Performance of Distributed Algorithms in DTNs
Towards an Analytical Framework for Heterogeneous Mobility

Andreea Picu Dr. Thrasyvoulos Spyropoulos

Computer Engineering and Networks Laboratory (TIK)
Communication Systems Group (CSG)

December 6, 2011
Outline

1. Motivation & Goals
2. Our New Model
 - State space
 - Local Search
 - Markov Chain Model
3. Correctness Analysis
 - Correctness Conditions
 - In Practice
4. Convergence Analysis
 - Calculating Convergence
 - In Practice
5. Conclusion & Outlook
Two Key Points
Two Key Points

Greedy (combinatorial) optimization
Two Key Points

Greedy (combinatorial) optimization

Heterogeneous mobility
Greed Is Not a Sin in DTNs

Sporadic, partial connectivity
\[\downarrow\]
Highly dynamic graph
\[\downarrow\]
Greedy algorithms for everything

This present contact Potential future contacts

Proverb: A bird in hand is worth two in the bush.
Current DTN Analytical Models

Motive & Goals

Our New Model

Correctness Analysis

Convergence Analysis

Conclusion & Outlook

Current DTN Analytical Models

A. Picu, Dr. T. Spyropoulos

Performance of Distributed Algorithms in DTNs
Current DTN Analytical Models

Outline
- Motive & Goals
- Our New Model
- Correctness Analysis
- Convergence Analysis
- Conclusion & Outlook

A. Picu, Dr. T. Spyropoulos
Performance of Distributed Algorithms in DTNs
Studies of Real Mobility

\[P^c = \{ p^c_{ij} \} \]
New Algorithms/Protocols (still greedy)

- **E. Daly and M. Haahr**
 Social network analysis for routing in disconnected delay-tolerant MANETs
 MobiHoc 2007

- **P. Hui, J. Crowcroft and E. Yoneki**
 BubbleRap: Social-based Forwarding in Delay Tolerant Networks
 MobiHoc 2008

Models (still individual)

- **T. Spyropoulos, T. Turletti and K. Obraczka**
 Routing in Delay-Tolerant Networks Comprising Heterogeneous Node Populations
 TMC 2009
Decouple

- **mobility** (contact probability matrix P_{ij}^c)
- **algorithms** (most of the time greedy)

to obtain

- correctness conditions on mobility scenario
- convergence probability and convergence delay

Illustrative example: Content Placement
Content/service placement
Content/service placement

\[\mathbf{X} = (X_1, X_2, \ldots, X_N) = (1, 0, 1, 1, 1, 0, \ldots, 0) \]
Content/service placement

Node state space: \{0, 1\}
Network state space: \left(\begin{array}{c} N \\ L \end{array} \right)
Node state space: \{0, 1\} \quad \text{Network state space: } \binom{N}{L}
Network State Difference

\[\delta(x, y) = \sum_{1 \leq i \leq N} \{x_i \neq y_i\} \]

\[x = (1, 0, 1, 1, 1, 0, 0, 0, 0) \]

\[y = (1, 0, 1, 0, 1, 0, 0, 1, 0) \]

\[z = (1, 0, 0, 0, 1, 1, 0, 1, 0) \]
Network State Difference

\[\delta(x, y) = \sum_{1 \leq i \leq N} 1\{x_i \neq y_i\} \]
Network State Difference

\[\delta(x, y) = \sum_{1 \leq i \leq N} \mathbb{1}\{x_i \neq y_i\} \]
Let $U_x > U_y$:

Transition probability p_{xy}:
Local Optimization Algorithms

Let $U_x > U_y$:

$x = (1, 0, 1, 1, 0, 0, 0, 0, 0)$

$y = (1, 0, 1, 0, 1, 0, 1, 0, 0)$

$p_{xy} = p^c_{48}$.

Transition probability p_{xy}:

- contact probability p^c_{ij}
Let $U_x > U_y$:

Transition probability p_{xy}:

- contact probability
- acceptance probability

$p_{xy} = p^c_{48} \cdot A_{xy}$
Local Optimization Algorithms

Let $U_x > U_y$:

Transition probability p_{xy}:

1. contact probability
2. acceptance probability

\[A_{xy} = \begin{cases} 1 \{ U_x < U_y \} \\ f(U_x, U_y) \end{cases} \]

\[p_{xy} = p^c_{48} \cdot 0 \]
Utilities

- node mobility
 ⇒ degree, contact probability
- node features
 ⇒ buffer space, battery
- content
 ⇒ demand for content

Content Placement

- node utility:
 \(U \propto \) node degree
- state utility:
 sum of individual utilities

A. Picu and T. Spyropoulos

Minimum Expected \(^\ast\)-cast Time in DTNs
BIONETICS 2009
Putting the pieces together

Pieces of our new model:

1. **Mobility**
 (heterogeneous)

 ⇒ contact probability matrix
 \[P^c = \{p_{ij}^c\} \]

2. **Solution space**
 (node & network)

 ⇒ e.g., combinations of L nodes

3. **Utilities**

 ⇒ e.g., node degree

4. **Algorithm**

 ⇒ acceptance probability matrix
 \[A = \{A_{xy}\} \]
The Markov Chain

Complicated problem ⇒ Transition matrix, \(P = \{p_{xy}\} \)

\[
\begin{bmatrix}
0 & p_{12} & \cdots & p_{1N} \\
p_{21} & 0 & \cdots & p_{2N} \\
\vdots & \vdots & \ddots & \vdots \\
p_{N1} & \cdots & \cdots & 0
\end{bmatrix}
\circ
\begin{bmatrix}
1 & A_{x_1x_2} & \cdots & A_{x_1x_M} \\
A_{x_2x_1} & 1 & \cdots & A_{x_2x_M} \\
\vdots & \vdots & \ddots & \vdots \\
A_{x_Mx_1} & \cdots & \cdots & 1
\end{bmatrix}
\]
The Markov Chain

Complicated problem \Rightarrow Transition matrix, $P = \{p_{xy}\}$

\[
P = \begin{bmatrix}
p_{x_1x_1} & p_{x_1x_2} & \cdots & p_{x_1x_M} \\
p_{x_2x_1} & p_{x_2x_2} & \cdots & p_{x_2x_M} \\
\vdots & \vdots & \ddots & \vdots \\
p_{x_Mx_1} & \cdots & \cdots & p_{x_Mx_M}
\end{bmatrix}
\]

\[
P = \{p_{xy}\} = p_{ij}^c \cdot A_{xy}
\]
Why Is This Useful?

- Correctness analysis
 - Feasability of (mobility + algorithm)

- Convergence analysis
 - Achieve trade-off (e.g., delay vs. # copies)
 - Tune parameters
 - Assess performance
Every node has at least one higher utility neighbor?
When Is Greedy Content Placement Correct?

Utility

$L = 3$
(copies)
When Is Greedy Content Placement Correct?

$L = 3$
(copies)
When Is Greedy Content Placement Correct?

Every node has at least one higher utility neighbor?
When Is Greedy Content Placement Correct?

When Is Greedy Content Placement Correct?

$L = 3$
(copies)
Multihop greedy paths in traces
Impact of L and utility

Node-to-relay greedy paths vs TTL (eth)

- $U_{deg}:L=3$
- $U_{deg}:L=10$
- $U_{rnd}:L=3$
- $U_{rnd}:L=10$

Node-to-relay greedy paths vs TTL (info)

- $U_{deg}:L=3$
- $U_{deg}:L=10$
- $U_{rnd}:L=3$
- $U_{rnd}:L=10$
What about convergence?

<table>
<thead>
<tr>
<th>Correct Algorithm</th>
</tr>
</thead>
<tbody>
<tr>
<td>⇒ Convergence probability = 1!</td>
</tr>
<tr>
<td>⇒ Convergence delay = ?</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Non-correct Algorithm</th>
</tr>
</thead>
<tbody>
<tr>
<td>⇒ Convergence probability = ?</td>
</tr>
<tr>
<td>⇒ Convergence delay = ?</td>
</tr>
</tbody>
</table>
Recall Our *Absorbing* Markov Chain

Complicated problem \Rightarrow Transition matrix, $P = \{p_{xy}\}$

<table>
<thead>
<tr>
<th>P^c</th>
<th>mobility</th>
</tr>
</thead>
<tbody>
<tr>
<td>p_{11}</td>
<td>p_{12}</td>
</tr>
<tr>
<td>p_{21}</td>
<td>p_{22}</td>
</tr>
<tr>
<td>\vdots</td>
<td>\vdots</td>
</tr>
<tr>
<td>p_{N1}</td>
<td>\ldots</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>P^c</th>
<th>algorithm</th>
</tr>
</thead>
<tbody>
<tr>
<td>p_{11}</td>
<td>$A_{x_1x_2}$</td>
</tr>
<tr>
<td>$A_{x_2x_1}$</td>
<td>1</td>
</tr>
<tr>
<td>\vdots</td>
<td>\vdots</td>
</tr>
<tr>
<td>$A_{x_Mx_1}$</td>
<td>\ldots</td>
</tr>
</tbody>
</table>
Recall Our Absorbing Markov Chain

Complicated problem ⇒ Transition matrix, $P = \{p_{xy}\}$

$$P = \begin{bmatrix}
p_{x_1x_1} & p_{x_1x_2} & \cdots & p_{x_1x_M} \\
p_{x_2x_1} & p_{x_2x_2} & \cdots & p_{x_2x_M} \\
\vdots & \vdots & \ddots & \vdots \\
p_{x_Mx_1} & \cdots & \cdots & p_{x_Mx_M}
\end{bmatrix}$$

$$P = \{p_{xy}\} = p_{ij}^c \cdot A_{xy}$$
Transient Markov Chain Analysis

\[P = \begin{pmatrix} TR & LM & x^* \\ Q & R_1 & R_2 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \]

Fundamental matrix: \(N = (I - Q)^{-1} \)
Convergence Probability

<table>
<thead>
<tr>
<th></th>
<th>Optimum pred.</th>
<th>Optimum meas.</th>
<th>Local max. pred.</th>
<th>Local max. meas.</th>
</tr>
</thead>
<tbody>
<tr>
<td>ETH</td>
<td>1.0000</td>
<td>1.0000</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Infocom</td>
<td>0.5267</td>
<td>0.5435</td>
<td>0.41321</td>
<td>0.39365</td>
</tr>
<tr>
<td>MIT</td>
<td>0.67726</td>
<td>0.55616</td>
<td>0.29571</td>
<td>0.14654</td>
</tr>
<tr>
<td>TVCM24</td>
<td>0.6086</td>
<td>0.5979</td>
<td>0.3913</td>
<td>0.4020</td>
</tr>
<tr>
<td>TVCM104</td>
<td>0.x</td>
<td>0.x</td>
<td>0.x</td>
<td>0.x</td>
</tr>
</tbody>
</table>

Table: Absorption probabilities
Average Convergence Delays

Convergence to optimum (PCA utility)

Convergence to local max (PCA utility)
Conclusion

- New unified model for DTNs
 - Heterogeneous node mobility
 - Greedy algorithms
 - Randomized gradient-ascent algorithms

- Model usage
 - Mobility conditions for algorithm correctness
 - Convergence probability
 - Convergence delay
Outlook

- Model generality
 - routing
 - resource allocation (buffer management)
 - etc.

- Practical issues: state space size
 - State lumping
 - Approximations
 - Petri-nets
The End

Thank you for your attention.

Please, ask questions.