follows: A protein is an enzyme if it has at most 8
nodes that are not sheets, or if it has at most 3 sheets. The example graph has 9 “no sheet” and 2 sheet
nodes and is therefore an Enzyme. The second tree (e) explains the terms used in (d). Note that this
recipe simultaneously explains the predictions for all the other graphs in the dataset. This recipe using
only node features and no message passing matches the current approach in biochemistry (Errica
et al., 2020).

• We test GraphChef on established GNN explanation benchmarks and real-world graph
datasets. We show that our recipes retain high accuracy compared to fully-expressive GNNs.
The importance propagation produces competitive results to existing explanation methods.
We further validate that the proposed pruning method considerably reduces tree sizes. Last,
we demonstrate how to read GraphChef’s recipes to find interesting insights in real-world
datasets or flaws in existing explanation benchmarks.

• We provide a user interface for GraphChef.1 This tool allows for the interactive exploration
of the GraphChef recipes on the datasets examined in this paper. We provide a manual for
the interface in Appendix F.

2 RELATED WORK

2.1 EXPLANATION METHODS FOR GNNS

Recent years have seen many GNN explanation methods being proposed using different ideas. We can
roughly group them into five groups based on the main approach. Gradient, Mutual-Information,
and Counterfactual methods compute node-level or edge level importance that we can interpret as
heatmaps. These heatmaps highlight which parts of the input are important, but not why. On the
other hand, Subgraph and Example based methods explain graphs by showing other example graphs
or idealized prototype representatives for classes—but again not why these (sub)graphs influence the
GNN prediction. In all five cases, a human would need explanations for dozens of example graphs to
puzzle together a recipe for a dataset.

Gradient based. Baldassarre and Azizpour (2019) and Pope et al. (2019) show that it is possible to
adopt gradient-based methods known from computer vision, for example Grad-CAM(Selvaraju et al.,
2017). Gradients can be computed on node features and edges (Schlichtkrull et al., 2021).
Mutual-information based. Ying et al. (2019) measure the importance of edges and node features.
Edges are masked with continuous values. Instead of gradients, the authors use mutual information
between the inputs and the prediction to quantify the importance. Luo et al. (2020) follow a similar
idea but emphasize finding structures that explain multiple instances at the same time.
Counterfactual. Lucic et al. (2021) show that already the deletion of a few edges can change the
classifier prediction, supporting that these edges are important for the class. The idea is similar to

1https://interpretable-gnn.netlify.app/

2

https://interpretable-gnn.netlify.app/

Published as a conference paper at ICLR 2024

occluding parts of an image in computer vision (Zeiler and Fergus, 2014). Bajaj et al. (2021) propose
a hybrid with an example-based explanation. They compute decision boundaries over multiple
instances to find optimized counterfactual explanations.
Subgraph based. Yuan et al. (2021) consider each subgraph as a possible explanation. To score
a subgraph, they use Shapley values (Shapley, 1953) and Monte Carlo tree search for guiding the
search. Duval and Malliaros (2021) build subgraphs by masking the nodes and edges in the graph.
They run their subgraph through the trained GNN and try to explain the differences to the entire graph
with simple interpretable models and Shapley values. Zhang et al. (2021) infer subgraphs called
prototypes that each represent one particular class. Graphs are classified and explained through their
similarity to the prototypes. Azzolin et al. (2022) propose a scheme to combine “local” subgraphs
explaining one graph into a “global” logic formula to explain the reasoning in the dataset.
Example based. Huang et al. (2020) proposes a graph version of the LIME (Ribeiro et al., 2016)
algorithm. A prediction is explained through a linear decision boundary built by close-by examples.
Vu and Thai (2020) aim to capture the dependencies in node predictions and express them in
probabilistic graphical models. Faber et al. (2020) explain a node by giving examples of similar
nodes with the same and different labels. Dai and Wang (2021) create a k-nearest neighbor model
and measure similarity with GNNs. Yuan et al. (2020a) and Wang and Shen (2022) generate a
representative graph for each class that maximizes the model’s confidence in the class prediction.
(Azzolin et al., 2022) is a noteworthy approach that constructs formulas that aim not to explain single
graphs but also classes for the entire dataset, being the most similar to our dataset-level recipes.
However, these formulas do not reveal the GNN decision process either.
Simple GNNs. Another interesting line of research is simplified GNN architectures Cai and Wang
(2018); Chen et al. (2019); Huang et al. (2021). The main goal of this research is to show that
simple architectures can perform competitively with traditional complex GNNs. As a side effect,
the simplicity of these architectures also makes them slightly more understandable. However, they
are not understandable to the extent that we can derive recipes for entire datasets. GraphChef also
deliberately sacrifices some expressive power but explicitly to gain explainability.

2.2 EXPLANATION PROPERTIES AND BENCHMARKS.

Complimentary to the development of explanation methods is research on how to evaluate these
methods. Sanchez-Lengeling et al. (2020) and Yuan et al. (2020b) discuss the desirable properties
a good explanation method should have. For example, an explanation method should be faithful
to the model, which means that an explanation method should reflect the model’s performance and
behavior. Agarwal et al. (2022) provide a theoretical framework to define how strong explanation
methods adhere to these properties. They also derive bounds for several explanation methods. Faber
et al. (2021) and Himmelhuber et al. (2021) discuss deficiencies in the existing benchmarks used for
empirical evaluation. We will show recipes by GraphChef how GNNs might exploit such deficiencies
in Appendix A to produce correct recipes that are not in line with the explanation ground truth.

2.3 COMBINING DECISION TREES WITH NEURAL NETWORKS

Decision trees are popular machine learning models thanks to their inherent explainability (given
reasonable tree sizes). Already early works in neural networks research investigated the feasibility of
extracting trained neural networks into decision trees to understand what the network learned (Boz,
2002; Craven and Shavlik, 1995; Dancey et al., 2004; Krishnan et al., 1999).

Recently, this idea has been picked up again. Schaaf et al. (2019) have shown that encouraging
sparsity and orthogonality in neural network weight matrices allows for model distillation into
smaller trees with higher final accuracy. Wu et al. (2017a) follow a similar idea for time series data:
they regularize the training process for recurrent neural networks to penalize weights that cannot
be easily modeled by decision trees. Yang et al. (2018a) aim to directly learn neural trees. Their
neural layers learn how to split the data and put it into bins. Stacking these layers creates trees.
Kontschieder et al. (2015) learn neural decision forests by making the routing in nodes probabilistic
and learning these probabilities and leaf predictions. A recent work by Aytekin (2022) shows that
we can transform any neural network into decision trees. However, this approach creates a tree with
potentially exponentially many leaves. Even though this method produces decision trees, we cannot
use the outputs as humanly understandable recipes for datasets.

3

Published as a conference paper at ICLR 2024

Figure 2: A GraphChef layer. GraphChef updates the state of a node based on its previous categorical
state (left green), the number of neighbors per state (blue, 1 in state 0, 2 in state 1, 1 in state 2), and
binary > comparisons between states (yellow, only state 1 outnumbers other states, therefore the
third and fourth deltas are 1). A decision tree that receives this information computes the followup
categorical state (right green).

GraphChef follows the same underlying idea. Can we express what our GNN learned in a decision
tree to explain its decision process? In contrast to existing methods which operate on tabular data,
GraphChef also needs to include the reasoning about the graph structure (for example, finding
important edges between nodes). We also emphasize the importance of small trees to ensure that the
recipes produced are understandable to humans.

3 THE GRAPHCHEF MODEL

3.1 FROM GIN TO DISH

We follow the general message passing GNN model (Gilmer et al., 2017; Battaglia et al., 2018): Every
node has an internal state that is modified in the GNN layers. In every layer, every node computes a
message that it sends to every neighbor. Then every node receives all messages, aggregates the set of
messages, and updates its state:

hl+1
v = UPDATEθ(h

l
v,AGGREGATE

{
MESSAGE(hl

w)
}
w∈Nb(v)

).

Our starting architecture is the GIN model from Xu et al. (2019). In GIN, the MESSAGE function is
the identity function, AGGREGATE is element-wise summation, and UPDATE is a learnable neural
function fθ. Although it is rather simple, the GIN model is already as expressive as the 1−Weisfeiler
Lehman test. We can notate GIN as follows:

hl+1
v = f l

θ(h
l
v,

∑
w∈Nb(v)

hl
w).

We derive the internal state h0
v for the first dish layer with an encoder on the initial node features xv .

We use the internal states in a decoder layer: For node classification, we use skip connections and use
all internal states for the final prediction. For graph classification, we sum-pool all nodes in every
layer and make sums available for the final prediction.

The internal states are d−dimensional real-valued vectors: hl
v ∈ Rd. These vectors allow complex

relationships between features that make explainability very difficult. We simplify the internal states
by applying a Gumbel-Softmax (Jang et al., 2016; Maddison et al., 2016) to the GNN layers and also
to the encoder layer:

hl+1
v = Gumbel(f l

θ(h
l
v,

∑
w∈Nb(v)

hl
w)).

Therefore, the internal states hl
v become one-hot categorical values and summation in the GNN

aggregation step counts how many neighbors are in what state. The theoretical motivation for this
change comes from distributed computing: Loukas (2020) showed that message passing GNNs such
as GIN are equivalent to the LOCAL distributed computing model(Peleg, 2000). In LOCAL, nodes
can perform arbitrary local computation. However, there exists also a simpler model, coined the
stone-age model (Emek and Wattenhofer, 2013) where nodes can only transition between categorical
states using a finite state machine. The nodes can count the number of neighbors in each state and only

4

Published as a conference paper at ICLR 2024

in a limited manner in the spirit of “one, two, three, many”. Neighborhood counts above a threshold
are indistinguishable from each other. Interestingly enough, such a simplified model can still solve
many distributed computing problems. Our proposed GNN architecture is the GNN equivalent of this
stone-age model. Therefore, we coin our layer “dish”: differentiable stone-“h”.

Let us look at the theoretical expressive power of dish layers: For a GIN with log(d) bits of continuous
embedding space, we can, in principle, create a dish GNN with d categorical states and the same
theoretical expressiveness. Practically, we aim for a low number of categorical bits to ensure human
interpretability. We investigate the drop in accuracy in Table 1a.

3.2 FROM DISH TO GRAPHCHEF

We can leverage the categorical states of a trained dish model to distill all neural blocks to decision
trees. These are the update functions in the dish layers as well as the functions in the encoder and
decoder layers. Since all states are categorical, this distillation becomes a classification problem
where decision trees learn to predict the categorical state. A distilled GraphChef layer looks as
follows and is also shown in Figure 2:

hl+1
v = TREEl(hl

v,
∑

w∈Nb(v)

hl
w).

Note that the GraphChef layer still follows the message passing framework but instead of a neural
function plus a Gumbel-Softmax it uses a decision tree. We empirically found that GraphChef benefits
from one tweak. Decision trees generally struggle with comparing two features (is one feature larger
than the other). To help with that and produce small trees, we include pairwise delta features ∆.
These binary features compare every ordered pair of features and are one if the first feature is larger.
Let cli be the counts of neighbors in state i in layer l:

∆(clv) = ∥
i∈S,j ̸=i∈S

1cli>clj

hl+1(v) = TREEl(hl
v, c

l
v,∆(clv)).

Decision trees have access to three sets of features: the previous state, the number of neighbors in
each state or the comparison of two state counts. Figure 2 shows these colored green, blue, and
yellow, respectively. For each decision node in GraphChef’s decision trees, we can interpret the
GNN reasoning based on which feature is used as shown in 3. We can combine these individual
node interpretations to formulate GraphChef’s recipes. Figure 5 shows an example recipe with an
interpretation in Table 4. More examples of recipes are available in Appendix A.

(a) (b) (c)

Figure 3: The different branches possible in a GraphChef layer. We can branch on (a) the state in
which a node is in, (b) if the node has a certain number of neighbors in a certain state, or (c) if the
node has more neighbors in one state than in another state. The colors match the features in Figure 2.

3.3 PRUNING GRAPHCHEF

Although sufficiently deep decision trees can be universal function approximators(Royden and
Fitzpatrick, 1988; Aytekin, 2022), we prefer small and shallow decision trees, which are much
more understandable to humans. Shallow trees are more akin to the finite state machine used in the
stone-age distributed computing model. We find that setting an upper bound on leaves for every
decision tree is not sufficient and that GraphChef requires further pruning.

We prune these nodes based on the reduced error pruning algorithm (Quinlan, 1987). First, we
define a pruning set. The validation set alone is too small to cover all paths in the trees, which
causes over-pruning. On the other hand, we cannot use only the training set since this set created the
overfitting artifacts. We propose merging both sets for our pruning set.

5

Published as a conference paper at ICLR 2024

We also need a quality criterion when replacing an inner decision node with a leaf. We propose the
following: If replacing a node with a leaf (i) does not drop the accuracy on the validation set and (ii)
does not drop the training accuracy below the validation accuracy, we accept the replacement. Not
allowing validation accuracy to drop ensures that we do not over-prune. However, allowing drops
in training accuracy allows for removing decision nodes that result from overfitting. Not allowing
training accuracy to drop below validation accuracy is another safeguard against over-pruning. We
keep iterating over all inner decision nodes, sorted by the number of data points they cover, and try
replacing them with leaf nodes until we find no more nodes that we can drop without accuracy loss.
Afterwards we keep iterating and remove the node with the smallest drop in validation accuracy.
Slight deterioration allows to prune far more nodes. Ultimately, we record 10 pruning levels: after
pruning with no validation accuracy loss and pruning the remaining nodes in 10% steps. We make
these levels available in the UI and allow users to choose the trade-off between accuracy and tree size.

Computing explanation scores. If we have a GraphChef recipe for the dataset, we can also
compute heatmap-style importance scores for single graphs; similar to existing graph explanation
methods. We compute these importance scores layer by layer. In the input layer, every node is its
own explanation. In each GraphChef layer, we compute Tree-Shap values (Lundberg et al., 2018)
for every decision tree feature. We then compute importance updates for every decision tree feature
weighted by this Tree-Shap value independently (unused features have a value of 0). If the node
uses a state feature (as in Figure 3a) then we give importance to the node itself. If we use a message
feature (as in Figure 3b), we distribute the importance evenly between all neighbors in this state. If
we use a delta feature (as in Figure 3c), we distribute positive importance between all neighbors in
the majority class and also negative importance between all neighbors in the minority class. Finally,
we normalize the scores to sum up to 1. In the decoder layer, we employ skip connections to also
consider intermediate states (for node classification) or intermediate pooled node counts (for graph
classification). We provide a formal computation in Appendix C.

4 EXPERIMENTS

GraphChef

Dataset DT DT+degrees GIN dish GNN No pruning Lossless pruning

Infection 0.43±0.00 0.43±0.00 0.98±0.04 1.00±0.00 1.00±0.00 1.00±0.00
Negative 0.51±0.00 0.50±0.00 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00
BA-Shapes 0.43±0.00 0.86±0.02 0.97±0.02 1.00±0.01 0.99±0.01 0.99±0.01
Tree-Cycles 0.59±0.00 0.84±0.04 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00
Tree-Grid 0.58±0.00 0.76±0.03 1.00±0.01 0.99±0.01 0.99±0.01 0.99±0.01
BA-2Motifs 0.50±0.00 0.82±0.03 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00

MUTAG 0.83±0.09 0.85±0.07 0.88±0.05 0.88±0.06 0.88±0.06 0.85±0.08
Mutagenicity 0.71±0.02 0.72±0.02 0.81±0.02 0.79±0.02 0.75±0.02 0.74±0.02
BBBP 0.83±0.03 0.83±0.02 0.81±0.04 0.83±0.03 0.82±0.03 0.83±0.03
PROTEINS 0.74±0.02 0.71±0.04 0.70±0.03 0.71±0.02 0.71±0.04 0.71±0.04
IMDB-B 0.57±0.04 0.71±0.04 0.69±0.04 0.70±0.05 0.69±0.03 0.69±0.04
REDDIT-B 0.75±0.03 0.80±0.03 0.87±0.10 0.90±0.03 0.88±0.03 0.87±0.04
COLLAB 0.59±0.01 0.70±0.02 0.72±0.01 0.70±0.02 0.69±0.02 0.69±0.02

(a)

Table 1: a) Test set accuracies using decision trees (DT) and different GNN layers. One version of
decision trees additionally receives the degrees. For graph classification, the decision tree inputs where
the number of nodes of each type and potentially of each degree. The gap between dishGNN and
both GraphChef versions to a full GNN is low, importantly also in graphs that require sophisticated
graph reasoning (and DT+degrees is not enough)

4.1 EXPERIMENT SETUP

Datasets. We first run GraphChef on synthetic GNN explanation benchmarks introduced in previous
work. We use the Infection and Negative Evidence benchmarks from Faber et al. (2021), The
BA-Shapes, Tree-Cycle, and Tree-Grid benchmarks from Ying et al. (2019), and the BA-2Motifs
dataset from Luo et al. (2020). Second, we experiment with the following real-world datasets:
MUTAG (Debnath et al., 1991); BBBP (Wu et al., 2017b); Mutagenicity (Kazius et al., 2005);
PROTEINS, REDDIT-BINARY, IMDB-BINARY, and COLLAB (Borgwardt et al., 2005). We provide

6

Published as a conference paper at ICLR 2024

more information for all datasets, such as statistics, descriptions, and examples in Appendix D and
hyperparameters in Appendix E. Note that all datasets except COLLAB are small enough to train
on commodity CPUs. For example, training the PROTEINS dataset for one seed on a laptop trains
in 5 minutes for the full 1500 epochs, a few seconds for the tree distillation, and 1− 2 minutes for
tree pruning. The larger REDDIT-BINARY takes around one hour to train a dish GNN (if it uses
all epochs) a few seconds for distilling trees and around 10 minutes for pruning. Computing lossy
pruning takes a comparable amount of time to lossless pruning.

4.2 QUANTITATIVE RESULTS

Method Infection Saturation BA-Shapes Tree-Cycles Tree-Grid

Gradient 1.00±0.00 1.00±0.00 0.882 0.905 0.667
GNNExplainer 0.32±0.09 0.32±0.05 0.925 0.948 0.875
PGMExplainer 0.38±0.06 0.01±0.01 0.965 0.968 0.892

GraphChef 0.95±0.02 1.00±0.00 0.94±0.02 0.84±0.02 0.927±0.01

Table 2: Overlap of identified explanation to explanation ground truth. The numbers for Gradient,
GNNExplainer, and PGMExplainer are taken from Ying et al. (2019), Vu and Thai (2020), and Faber
et al. (2021).

(a)
GNNExplainer

Ba-Shapes

(b)
GNNExplainer

Tree-Cycles

(c)
GNNExplainer

Tree-Grid

(d)
GNNExplainer

MUTAG

(e)
GNNExplainer

REDDIT-B

(f) GraphChef
Ba-shapes

(g) GraphChef
Tree-Cycles

(h) GraphChef
Tree-Grid

(i) GraphChef
MUTAG

(j) GraphChef
REDDIT-B

Figure 4: Subselections of important nodes for GNNExplainer and GraphChef for several datasets.

GraphChef performs comparably to GIN. On both groups of datasets, we measure the perfor-
mance of GIN versus dish GNN versus GraphChef. In principle, there may be a drop in accuracy
at each step to trade expressive power for explainability. Table 1a shows the average test accuracy
over 10 seeds for each method and also for the losslessly pruned version of GraphChef. We find that
GraphChef recipes perform very close to GIN. This also holds on datasets that require sophisticated
graph reasoning that we cannot solve by a decision tree baseline that has access to degrees. The
model simplifications to obtain understandable recipes do not decrease accuracy. We observe that
tree pruning can even have a positive effect on test accuracy compared to non-pruned GraphChef.
This is likely due to the regularization induced by the pruning procedure.

GraphChef produces competitive explanations. We can use the ground truth available from the
first group of datasets to evaluate the importance scores of GraphChef (Appendix C). Following
existing work such as Ying et al. (2019), we compute importance scores for every node in the graph
and consider the n nodes with the highest score for the explanation, n is the number of nodes in the
ground truth. The explanation accuracy for a graph is the ratio of correct nodes in the explanation.
Table 2 shows the average accuracy per dataset.

GraphChef explanations are competitive with existing explanation methods with some examples
shown in Figure 4. The scores on Tree-Cycles and Tree-Grid suggest room for improvement, but

7

Published as a conference paper at ICLR 2024

that is not actually the case as we show in Appendix A. GraphChef solves the datasets in a legitimate
way that is easier than the creators anticipated and does not require finding the full motif. These
alternative solutions are known deficiencies of the datasets (Faber et al., 2021; Himmelhuber et al.,
2021).

No pruning REP Training REP Validation REP Ours REP Lossy

Dataset Accuracy Size Accuracy Size Accuracy Size Accuracy Size Accuracy Size

Infection 1.00±0.00 205±56 1.00±0.00 26±2 1.00±0.00 25±2 1.00±0.00 26±2 0.98±0.01 17±2
Negative 1.00±0.00 18±14 1.00±0.00 5±0 1.00±0.00 5±0 1.00±0.00 5±0 1.00±0.00 4±0
BA-Shapes 0.99±0.01 30±10 0.99±0.01 21±5 0.97±0.03 15±4 0.99±0.01 21±5 0.98±0.04 17±4
Tree-Cycles 1.00±0.00 19±5 1.00±0.00 11±3 0.99±0.02 9±2 1.00±0.00 11±3 0.99±0.01 9±3
Tree-Grid 0.99±0.01 30±13 0.99±0.01 17±8 0.99±0.01 13±4 0.99±0.01 15±8 0.99±0.01 15±8
BA-2Motifs 1.00±0.00 141±43 1.00±0.00 12±3 1.00±0.01 11±3 1.00±0.00 13±4 1.00±0.00 13±4

MUTAG 0.88±0.06 59±27 0.86±0.08 19±17 0.83±0.07 7±6 0.85±0.08 18±16 0.85±0.08 18±16
Mutagenicity 0.75±0.02 375±13 0.76±0.02 154±19 0.73±0.01 56±16 0.74±0.02 91±36 0.73±0.02 50±19
BBBP 0.82±0.03 366±53 0.84±0.02 88±52 0.79±0.04 8±10 0.83±0.03 46±27 0.82±0.03 31±18
PROTEINS 0.71±0.04 206±90 0.72±0.03 12±13 0.70±0.04 8±6 0.71±0.04 9±6 0.71±0.04 9±6
IMDB-B 0.69±0.03 218±32 0.69±0.04 20±9 0.66±0.06 16±6 0.69±0.04 29±9 0.69±0.04 29±9
REDDIT-B 0.88±0.03 248±28 0.88±0.02 53±14 0.85±0.04 28±8 0.87±0.04 49±21 0.87±0.04 38±15
COLLAB 0.69±0.02 301±1 0.70±0.02 36±15 0.67±0.03 22±12 0.69±0.02 30±18 0.68±0.02 21±12

Table 3: Running reduced error pruning (REP) on different pruning sets. The threshold for lossy
pruning is chosen manually, scores for the remaning considered thresholds are visible in the UI.

Pruning significantly reduces the decision tree sizes. Third, we examine the effectiveness of our
pruning method. We compare the tree sizes before pruning, after lossless pruning, and after lossy
pruning. We measure tree size as the sum of decision nodes over all trees. Additionally, we verify
the effectiveness of using our pruning criterion for reduced error pruning and compare it against
simpler setups of using only the training or validation set for pruning. We report tree sizes and test
set accuracy for all configurations in Table 3.

We can see that reduced error pruning leads to an impressive drop in the number of nodes required
in the decision trees. On average, we can prune about 62% of nodes in synthetic datasets and even
around 84% of nodes in real-world datasets without a loss in accuracy. If we accept small drops in
accuracy, we can even prune a total of 68% and 87% of nodes in synthetic and real-world datasets,
respectively. Among the different setups for reduced error pruning, our proposed approach of using
both training and validation accuracy performs the best. As expected, pruning only on the validation
set tends to over-prune the trees: Trees become even smaller, but there is also a larger drop in accuracy,
especially in the real-world datasets. Using the training set leads to underpruning; there is no drop in
accuracy, but decision trees for real-world graphs tend to stay large. Lossy pruning usually allows
further decrease in decision tree sizes with virtually no accuracy drop. In this instance, we used the
UI (Appendix F) to choose a threshold. Alternative options are also available in the UI.

4.3 QUALITATIVE RESULTS

(a) (b) (c)

Figure 5: GraphChef recipe for the Reddit-Binary dataset. Decision trees in every layer are built
using the building blocks from Figure 3. Table 4 provides an interpretation of all states in all layers
and for the entire dataset.

8

Published as a conference paper at ICLR 2024

Layer State Decision Rule Interpretation
Encoder 2 All nodes No differentiation due to no features.
Layer 0 2 Nodes with at most 3 neigh-

bors
Inactive users

Layer 0 4 Between 4 and 45 neighbors Active users
Layer 0 0 More than 45 neighbors Central users
Layer 1 0 1) State 0 nodes with more

than one state 0 neighbor or
2) Not state 2 nodes that have
at most two state 4 neighbors

1) Inactive users writing with at least 2
central users or 2) Active or central users
that write with at most 2 active users.

Layer 1 1 No neighbor in state 0 Users that do no write with a central user.
Layer 1 2 Not state 2 nodes with at least

3 state 4 neighbors
Active or central users that write with at
least 3 active users.

Layer 1 4 Nodes in state 2 with exactly
one state 0 neighbor

Inactive users write with one central
user.

Decoder Q/A At least 15 nodes in Layer 1
state 0

See interpretation of Layer 1 state 0.

Decoder Discussion Otherwise The GraphChef model looks for evi-
dence of a Q/A graph. Discussions are
"not Q/A" graphs.

Table 4: Analysis of GraphChef recipe in Figure 5 for the Reddit-Binary dataset. A Q/A graph
requires central users and 15 users that 1) are inactive and write with more than one central user or 2)
are active or central and write mostly with inactive users.

Finally, let us look at how to read a GraphChef recipe for the Reddit-Binary dataset. The recipe is
shown in Figure 5. First, we aim to understand every categorical state in every layer, in a fashion
similar to dynamic programming. We start by understanding the states in the first layer, taking
note of these explanations, and using them to understand the next layer. Table 4 does this for the
Reddit-Binary dataset from top to bottom. To understand the dataset, we inspect the decoder rules.

We can understand that we need to find a certain amount of users (15) fulfilling certain conditions: 1)
inactive users writing with at least two central users or 2) active or central users that write with at least
one central user and at most 2 active users. We can understand 1) as just replying to a single central
user is not sufficient. We hypothesize that controversial opinions in discussions can also attract many
comments, even by inactive users. Users fulfilling 2) write mostly with inactive users since there are
few central users and little communication with active users is allowed.

GraphChef’s recipe aligns with our belief that Q/A graphs are more “star-like” than discussion
graphs (Faber et al., 2020). However, the recipe also defines what we should consider as “star like”.
We obtain a threshold on what we can consider as centers of the star (central nodes with a degree of
46 or higher). The recipe also tells us to what extent non-star communication is acceptable for a Q/A
graph (two active users). To the best of our knowledge, such insight about the Reddit-Binary dataset
has not been found yet with existing explanation methods. See Appendix A for more recipe analyses.

5 CONCLUSION, LIMITATIONS, AND FUTURE WORK

In this paper, we introduce GraphChef, a new architecture that takes GNN explanations to a new
level. Instead of only highlighting the important parts of an input, GraphChef produces a recipe
which reveals the full decision process for the whole dataset. Internally, GraphChef combines GNNs
and decision trees to create recipes. We believe that GraphChef will help improve our understanding
of graph problems, which is crucial for the adoption of GNNs in safety critical domains such as
medicine. We can also identify and reject recipes that make biased or discriminatory decisions.

As a limitation, we found that GraphChef can struggle to create recipes for datasets with a large
feature space, discussing details in Appendix B. It seems difficult to construct small and accurate
decision trees when the input feature space is very large (hundreds or thousands of features).

9

Published as a conference paper at ICLR 2024

REFERENCES

C. Agarwal, M. Zitnik, and H. Lakkaraju. Probing gnn explainers: A rigorous theoretical and empirical
analysis of gnn explanation methods. In International Conference on Artificial Intelligence and
Statistics (AISTATS), virtual, 2022.

C. Aytekin. Neural networks are decision trees. arXiv preprint arXiv:2210.05189, 2022.

S. Azzolin, A. Longa, P. Barbiero, P. Liò, and A. Passerini. Global explainability of gnns via logic
combination of learned concepts. arXiv preprint arXiv:2210.07147, 2022.

M. Bajaj, L. Chu, Z. Y. Xue, J. Pei, L. Wang, P. C.-H. Lam, and Y. Zhang. Robust counterfactual
explanations on graph neural networks. In Conference on Neural Information Processing Systems
(NeurIPS), volume 34, pages 5644–5655, 2021.

F. Baldassarre and H. Azizpour. Explainability techniques for graph convolutional networks. In
International Conference on Machine Learning (ICML) Workshop on Learning and Reasoning
with Graph-Structured Representations, 2019.

P. W. Battaglia, J. B. Hamrick, V. Bapst, A. Sanchez-Gonzalez, V. Zambaldi, M. Malinowski,
A. Tacchetti, D. Raposo, A. Santoro, R. Faulkner, C. Gulcehre, F. Song, A. Ballard, J. Gilmer,
G. Dahl, A. Vaswani, K. Allen, C. Nash, V. Langston, C. Dyer, N. Heess, D. Wierstra, P. Kohli,
M. Botvinick, O. Vinyals, Y. Li, and R. Pascanu. Relational inductive biases, deep learning, and
graph networks. 6 2018. URL http://arxiv.org/abs/1806.01261.

K. M. Borgwardt, C. S. Ong, S. Schonauer, S. V. N. Vishwanathan, A. J. Smola, and H.-P. Kriegel.
Protein function prediction via graph kernels. Bioinformatics, 2005.

O. Boz. Extracting decision trees from trained neural networks. In ACM SIGKDD international
conference on Knowledge discovery and data mining (KDD), 2002.

C. Cai and Y. Wang. A simple yet effective baseline for non-attributed graph classification. In Inter-
national Conference on Learning Representations (ICLR) Workshop on Representation Learning
on Graphs and Manifolds, 2018.

T. Chen, S. Bian, and Y. Sun. Are Powerful Graph Neural Nets Necessary? A Dissection on Graph
Classification. ArXiv, 2019.

M. Craven and J. Shavlik. Extracting tree-structured representations of trained networks. In Confer-
ence on Neural Information Processing Systems (NeurIPS), 1995.

E. Dai and S. Wang. Towards Self-Explainable Graph Neural Network. In ACM International
Conference on Information & Knowledge Management (CIKM), 2021.

D. Dancey, D. Mclean, and Z. Bandar. Decision Tree Extraction from Trained Neural Networks. In
International Florida Artificial Intelligence Research Society Conference (FLAIRS), 2004.

A. K. Debnath, R. L. Lopez de Compadre, G. Debnath, A. J. Shusterman, and C. Hansch. Structure-
activity relationship of mutagenic aromatic and heteroaromatic nitro compounds. Correlation with
molecular orbital energies and hydrophobicity. Journal of Medicinal Chemistry, 1991.

A. Duval and F. D. Malliaros. Graphsvx: Shapley value explanations for graph neural networks.
In Joint European Conference on Machine Learning and Principles and Practice of Knowledge
Discovery in Databases (ECML PKDD), 2021.

Y. Emek and R. Wattenhofer. Stone age distributed computing. In ACM Symposium on Principles of
distributed computing (PODC), 2013.

F. Errica, M. Podda, D. Bacciu, and A. Micheli. A fair comparison of graph neural networks for
graph classification. In International Conference on Learning Representations (ICLR 2020), 2020.

L. Faber, A. K. Moghaddam, and R. Wattenhofer. Contrastive Graph Neural Network Explanation.
In Proceedings of the 37th International Conference on Machine Learning (ICML) Workshop on
Graph Representation Learning and Beyond (GRL+), 2020.

10

http://arxiv.org/abs/1806.01261

Published as a conference paper at ICLR 2024

L. Faber, A. K. Moghaddam, and R. Wattenhofer. When Comparing to Ground Truth is Wrong. In
ACM SIGKDD Conference on Knowledge Discovery & Data Mining (KDD), 2021.

M. Fey and J. E. Lenssen. Fast graph representation learning with PyTorch Geometric. In ICLR
Workshop on Representation Learning on Graphs and Manifolds, 2019.

J. Gilmer, S. S. Schoenholz, P. F. Riley, O. Vinyals, and G. E. Dahl. Neural Message Passing for
Quantum Chemistry. In International Conference on Machine Learning (ICML), 2017.

A. Himmelhuber, M. Joblin, M. Ringsquandl, and T. Runkler. Demystifying Graph Neural Network
Explanations. In Joint European Conference on Machine Learning and Principles and Practice of
Knowledge Discovery in Databases (ECML PKDD), 2021.

Q. Huang, M. Yamada, Y. Tian, D. Singh, D. Yin, and Y. Chang. GraphLIME: Local Interpretable
Model Explanations for Graph Neural Networks. ArXiv, 2020.

Q. Huang, H. He, A. Singh, S.-N. Lim, and A. R. Benson. Combining Label Propagation and
Simple Models Out-performs Graph Neural Networks. International Conference on Learning
Representations (ICLR), 2021.

S. Ioffe and C. Szegedy. Batch normalization: Accelerating deep network training by reducing
internal covariate shift. In International Conference on Machine Learning (ICML), 2015.

E. Jang, S. Gu, and B. Poole. Categorical Reparameterization with Gumbel-Softmax. International
Conference on Learning Representations (ICLR), 2016.

J. Kazius, R. McGuire, and R. Bursi. Derivation and validation of toxicophores for mutagenicity
prediction. Journal of medicinal chemistry, 2005.

P. Kontschieder, M. Fiterau, A. Criminisi, and S. R. Bulo. Deep neural decision forests. In IEEE
International Conference on Computer Vision (CVPR), 2015.

R. Krishnan, G. Sivakumar, and P. Bhattacharya. Extracting decision trees from trained neural
networks. Pattern Recognition, 1999.

A. Loukas. What graph neural networks cannot learn: depth vs width. In International Conference
on Learning Representations (ICLR), 2020.

A. Lucic, M. ter Hoeve, G. Tolomei, M. de Rijke, and F. Silvestri. Cf-gnnexplainer: Counterfactual
explanations for graph neural networks. ArXiv, 2021.

S. M. Lundberg, G. G. Erion, and S.-I. Lee. Consistent Individualized Feature Attribution for Tree
Ensembles. ArXiv, 2018.

D. Luo, W. Cheng, D. Xu, W. Yu, B. Zong, H. Chen, and X. Zhang. Parameterized explainer for
graph neural network. In Conference on Neural Information Processing Systems (NeurIPS), 2020.

C. J. Maddison, A. Mnih, and Y. W. Teh. The Concrete Distribution: A Continuous Relaxation of
Discrete Random Variables. In International Conference on Learning Representations (ICLR),
2016.

V. Nair and G. E. Hinton. Rectified linear units improve restricted boltzmann machines. In Interna-
tional Conference on Machine Learning (ICML), 2010.

A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin, N. Gimelshein,
L. Antiga, A. Desmaison, A. Kopf, E. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy,
B. Steiner, L. Fang, J. Bai, and S. Chintala. Pytorch: An imperative style, high-performance deep
learning library. In Conference on Neural Information Processing Systems (NeurIPS), 2019.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Pretten-
hofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and
E. Duchesnay. Scikit-learn: Machine learning in Python. Journal of Machine Learning Research,
2011.

D. Peleg. Distributed computing: a locality-sensitive approach. SIAM, 2000.

11

Published as a conference paper at ICLR 2024

P. E. Pope, S. Kolouri, M. Rostami, C. E. Martin, and H. Hoffmann. Explainability methods for graph
convolutional neural networks. In IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 2019.

J. Quinlan. Simplifying decision trees. International Journal of Man-Machine Studies, 1987.

M. T. Ribeiro, S. Singh, and C. Guestrin. " why should i trust you?" explaining the predictions of any
classifier. In ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
(KDD), 2016.

H. L. Royden and P. Fitzpatrick. Real analysis. Macmillan New York, 1988.

B. Sanchez-Lengeling, J. Wei, B. Lee, E. Reif, P. Wang, W. W. Qian, K. McCloskey, L. Colwell,
and A. Wiltschko. Evaluating attribution for graph neural networks. In Conference on Neural
Information Processing Systems (NeurIPS), 2020.

N. Schaaf, M. F. Huber, and J. Maucher. Enhancing Decision Tree based Interpretation of Deep Neural
Networks through L1-Orthogonal Regularization. 2019 18th IEEE International Conference On
Machine Learning And Applications (ICMLA), 2019.

M. S. Schlichtkrull, N. D. Cao, and I. Titov. Interpreting graph neural networks for NLP with
differentiable edge masking. In International Conference on Learning Representations (ICLR),
2021.

R. R. Selvaraju, M. Cogswell, A. Das, R. Vedantam, D. Parikh, and D. Batra. Grad-cam: Visual
explanations from deep networks via gradient-based localization. In IEEE International Conference
on Computer Vision (CVPR), 2017.

L. S. Shapley. 17. A Value for n-Person Games. Contributions to the Theory of Games, 1953.

M. Vu and M. T. Thai. Pgm-explainer: Probabilistic graphical model explanations for graph neural
networks. In Conference on Neural Information Processing Systems (NeurIPS), 2020.

X. Wang and H.-W. Shen. Gnninterpreter: A probabilistic generative model-level explanation for
graph neural networks. arXiv preprint arXiv:2209.07924, 2022.

M. Wu, M. C. Hughes, S. Parbhoo, M. Zazzi, V. Roth, and F. Doshi-Velez. Beyond Sparsity: Tree
Regularization of Deep Models for Interpretability. In AAAI Conference on Artificial Intelligence
(AAAI), 2017a.

Z. Wu, B. Ramsundar, E. N. Feinberg, J. Gomes, C. Geniesse, A. S. Pappu, K. Leswing, and V. Pande.
MoleculeNet: A Benchmark for Molecular Machine Learning. Chemical Science, 2017b.

K. Xu, S. Jegelka, W. Hu, and J. Leskovec. How Powerful are Graph Neural Networks? International
Conference on Learning Representations (ICLR), 2019.

Y. Yang, I. G. Morillo, and T. M. Hospedales. Deep Neural Decision Trees. ArXiv, 2018a.

Z. Yang, W. Cohen, and R. Salakhudinov. Revisiting semi-supervised learning with graph embeddings.
In International conference on machine learning (ICML), 2018b.

R. Ying, D. Bourgeois, J. You, M. Zitnik, and J. Leskovec. GNNExplainer: Generating Explanations
for Graph Neural Networks. In Conference on Neural Information Processing Systems (NeurIPS),
2019.

H. Yuan, J. Tang, X. Hu, and S. Ji. Xgnn: Towards model-level explanations of graph neural networks.
In Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery &
Data Mining, pages 430–438, 2020a.

H. Yuan, H. Yu, S. Gui, and S. Ji. Explainability in Graph Neural Networks: A Taxonomic Survey.
ArXiv, 2020b.

H. Yuan, H. Yu, J. Wang, K. Li, and S. Ji. On Explainability of Graph Neural Networks via Subgraph
Explorations. In International Conference on Machine Learning (ICML), 2021.

12

Published as a conference paper at ICLR 2024

M. D. Zeiler and R. Fergus. Visualizing and understanding convolutional networks. In European
conference on computer vision (ECCV), 2014.

Z. Zhang, Q. Liu, H. Wang, C. Lu, and C. Lee. ProtGNN: Towards Self-Explaining Graph Neural
Networks. In AAAI Conference on Artificial Intelligence (AAAI), 2021.

13

Published as a conference paper at ICLR 2024

A MORE GRAPHCHEF RECIPE ANALYSES

A.1 MUTAG

(a) (b) (c)

(d) (e)

Figure 6: GraphChef recipe for MUTAG. Table 5 shows an interpretation for all states in all layers.
For a graph to be mutagenic, it requires at least twelve atoms other than O and eight atoms that 1)
have three or more non-O bindings 2) are O atoms, 3) bound to O2 atoms.

Table 5 shows an incremental interpretation (from Encoder to Decoder) of the states in all layers
that are shown in the trees the GraphChef recipe in Figure 6 for the MUTAG dataset. The encoder
shows that graph size is important (we need at least twelve non-O atoms) and O atoms and their
connectivity play a role. We need at least eight nodes that 1) have three non-O bindings 2) are
O atoms 3) are connected to O2 groups. The last two conditions highlight why NO2 groups are
associated with mutagenicty: The N atom fulfills the last condition and the two O atoms fulfill the
other condition. However, in the MUTAG (Debnath et al., 1991) dataset, these structures are not
sufficient for mutagenic molecules.

14

Published as a conference paper at ICLR 2024

Layer State Decision Rule Interpretation
Encoder 3 All nodes receive state 3 GraphChef drops atom types (and

rediscovers them later via degrees).
Layer 0 1 Less than two neighbors Degree 1 nodes, H atoms are im-

plicit so these represent O atoms.
Layer 0 3 At least two neighbors Nodes with at least two electron

bindings, predominantly C and N.
Layer 1 0 More neighbors in state 1

than state 3
Atoms with majorly bindings to O
atoms.

Layer 1 5 At least as many state 3
as state 1 neighbors

Atoms not connected to O, or
mainly to other atom types.

Layer 2 0 No neighbor in state 5 Rediscovers almost all O atoms, es-
pecially those in O2 groups. They
have one neighbor each and that
neighbor has bindings to mostly O.

Layer 2 3 At least one neighbor in
state 5

Atoms other than O and some O
atmons that are not in O2 groups.

Layer 3 1 1) Exactly two state 3
neighbors 2) Nodes with
no state 3 neighbors 3)
Nodes with 1 state 3
neighbor but at most state
0 neighbor

1+3) Nodes with at most one O
neighbor and at most two other
neighbors 2) Nodes with only O
neighbors.

Layer 3 5 1) Nodes with at least 3
state 3 neighbors 2) not
state 3 nodes 3) state 3
nodes with one state 3
and 2 state 0 neighbors

1) Atoms with at least 3 connec-
tions to atoms other than O 2) O
atmons 3) atoms connected to O2

groups.

Decoder Mutagenic At least twelve atoms in
layer 2 state 3 and at
least eight nodesin layer
3 state 5.

At least twelve atoms other than O
and 1) Atoms with at least 3 con-
nections to atoms other than O 2) O
atmons 3) atoms connected to O2

groups.
Decoder Not Mutagenic otherwise otherwise

Table 5: Analysis of the GraphChef recipe in Figure 6 for the MUTAG dataset. For a graph to be
mutagenic, it requires at least twelve atoms other than O and eight atoms that 1) have three or more
non-O bindings 2) are O atoms, 3) bound to O2 atoms.

15

Published as a conference paper at ICLR 2024

A.2 BA-2MOTIFS

(a) (b) (c) (d) (e)

Figure 7: Layers of GraphChef for the decision process on BA-2MOTIFS. Table 6 shows an
interpretation for all states in all layers. The model learns to identify house nodes and classify
such graphs. Cycle graphs are graphs which are not house graphs, thus solved with the bias term.
Explanation scores for cycles are therefore off (e).

Layer State Decision Rule Interpretation
Encoder 3 All nodes No node features available for differenti-

ation.
Layer 0 2 Two state 3 neighbors Degree 2 nodes.
Layer 0 4 Three or more state 3 neigh-

bors
Degree 3 or higher nodes.

Layer 0 5 Less than two neighbors Degree 1 nodes (graphs are connected).
Layer 1 0 State 2 nodes Degree 2 nodes.
Layer 1 3 State 5 nodes Degree 1 nodes.
Layer 1 5 Neither state 2 nor 5 Degree 3 or higher nodes.
Layer 2 1 Not state 3 nodes with more

state 5 than state 3 neighbors.
House candidates: nodes with a degree
of at least 2, with at least one degree
3 or higher neighbor and no degree 1
neighbor.

Layer 2 4 State 3 nodes Degree 1 nodes.
Layer 2 5 Not state 3 nodes with state 5

neighbors
At least degree 2 nodes but connected to
at least degree 1 neighbor (which house
nodes do not have).

Layer 3 2 More state 4 than state 5 neigh-
bors

Nodes that have majorly degree 1 neigh-
bors (not house nodes).

Layer 3 3 At least two state 1 neighbors House nodes: connected to two more
house candidates.

Layer 3 4 At most one state 1 neighbor Nodes connected to at most one house
candidate (wrong for every node in the
house).

Decoder House At least five nodes in layer 3
state 3.

Graphs with at least five house nodes.

Decoder Cycle otherwise otherwise.

Table 6: Analysis of the GraphChef recipe in Figure 7 for the BA-Motifs dataset. The model learns to
identify house nodes and classify such graphs. Cycle graphs are graphs which are not house graphs,
thus solved with the bias term.

Table 6 shows an interpretations of the states in all layers for the GraphChef recipe for BA-2MOTIFS.
Figure 6 shows the recipe. GraphChef only learns to identify house nodes. The important step is state
1 in the second layer. Due to the Barabasi-Alert base graph structure, house nodes stand out with
their degree of 2 or 3. The next layer confirms the house as house candidates that are connected to
house candidates. The model does not learn about cycles at all, Cycles are “not houses”. We can
see that GraphChef found and exploited the pitfall about bias terms noted by Faber et al. (2020);
Himmelhuber et al. (2021). Figure 7e shows that we cannot trust explanation scores for cycles.

16

Published as a conference paper at ICLR 2024

A.3 TREE CYCLE

(a) (b) (c) (d) (e)

Figure 8: GraphChef recipe for TREE-CYCLE. Table 6 shows an interpretation for all states in all
layers. A degree check for degree 2 nodes finds the cycles quickly without considering the whole
structure. Therefore, the explanation scores for the cycles are off (e).

Layer State Decision Rule Interpretation
Encoder 0 All nodes No node features available for differenti-

ation.
Layer 0 0 Three or more state 0 neigh-

bors
Degree 3 or higher nodes (inner nodes in
the tree, cycle node connecting the cycle
to the tree).

Layer 0 2 Two neighbors in state 0 Degree 2 nodes (root node and cycles
nodes).

Layer 0 3 One or zero neighbors in state
0

Degree 1 nodes (leaves in the connected
graph).

Layer 1 1 At least as many state 3 as
state 2 neighbors

As least as many leaves as cycle neigh-
bors (true for inner nodes as well having
zero of both).

Layer 1 3 More state 2 than state 3 neigh-
bors

Most cycle nodes, nodes connected to
degree 2 nodes.

Layer 2 4 Not previous state 3 and at
least one state 1 neighbor

Not already a cycle node and connected
to a non-cycle node.

Layer 2 1 1) Previous state 3 or 2) no
state 1 neighbors

1) already a cycle node or 2) only con-
nected to cycle nodes.

Decoder Cycle In layer 2 state 1 See previous state.
Decoder No Cycle otherwise otherwise.

Table 7: Analysis of the GraphChef recipe in Figure 8 for the Tree-Cycle dataset. The base graph
contains only one degree two node that is not part of a cycle. A degree check quickly finds the cycles.

Table 7 shows an interpretations of the states in all layers for the GraphChef recipe for BA-2Motifs.
Figure 8 shows the recipe. Due to the base graph being a binary tree, degree two nodes (especially
those connected to degree two nodes) are a strong indicator for cycles. For almost all nodes,
GraphChef can identify if they are part of the cycle after two layers. Therefore, we do not even need
the whole cycle. This is consistent with the previous analysis on Tree-Cycle that the whole cycle is
not necessary (Faber et al., 2020; Himmelhuber et al., 2021). Figure 8e shows that we cannot trust
explanation scores for cycles since they find only a subset of the motif.

17

Published as a conference paper at ICLR 2024

A.4 TREE GRID

(a) (b) (c)

(d) (e) (f)

Figure 9: GraphChef recipe for TREE-GRID. Table 8 shows an interpretation for all states in all
layers. A degree check for degree 2 nodes find the corner nodes in the grid, after which we explore
the remaining motif.

The Tree-Grid (Ying et al., 2019) dataset is similar to the Tree-Cycles dataset we discussed in the
main body of the paper. The base graph is a balanced binary tree to which we append 3× 3 grids. As
in the Tree-Cycles example, there are (apart from the root node) no other nodes with degree 2 which
makes bootstrapping the grid discovery easier. As in the Tree-Cycles example, a GNN does not need
to see the whole grid to make a prediction. Table 8 shows the interpretation of the layers and states of
GraphChef shown in Figure A.4. The corner nodes in the grid can be quickly found with a degree
check. The remaining grid can be found by exploring the neighborhood.

Some nodes can identify that they are part of the grid in just three layers — importantly the corner
nodes generally belong to this group. This means that these nodes do not need to consider the opposite
corner node at distance 4. GraphChef does not include this node in its explanation. This is consistent
with the explanation accuracy in Table 2: GraphChef achieves a bit more than 8

9 which means that
one node is missing.

18

Published as a conference paper at ICLR 2024

Layer State Decision Rule Interpretation
Encoder 0 All nodes No node features available for differenti-

ation.
Layer 0 1 Three or more state 0 neigh-

bors
Degree 3 or higher nodes. (Inner tree
nodes and grid nodes except corners)

Layer 0 2 Less than two state 0 neigh-
bors

Degree 1 nodes (leaves in the tree).

Layer 0 4 Two state 0 neighbors Degree 2 nodes (root node, corner nodes
in the grid).

Layer 1 0 At least as many state 2 as
state 4 neighbors and at least
two state 1 neighbors

Inner nodes in the tree and grid, except
parents of leaf nodes.

Layer 1 1 More state 4 than state 2 neigh-
bors

Nodes connected to the root or grid cor-
ners.

Layer 1 4 At least as many state 2 as
state 4 neighbors and at most
one state 1 neighbors

Leaves and their parent nodes.

Layer 2 1 Previous state 4 nodes Leaves and their parents.
Layer 2 2 Previous state 1 nodes Nodes connected to the root or grid cor-

ners.
Layer 2 3 Otherwise Inner nodes in the tree and grid, except

parents of leaf nodes.
Layer 3 3 More state 2 than state 1 neigh-

bors
More corner and root nodes in the dis-
tance 2 (can be the node itself) than
leaves. This captures corner and cen-
ter nodes in the grid

Layer 3 4 At least as many state 1 as
state 2 neighbors.

Most nodes since they are connected to
leaves or not to the root.

Layer 4 2 At least two state 3 neighbors Nodes with two grid neighbors, finding
the remaining grid nodes.

Layer 4 4 At most one state 3 neighbor Nodes with at most one grid neighbor.
Decoder Grid Layer 3 state 3 or layer 4 state

2
Corner or center grid node or nodes con-
nected to two such nodes.

Table 8: Analysis of the GraphChef recipe in Figure A.4 for the Tree-Grid dataset. The base graph
contains only one degree two node that is not part of a cycle. A degree check for two quickly finds
the corner nodes of grids as a starting point to discover the motif.

19

Published as a conference paper at ICLR 2024

A.5 BA-SHAPES

(a) (b) (c)

(d) (e) (f)

Figure 10: GraphChef recipe for BA-SHAPES. Table 8 shows an interpretation for all states in all
layers. Degrees below 4 connected to more nodes with such degrees finds the general house. Middle
nodes are degree 3 in this structure; Top nodes are connected to both middle nodes; Bottom nodes are
connected to one.

Let us now look at the BA-SHAPES dataset to classify each node with its position in a house motif,
or if the node is part of the Barabasi-Albert base graph. Nodes in the base graph generally have a
high degree, we can find house nodes as being connected to almost no high-degree nodes, but only
among each other. From there we subdivide house nodes: The middle nodes have 3 house neighbors,
the top node is connected to both the middle nodes, and the bottom nodes only to one.

20

Published as a conference paper at ICLR 2024

Layer State Decision Rule Interpretation
Encoder 0 All nodes No node features available for dif-

ferentiation.
Layer 0 0 Less than four state 0

neighbors
Degree 3 or lower nodes. (lower
degree)

Layer 0 1 At least four state 0
neighbors

Degree 4 or higher nodes. (high
degree)

Layer 1 2 At most 3 neighbors of
state 1

At most three high-degree neigh-
bors. (House candidates, all nodes
in the house have lower degree, the
basegraph has many high-degree
nodes).

Layer 1 4 At least four neighbors in
state 1

At least four high-degree neigh-
bors.

Layer 2 0 Three state 2 neighbors Three house candidates in the
neighborhood (middle nodes in the
house).

Layer 2 1 At most state 2 neighbors Top or bottom of the house.
Layer 2 4 Previous state 4 nodes At least four high-degree neigh-

bors.
Layer 3 0 At most one state 3 neigh-

bor
Nodes connected to zero or one
middle house node.

Layer 3 3 Previous state 0 Middle house nodes.
Layer 3 4 At least two state 0 neigh-

bors
Top house nodes.

Layer 4 0 At least one state 3 neigh-
bor and previous state 0

Bottom house node: nodes con-
nected to one house middle node.

Layer 4 1 No state 3 neighbors Nodes not connected to the house.
Layer 4 2 At least one state 3 neigh-

bor but not previous state
0

Top node in the house.

Decoder Not in house Layer 2 state 4 At least four high-degree neigh-
bors.

Decoder Middle of House Not above and layer 3
state 3

Three house candidates in the
neighborhood.

Decoder Bottom of House Not above and layer 4
state 0

Nodes connected to one house mid-
dle node.

Decoder Top of House Otherwise (but
GraphChef could
have used layer 3 state 4)

Otherwise (or nodes connected to
two house middle nodes).

Table 9: Analysis of the GraphChef recipe in Figure A.5 for the BA-Shapes dataset. The base graph
has many edges, house nodes stand out by having a degree of 3 or lower and being connected to such
nodes.

21

Published as a conference paper at ICLR 2024

B GRAPHCHEF ON DATASETS WITH MANY INPUT FEATURES

GraphChef

Dataset Features GIN Differentiable No pruning Lossless pruning

CORA 1433 0.87±0.02 0.82±0.03 0.69±0.04 0.68±0.03
CiteSeer 3703 0.77±0.01 0.70±0.03 0.61±0.04 0.61±0.02
PubMed 500 0.88±0.01 0.87±0.01 0.85±0.01 0.85±0.01
OBGN-Arxiv 128 0.68±0.02* 0.68±0.01 0.28±0.11 -

Table 10: GraphChef results for citation datasets with high-degree counts. *Since the dataset has 40
classes, we use a state-size of 50 for GraphChef variants and 128 wide embeddings for GIN.

In the following, we want to discuss GraphChef on high-dimensional datasets such as Cora (1433)
features. Table 10 shows a comparison of GIN, dish GNN and GraphChef similar to Table 1a. The
results are mixed: on Pubmed, GraphChef performs comparable to GIN, on Cora there is a small
drop for dish GNN but a significant drop when converting to trees. For CiteSeer, both dish GNN
and converting to trees cause clear drops in accuracy. We see two factors that make this dataset
challenging: Large feature spaces make it harder to reduce to a categorical state. For example, for
the Cora dataset, the encoder needs to reduce from 1433 to 10 features. This effect increases in
GraphChef when we limit the number of leaves: Having 100 decision leaves means that a tree can
have 99 decision nodes and look at most at 99 features. But such trees are already impractical to
interpret. We found that even after pruning, trees often contain long paths of depth 20 or more.
The problems aggravate on the larger OBGN-Arxiv dataset: dish GNN performs decently with a
drop comparable to CiteSeer, but GraphChef drops drastically in accuracy. Furthermore, this dataset
reveals the scalability limits for GraphChef’s pruning method: Pruning requires the number of leaves
squared many runs over the dataset and does not scale to this dataset.

Therefore, we believe that handling such datasets requires a different approach. In future work, we
imagine that these issues could be addressed through approaches such as PCA, clustering, or special
MLP construction techniques (Wu et al., 2017a; Schaaf et al., 2019) to reduce the input space without
breaking the interpretability chain before applying GraphChef.

22

Published as a conference paper at ICLR 2024

C GENERATING EXPLANATIONS

In this section, we describe in detail how we can use GraphChef recipes to derive importance scores
for the classification of a single node/graph. As in many existing explanation methods, these scores
form a heatmap over all nodes to identify important inputs.

Formally, we are going to compute scores of the form RN×S×N where N is the number of nodes and
S the number of categorical states. For simplicity, we assume that every layer has the same number
of states. For one node u and one state s the explanation e(u, s) is a real-valued vector that assigns
every other node v an importance how much v contributes to u being in state s. We accumulate the
importance over layers.

The importance of every node u for the encoder layer is initialized as e(u, v) = 1u for every state v,
where 1u is a vector that is 1 at the index of u and 0 everywhere else. In other words, every node is
its own explanation after the encoder.

To compute the explanation update for node u in a GraphChef layer, we investigate its decision tree.
First, we compute the Tree-Shap values for u in the decision tree. These values reveal how important
each decision feature in the tree is for predicting u; a value of 0 corresponds to an unused decision.
Depending on the type of decision feature — a state feature, a message feature, or a delta feature (see
possible cases in Figure 3) — we will add explanation to nodes differently. We handle each decision
feature independently and weigh it with its Tree-Shap value.

State features. There are S possible state features that can each lead to S different new states.
This yields S × S Tree-Shap values that we denote with τS(s, s

′). To compute explanations, we
additionally require the indicator variable sign(s) that is 1 if u is in state s at the start of the layer,
and −1 otherwise. This indicator allows us to measure negative evidence that u is not in a certain
state. The “propagation” of state features is then easy, since all importance stays with the node.

σ(u, s′) =
∑
s∈S

τS(s, s
′) · e(u, s) · sign(s)

Message features. There are also S message features that can lead to S different states; thus, we
have S × S Tree-Shap values τM (s, s′). Computing the explanations for a neighbor feature gives
importance to each neighbor in the state s, normalized by the number of neighbors. Let N(s) denote
u’s neighbors in state s:

µ(u, s′) =
∑
s∈S

τM (s, s′) ·
∑

v∈N(s)

e(v, s)

|N(s)|
.

Delta features. We have S2 − S delta features where (s, s′) encodes the feature that there are more
neighbors in state s than neighbors in s′. Here, we use the Tree-Shap values τ∆(s, s′, s′′). We also
need the indicator variables (1>(s,s′)) that are 1 if indeed more neighbors are in the state s rather than
s′ and 0 if not. Now, explanation for delta features is similar to that of neighborhood features, where
the majority class contribution is positive and the minority class contribution is negative:

δ(u, s′′) =
∑
s∈S

∑
s′ ̸=s∈S

τ∆(s, s
′, s′′)

∑
v∈N(s) e(v, s)−

∑
v∈N(s′) e(v, s

′)

|N(s)|+ |N(s′)|
· 1>(s,s′).

These explanations are added to those of the previous layers:

e(u, s) = e(us, s) + σ(u, s) + µ(u, s) + δ(u, s).

Decoder layer The decoder layer is slightly special since it uses skip connections. For node
classification, we directly concatenate all intermediate features and use the same computation scheme
to compute the final explanations. For graph classification, we additionally need to pool the nodes.
We do this layer-wise and supply the decoder layer with per-layer node counts per state. The decoder
can then use counting and comparison features similar to M and ∆ features in the GraphChef layers.
The only difference is that instead of propagating the explanation to neighbors, we now need to
propagate it to all of the nodes in the graph that were in the corresponding states.

23

Published as a conference paper at ICLR 2024

D DATASETS

D.1 SYNTHETIC DATASETS

• Infection Faber et al. (2021) is a synthetic node classification dataset. This dataset consists
of randomly generated directed graphs, where each node can be healthy or infected. The
classification task predicts the length of the shortest directed path from an infected node.

• Negative Evidence Faber et al. (2021) is a synthetic node classification dataset. A random
graph is created with ten red nodes, ten blue nodes, and 1980 white nodes. The task is to
determine whether the white nodes have more red or blue neighbors.

• BA Shapes Ying et al. (2019) is a synthetic node classification dataset. Each graph contains
a Barabasi-Albert (BA) base graph and several house-like motifs attached to random nodes
of the base graph. The node labels are determined by the node’s position in the house motif
or base graph.

• Tree Cycle Ying et al. (2019) is a synthetic node classification dataset. Each graph contains
an 8-level balanced binary tree and a six-node cycle motif attached to random nodes of the
tree. The classification task predicts whether the nodes are part of the motif or tree.

• Tree Grid Ying et al. (2019) is a synthetic node classification dataset. Each graph contains
an 8-level balanced binary tree and a 3-by-3 grid motif attached to random nodes of the tree.
The classification task predicts whether the nodes are part of the motif or the tree.

• BA 2Motifs Luo et al. (2020) is a synthetic graph classification dataset. Barabasi-Albert
graphs are used as the base graph. Half of the graphs have a house-like motif attached to a
random node, and the other half have a five-node cycle. The prediction task is to classify
each graph on whether it contains a house or a cycle.

(a) Infection Input (b) Infection Prediciton (c) Saturation Input (d) Saturation Prediciton

(e) BA Shapes Input (f) BA Shapes Prediciton (g) Tree Grid Input (h) Tree Grid Prediction

(i) BA 2Montifs - House
Input

(j) BA 2Montifs - Cycle
Input

Figure 11: Synthetic Benchmarks - Example Graphs

24

Published as a conference paper at ICLR 2024

Dataset Graphs Classes Avg. Nodes Avg. Edges Features
Infection 1 7 1000 3973 2
Negative Evidence 1 2 2000 102394 3
BA Shapes 1 4 700 4110 0
Tree Cycle 1 2 871 1942 0
Tree Grid 1 2 1231 3130 0
BA 2Motifs 1000 2 25 50.96 0

Table 11: Statistics of Synthetic Datasets

D.2 REAL-WORLD DATASETS

• MUTAG Debnath et al. (1991) is a molecule graph classification dataset. Each graph repre-
sents a nitroaromatic compound, and the goal is to predict its mutagenicity in Salmonella
typhimurium. Mutagenicity is the ability of a compound to permanently change the genetic
material, usually DNA, in an organism and therefore increase the frequency of mutations.
The nodes in the graph represent atoms and are labeled by atom type. The edges represent
bonds between atoms.

• Mutagenicity Kazius et al. (2005) is a molecular graph classification dataset. Each graph
represents the chemical compound of a drug, and the goal is to predict its mutagenicity. The
nodes in the graph represent atoms and are labeled by atom type. The edges represent bonds
between atoms.

• BBBP Wu et al. (2017b) is a molecule graph classification dataset. Each graph represents the
chemical compound of a drug and the goal is to predict its blood-brain barrier permeability.
The nodes in the graph represent atoms and are labeled by atom type. The edges represent
bonds between atoms.

• PROTEINS Borgwardt et al. (2005) is a protein graph classification dataset. Each graph
represents a protein that is classified as an enzyme or not as an enzyme. The nodes represent
the amino acids, and an edge connects two nodes if they are less than 6 angstroms apart.

• REDDIT BINARY Borgwardt et al. (2005) is a social graph classification dataset. Each
graph represents the comment thread of a post on a subreddit. The nodes in the graph
represent users, and there is an edge between users if one responded to at least one of the
other’s comments. A graph is labeled according to whether it belongs to a question-/answer-
based or a discussion-based subreddit.

• IMDB BINARY Borgwardt et al. (2005) is a social graph classification dataset. Each
graph represents the ego network of an actor/actress. In each graph, the nodes represent
actors/actresses, and there is an edge between them if they appear in the same film. A graph
is labeled according to whether the actor/actress belongs to the Action or Romance genre.

• COLLAB Borgwardt et al. (2005) is a social graph classification dataset. A graph represents
a researcher’s ego network. The researcher and his collaborators are nodes, and an edge
indicates collaboration between two researchers. A graph is labeled according to whether
the researcher belongs to the field of high-energy physics, condensed matter physics, or
astrophysics.

• Cora, CiteSeer, and PubMed are popular citation networks (Yang et al., 2018b). Nodes are
papers, and citations are edges. Nodes contain features that represent words of their contents
and are labeled by subfields.

25

Published as a conference paper at ICLR 2024

(a) MUTAG Input (b) Mutagenicity Input (c) PROTEINS Input

(d) Reddit Binary
Discussion

(e) Reddit Binary Q/A (f) IMDB Binary Input (g) COLLAB Input

Figure 12: Real-world benchmarks - Example graphs

Dataset Graphs Classes Avg. Nodes Avg. Edges Features
MUTAG 188 2 17.93 39.59 7
Mutagenicity 4337 2 30.32 61.54 14
BBBP 2039 2 24.06 51.91 9
PROTEINS 1113 2 39.06 145.63 3
REDDIT BINARY 2000 2 429.63 995.51 0
IMDB BINARY 1000 2 19.77 193.06 0
COLLAB 5000 3 74.49 4914.43 0
Cora 1 7 2485 5069 1433
CiteSeer 1 6 2110 2668 3703
PubMed 1 3 19717 44324 500

Table 12: Statistics of Real-World Datasets

26

Published as a conference paper at ICLR 2024

E EXPERIMENT SETUP

We do a 10−fold cross-validation of the data with different splits and train both GraphChef and a
baseline GIN architecture. GNNs are trained on the training set for 1500 epochs, allowing early
stopping on the validation loss with patience of 100. Each split uses early stopping on the validation
score. Both GNNs use a 2− layer MLP for the update function, with batch normalization (Ioffe and
Szegedy, 2015) and ReLu (Nair and Hinton, 2010) in between the two linear layers. We use 5 layers
of graph convolution. GIN uses a hidden dimension of 16, GraphChef uses a state space of 10. We
also further divide the training set for GraphChef to keep a holdout set for pruning decision trees.
After we train dish GNN with gradient descent, we distill the MLPs into decision trees. Each tree is
limited to having a maximum of 100 nodes.

GraphChef allows us to self-tune some hyperparameters. After training, we can inspect how many
layers and categorical states are actually used in the recipe for a dataset. Table 13 shows the layers
and states used for each dataset. After training, we can inspect the recipes from GraphChef and
validate if all states and layers are necessary. If we find that the recipe uses fewer layers or states, we
retrain with that number of layers or states. Table 13 shows the number of layers and states that we
find per dataset. A full model is used for GIN.

Layers States

Infection 5 6
Negative 1 3

BA-Shapes 5 5
Tree-Cycles 5 5
Tree-Grid 5 5

BA-2Motifs 4 6

MUTAG 4 6
Mutagenicity 3 8

BBBP 3 5
PROTEINS 3 5

IMDB-B 3 5
REDDIT-B 2 5
COLLAB 3 8

Table 13: Tuned hyperparameters through GraphChef self-inspection

27

Published as a conference paper at ICLR 2024

F USING THE TOOL

Figure 13: Initial page for the web tool. We can see the decision trees for GraphChef per dataset and
which node for a graph is in what state. We can switch layers, graphs, and datasets. We can also see
the test accuracy for the current setting and choose an amount of lossy pruning. with the slider.

An example instance of the tool is deployed and available via Netlify2 and can be accessed under
the link https://interpretable-gnn.netlify.app/. The supplementary material also
contains code to host the interface yourself, in case you want to try variations of GraphChef. In the
backend, we use PyTorch (Paszke et al., 2019)3 and PyTorch Geometric (Fey and Lenssen, 2019)4 to
train GraphChef and SKLearn(Pedregosa et al., 2011)5 to train the decision trees.

The tool is built with React, in particular the Ant Design library.6 We visualize graphs with the
Graphin library.7 The interface is a single page that will look similar to Figure 13.

The largest part of the interface is taken up by two different panels at the top. In the right panel, you
can see the decision tree for the currently selected layer. The trees use the three branching options
from Figure 3. In the interface, evaluating the branching to true means taking the left path (this is
opposite to Figure 3, which we will flip). In the left panel, you can see an example graph and which
nodes end up in which state after this layer (on the bottom left you can toggle to see the input states
instead). This panel does not show the full graph (most graphs in the datasets are prohibitively large),
but rather an excerpt around an interesting region. Directly below these two graphics, you have the
option to switch between layers by clicking on the respective bubble.

In the bottom right, you can switch to a different graph in the same dataset or to a different dataset. In
the center, you can see the accuracy of GraphChef with the displayed layers. The slider allows one to
apply the lossy pruning from Section 3.3 and the accuracy values update to the selected pruning level.

2https://netlify.com/
3https://github.com/pytorch/pytorch
4https://github.com/pyg-team/pytorch_geometric
5https://github.com/scikit-learn/scikit-learn
6https://github.com/ant-design/ant-design/
7https://github.com/antvis/Graphin

28

https://interpretable-gnn.netlify.app/
https://netlify.com/
https://github.com/pytorch/pytorch
https://github.com/pyg-team/pytorch_geometric
https://github.com/scikit-learn/scikit-learn
https://github.com/ant-design/ant-design/
https://github.com/antvis/Graphin

Published as a conference paper at ICLR 2024

The interface also allows us to examine a single node more closely by clicking on it (see Figure 14;
here we clicked on the blue node on the very right). Selecting reveals two things: In the graph panel,
you can see the explanation scores from Section C for this node in this layer. In the tree panel, you
can see the decision path in the tree for this node. This is particularly helpful if multiple leaves in the
tree would lead to the same output state as in this example.

Figure 14: Interface when clicking on a node for closer examination. We can see node-level
importance scores for this node on the left and the decision path taken on the right. Two paths end
in the blue state, shown by the red boxes. The path the node takes is highlighted, the other path is
blurred out.

29

	Introduction
	Related Work
	Explanation methods for GNNs
	Explanation properties and benchmarks.
	Combining decision trees with neural networks

	The GraphChef Model
	From GIN to dish
	From dish to GraphChef
	Pruning GraphChef

	Experiments
	Experiment setup
	Quantitative Results
	Qualitative Results

	Conclusion, Limitations, and Future Work
	More Graphchef Recipe Analyses
	MUTAG
	BA-2Motifs
	Tree Cycle
	Tree Grid
	BA-Shapes

	GraphChef on datasets with many input features
	Generating Explanations
	Datasets
	Synthetic Datasets
	Real-World Datasets

	Experiment Setup
	Using the tool

