Bio-inspired Computation and Optimization

Project 1: Knapsack Problem – Part I
Discussion of Task1
a) Describe how you would represent a solution x for the knapsack problem and define the search space X. (5 Points)
1.1 Solution representation

Given are \(n \) items and a capacity \(c \), where each item \(i \) has a positive weight \(w_i \) and profit \(p_i \). From each item, only one instance is available (0/1 bounded problem).

We define a solution as a vector \(x \in X \), with

\[
x = (\alpha_1, \alpha_2, \ldots, \alpha_n)
\]

where \(\alpha_i \in \{0, 1\} \) denotes the presence (1) or absence (0) of item \(i \) in the knapsack. Therefore \(x \in \{0, 1\}^n \) and the search space is

\[
X = \{0, 1\}^n
\]

- Give \(x \)
- Give meaning of elements of \(x \)
- Give \(X \)
Task 1 a) (alternative solution)

\(S : \text{set of items } I \)

Cardinality of \(S \): \(\text{Card}(S) = n \)

Each item \(I \) is a pair: \(I_i = (w_i, p_i), i \in [1, n] \)

\[
\begin{align*}
 w_i &\in \mathbb{N} \text{ (weight)} \\
 p_i &\in \mathbb{N} \text{ (profit)}
\end{align*}
\]

One solution \(x \) is one subsets of \(S \)
\(x \in \mathcal{P}(S) \)
\(x = \{I_i, I_j, I_k, \ldots \}; i, j, k, \ldots \in [1, n] \)

The search space is the powerset of \(S \): \(X = \mathcal{P}(S) \)

The size of the search space is \(\text{Card}(\mathcal{P}(S)) = 2^n \)

- Harder to implement (variable length vectors)
Task 1 a) common pitfalls

- not giving meaning of x:

 \[
 \tilde{x} = (x_1, x_2, \ldots, x_n), x_i \in \{0,1\}
 \]

- excluding infeasible solutions:

 \[
 x = (i_1, i_2, \ldots, i_N) \text{ with } N < n \text{ items such that } \sum_n w_i \leq c
 \]

- only considering optimal solutions:

 Representation of a Solution: We are looking for the largest accumulated profit
Task 1 a) common pitfalls, cont.

- only using words:

 - A solution x can be represented as a vector of size n with each position representing an item switched on or off.

 - The Search space is the sum of all possible solutions, there are $\{0, 1\}^n = 2^n$ possibilities.

- talking about implementation:

 Our search space X is a matrix with binary numbers; each column represents a candidate to be evaluated.

- Allowing copies of the same item:
b) Give an expression for the objective function f. Solutions that exceed the given capacity bound shall receive an objective function value of zero. (5 Points)
Task 1 b), (alternative solutions)

\[f(x) = \begin{cases}
\sum_{i=1}^{n} p_i & \text{if } \sum_{i=1}^{n} w_i \leq c \\
0 & \text{otherwise}
\end{cases} \]

\[f(x) = \begin{cases}
xp^T & \text{if } xw^T \leq W \\
0 & \text{if } xw^T > W
\end{cases} \]

\[f(x) = \left(\sum_{i=1}^{n} p_i \right) \cdot \min \left\{ \max \left\{ c + 1 - \sum_{i=1}^{n} w_i, 0 \right\}, 1 \right\} \]
Task 1 b), common pitfalls

- 1 errors on the index variable, i.e., ranging from 0 to n:

\[f(x) = \begin{cases} \sum_{i=0}^{n} x_i p_i & \text{if } \sum_{i=0}^{n} x_i w_i \leq c \\ 0 & \text{otherwise} \end{cases} \]

- < rather than <= when checking the constraint:

\[f(x) = \begin{cases} \sum_{i=1}^{n} p_i x_i & \text{if } \sum_{i=1}^{n} w_i x_i < c \\ 0 & \text{else} \end{cases} \]
Task 1 b), common pitfalls, cont.

- forgetting x_i:

$$f(x) = \begin{cases} \sum_{i=1}^{n} p_i & \text{if } \sum_{i=1}^{n} w_i \leq c \\ 0 & \text{else} \end{cases}$$
c) Describe an algorithm to calculate the objective function value of a given solution x in pseudo code. (5 Points)

- **Algorithm** calculateObjectiveValue(x, p, w, n, cap)

 Input: The set of chosen items x, the number of items n, the vectors p (profit) and w (weight) of length n and the capacity of the knapsack cap.

 Output: The objective value

  ```
  sum_profit = 0
  sum_weight = 0
  
  for i = 1 to n do
    sum_profit = sum_profit + $x[i]*p[i]$
    sum_weight = sum_weight + $x[i]*w[i]$
    if sum_weight > cap then
      return 0
    end if
  end for
  return sum_profit
  ```
Task 1 c), Avoid very brief notations

weight = scalarproduct(x, w)

\[f(\tilde{x}) = \sum_{i=1}^{n} p_i x_i \]

TOTAL_WEIGHT equals sum of weights of selected items of x
Task 1 c), common pitfalls

- Forgetting x_i:

```plaintext
for i = 1 to n
    weight = weight + w_i
    profit = profit + p_i
```

- Calculating the fitness for all solutions:

```plaintext
For each x do
    if sum(x.*weight) > capacity
        then tot_profit = 0;
    else
        tot_profit = sum(x.*profit)
```

- Confusing profit and weight:

```plaintext
for (i = 1; i <= n; i++){
    sum += p_i * x_i;
}
if (sum > c){
    sum = 0;
}
Wrong beginning or ending number of iteration:

\[
\text{FOR } i = 0 : n \text{ DO}
\]

Randomly generating solutions:

05: randomly choose a solution \( x \in X \)
06: for \( i \) in range(\( n \))
07: \( pt += p[i] \)
08: \( wt += w[i] \)
d) Choose a programming language. Write a program that is able to read all problem parameters (number of items, profit and weight values, capacity) from text files\(^1\). Further, the program shall generate 10000 random solutions and calculate the objective function value of each of them. The program output consists of the best solution encountered and the corresponding objective function value. Run the program on the different problem instances given on the lecture website. (10 Points)
NumberIterations = 100000;

for m = 1:4

    a = strcat('instance',num2str(m),'.txt');
    A = textread(a,'%u');

    numberItem = A(1);
    capacity = A(end);
    profit = A(2:1+numberItem);
    weight = A(2+numberItem:end-1);

    solution = 0;
    x = [];

Thanks to Raphael Suard, Michael Benz und Olle Sundström
for i = 1:NumberIterations

    x1 = [];
    for j = 1:numberOfItem
        x1(j) = randn() > 0;
    end

    solution1 = sum(x1.*profit');
    if sum(x1.*weight') > capacity
        solution1 = 0;
    end

    if solution1 > solution
        solution = solution1;
        x = x1;
    end

end

solution
x

Thanks to Raphael Suard, Michael Benz und Olle Sundström
data = load('project1_task1d_instance1.txt');

% data = load('project1_task2b.txt');
n=data(1);
p=data(2:1+n);
w=data(2+n:end-1);
c=data(end);

tic
%generate 10000 random solutions
solutions=randerr(10000,n,1:n);

obj = solutions*p;
constr = solutions*w<=c;
obj = obj.*constr;

[a bestsolution]=max(obj);

disp(['Best solution: ' num2str(solutions(bestsolution,:)) ' ]);
disp(['Zielwert der Best solution: ' num2str(a) ' ]);
toc
Task 1 e)

- Exhaustive search, check all \(2^n\) solutions.
- To get the \(i\)th solution, you can use the binary representation of \(i\), e.g., the solution 13 would be 00001101 (8 Items). (Make sure you cover the solution 00......0.

```matlab
for i = 1:2^numberItem
 xl = [];
 bin = i;
 for j = 1:numberItem
 xl(j) = rem(bin,2);
 bin = floor(bin/2);
 end
```
Task 1 e), runtimes

- Runtimes in seconds on the instance with 20 items
for ( int k=0; k<(1<<n); k++ ) {
    for ( int i=0; i<n; i++ ) {
        x[i] = (k>>i) & 1;
    }
    double p = f( x, weight, profit, capacity );
    if ( p > bestProfit ) {
        bestProfit = p;
        bestX = x.clone();
    }
}