Ad Hoc Networks: Pushing Mobile and Wireless Communication (Since 1970)

Roger Wattenhofer
Why Do You Study Ad Hoc Networks?
CHECKLIST

- important applications
- it’s fun
- for the money
CHECKLIST, really

- mobile
- wireless
- energy
Mobile Networks?
Distributed Control!
Complexity Theory

Can a Computer Solve Problem P in Time t?
Distributed

Complexity Theory

Network

Can a Computer Solve
Problem \(P \) in Time \(t \)?
Network
Distributed
Complexity Theory

Network
Can a Computer Solve
Problem P in Time t?
Distributed (Message-Passing) Algorithms

• Nodes are agents with unique ID’s that can communicate with neighbors by sending messages. In each synchronous round, every node can send a (different) message to each neighbor.
Distributed (Message-Passing) Algorithms

- Nodes are agents with unique ID’s that can communicate with neighbors by sending messages. In each synchronous round, every node can send a (different) message to each neighbor.

 each round:
 every node:
 1. send msgs
 2. rcv msgs
 3. compute

- Distributed (Time) Complexity: How many rounds does problem take?
An Example

each round:
every node:
1. send msgs
2. rcv msgs
3. compute
How Many Nodes in Network?

each round:
 every node:
 1. send msgs
 2. rcv msgs
 3. compute
How Many Nodes in Network?

each round:
every node:
1. send msgs
2. rcv msgs
3. compute
How Many Nodes in Network?

each round:
every node:
1. send msgs
2. rcv msgs
3. compute
How Many Nodes in Network?

With a simple flooding/echo process, a network can find the number of nodes in time $O(D)$, where D is the diameter (size) of the network.
Diameter of Network?

- **Distance** between two nodes = Number of hops of shortest path
Diameter of Network?

- **Distance** between two nodes = Number of hops of shortest path
• **Distance** between two nodes = Number of hops of shortest path
• **Diameter** of network = Maximum distance, between any two nodes
Diameter of Network?
Networks Cannot Compute Their Diameter in Sublinear Time!

(even if diameter is just a small constant)

Pair of rows connected neither left nor right? Communication complexity:
Transmit $\Theta(n^2)$ information over $O(n)$ edges $\rightarrow \Omega(n)$ time!

[Frischknecht, Holzer, W, 2012]
Distributed Complexity Classification

- $1 \leq \log^* n \leq \text{polylog } n \leq D \leq \text{poly } n$

1. $\log^* n$
 - e.g., dominating set approximation in planar graphs
 - MIS, approx. of dominating set, vertex cover, ...
 - various problems in growth-bounded graphs
 - count, sum, spanning tree, ...

2. polylog n
 - diameter, MST, verification of e.g. spanning tree, ...

3. D

4. poly n

e.g., [Kuhn, Moscibroda, W, 2014]
Sublinear Algorithms
Self-Assembly
Self-Stabilization
Distributed Complexity
Applications e.g. Multi-Core
Sublinear Algorithms
Dynamic (e.g. Ad Hoc) Networks
Sublinear Algorithms

Self-Stabilization

Distributed Complexity

Applications e.g. Multi-Core

Dynamic (e.g. Ad Hoc) Networks

Sublinear Algorithms

Self-Stabilization

Distributed Complexity

Applications e.g. Multi-Core

Dynamic (e.g. Ad Hoc) Networks
Wireless Communication?
Capacity!
Physical (SINR) Model
Signal-To-Interference-Plus-Noise Ratio (SINR) Formula

\[
\frac{P_u}{d(u,v)\alpha} \geq \frac{\sum_{w \in V \setminus \{u\}} \frac{P_w}{d(w,v)\alpha}}{N + \sum_{w \in V \setminus \{u\}} \frac{P_w}{d(w,v)\alpha}} \beta
\]

- Power level of sender \(u \)
- Received signal power from sender
- Path-loss exponent
- Noise
- Received signal power from all other nodes (= interference)
- Distance between two nodes
- Minimum signal-to-interference ratio
Example: Protocol vs. Physical Model

Assume a single frequency (and no fancy decoding techniques!)

Is spatial reuse possible?

NO Protocol Model

YES With power control

Let $\alpha=3$, $\beta=3$, and $N=10nW$

Transmission powers: $P_B=-15$ dBm and $P_A=1$ dBm

SINR of A at D:
$$\frac{1.26mW/(7m)^3}{0.01\mu W + 31.6\mu W/(3m)^3} \approx 3.11 \geq \beta$$

SINR of B at C:
$$\frac{31.6\mu W/(1m)^3}{0.01\mu W + 1.26mW/(5m)^3} \approx 3.13 \geq \beta$$
This works in practice

... even with very simple hardware

Time for transmitting 20’000 packets:

<table>
<thead>
<tr>
<th></th>
<th>Time required</th>
<th></th>
<th></th>
<th>Messages received</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>standard MAC</td>
<td>“SINR-MAC”</td>
<td></td>
<td>standard MAC</td>
</tr>
<tr>
<td>Node u_1</td>
<td>721s</td>
<td>267s</td>
<td>Node u_4</td>
<td>19999</td>
</tr>
<tr>
<td>Node u_2</td>
<td>778s</td>
<td>268s</td>
<td>Node u_5</td>
<td>18784</td>
</tr>
<tr>
<td>Node u_3</td>
<td>780s</td>
<td>270s</td>
<td>Node u_6</td>
<td>16519</td>
</tr>
</tbody>
</table>

Speed-up is almost a factor 3

Possible Application – Hotspots in WLAN
Possible Application – Hotspots in WLAN
The Capacity of a Network

(How many concurrent wireless transmissions can you have)
Convergecast Capacity in Wireless (Sensor) Networks

<table>
<thead>
<tr>
<th>Topology</th>
<th>Max. rate in arbitrary, worst-case deployment</th>
<th>Max. rate in random, uniform deployment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Protocol Model</td>
<td>$\Theta(1/n)$</td>
<td>$\Theta(1/\log n)$</td>
</tr>
<tr>
<td>Physical Model (power control)</td>
<td>$\Omega(1/\log^3 n)$</td>
<td>$\Omega(1/\log n)$</td>
</tr>
</tbody>
</table>

- [Moscibroda, W, 2006] (Worst-Case Capacity)
- [Giridhar, Kumar, 2005] (Classic Capacity)
Capacity of a Network

Real Capacity

- How much information can be transmitted in any network?

Classic Capacity
- How much information can be transmitted in nice networks?

Worst-Case Capacity
- How much information can be transmitted in nasty networks?
Core Capacity Problems

Given a set of arbitrary communication links

One-Shot Problem
Find the maximum size feasible subset of links

Scheduling Problem
Partition the links into fewest possible slots, to minimize time
Open problem: Only $O(\log n)$ approximation using the one-shot subroutine
Energy Efficiency?
Clock Synchronization!
Clock Synchronization Example: Dozer

- Multi-hop sensor network with duty cycling
- 10 years of network life-time, mean energy consumption: 0.066mW
- High availability, reliability (99.999%)
- Many different applications use Dozer: TinyNode, PermaSense, etc.

[Burri, von Rickenbach, W, 2007]
Problem: Physical Reality

\[\text{clock rate} \]

\[\begin{align*}
1 + \varepsilon \\
1 - \varepsilon
\end{align*} \]

message delay

![Graph showing message delay distribution](image_url)
Clock Synchronization in Theory?

Given a communication network

1. Each node equipped with hardware clock with drift
2. Message delays with jitter

Goal: Synchronize Clocks ("Logical Clocks")

- Both global and local synchronization!
Time Must Behave!

- Time (logical clocks) should not be allowed to stand still or jump
Local Skew

Tree-based Algorithms
e.g. FTSP

Neighborhood Algorithms
e.g. GTSP

Bad local skew
Synchronization Algorithms: An Example ("A^\text{max}\)"

- **Question:** How to update the logical clock based on the messages from the neighbors?

- **Idea:** Minimizing the skew to the **fastest** neighbor
 - Set clock to **maximum** clock value you know, forward new values immediately

- **First all messages are slow (1), then suddenly all messages are fast (0)!”

![Diagram showing time progression and clock values](image)
Local Skew: Overview of Results

- Everybody’s expectation, 10 years ago („solved“)
- Lower bound of \(\log D / \log \log D \) [Fan & Lynch, PODC 2004]
- Kappa algorithm [Lenzen et al., FOCS 2008]
- Tight lower bound [Lenzen et al., PODC 2009]
- Blocking algorithm [Locher et al., DISC 2006]
- All natural algorithms [Locher et al., DISC 2006]
- Dynamic Networks! [Kuhn et al., SPAA 2009]
- Dynamic Networks! [Kuhn et al., PODC 2010]
- Together [JACM 2010]
Experimental Results for Global Skew

FTSP

PulseSync

[Lenzen, Sommer, W, 2009]
Experimental Results for Global Skew

FTSP

PulseSync

[Lenzen, Sommer, W, 2009]
Summary
Thank You!

Questions & Comments?

Thanks to my co-authors, mostly
Silvio Frischknecht
Magnus Halldorsson
Stephan Holzer
Christoph Lenzen
Thomas Moscibroda
Philipp Sommer