printlogo
ETH Zuerich - Homepage
Systems Optimization (SOP)
 
Search

Wichtiger Hinweis:
Diese Website wird in älteren Versionen von Netscape ohne graphische Elemente dargestellt. Die Funktionalität der Website ist aber trotzdem gewährleistet. Wenn Sie diese Website regelmässig benutzen, empfehlen wir Ihnen, auf Ihrem Computer einen aktuellen Browser zu installieren. Weitere Informationen finden Sie auf
folgender Seite.

Important Note:
The content in this site is accessible to any browser or Internet device, however, some graphics will display correctly only in the newer versions of Netscape. To get the most out of our site we suggest you upgrade to the latest Netscape.
More information

ETH Zürich - D-ITET - TIK - SOP - People - Johannes Bader
print page
  
this webpage might no longer be updated more...

Kobon Triangles

Proof for Tighter Lower Bound

Gilles Clément and I found a tighter bound for the number of Kobon triangles:

Clement-Bader Bound

The proof is outlined in the following draft:

[1 — cb2007a]
G. Clément and J. Bader. Tighter Upper Bound for the Number of Kobon Triangles. Draft Version, 2007. (PDF) (bibtex) (suppl. material)

Perfect Solution with 17 lines

(Deutsche Version)

In November 2007 I found the following configuration of 85 nonoverlapping triangles constructed using 17 lines, solving the problem of Kobon Fujimura for n = 17

Maximal Solution of 17 Lines to the Kobon Triangle Problem

(click to enlarge)

SVG Version, PDF Version (colored to simplify counting)

The placement meets the upper bound proven by Saburo Tamura hence it's the first maximal solution with 17 lines and the 17th term of A006066 is 85.

Other Configurations

The following table lists other configurations I found (click on the images to enlarge them):

n:
10
n:
14
triangles:
25
triangles:
53
best known:
25
best known:
?
upper bound:
26
upper bound:
56
comments:
The configuration is 5-fold rotational symmetric in contrast to the ones of Serhiy Grabarchuk, Viatcheslav Kabanovitch and S. Honma respectively. pdf version
comments:
pdf version
n:
16
n:
17
triangles:
72
triangles:
85
best known:
?
best known:
?
upper bound:
74
upper bound:
85
comments:
Based on the maximal solution for 15 lines found by Toshitaka Suzuki. pdf version
comments:
Reaches upper bound. pdf version
n:
18
n:
19
triangles:
93
triangles:
104
best known:
?
best known:
?
upper bound:
96
upper bound:
107
comments:
3-fold rotational symmetric. pdf version
comments:
pdf version
n:
20
n:
21
triangles:
115
triangles:
130
best known:
?
best known:
?
upper bound:
120
upper bound:
133
comments:
5-fold rotational symmetric. pdf version
comments:
3-fold rotational symmetric. pdf version

 

top
© 2009 Institut TIK, ETH Zürich | Imprint | Last updated: Mon, 20 Sep 2010 11:14 | Valid XHTML 1.0! Valid CSS! Valid XHTML 1.0