3D Exploration of Uniprocessor Schedules for DSP Algorithms

Jürgen Teich
Institute DATE
Department of Electrical Engineering
University of Paderborn
D-33098 Paderborn, Germany
Email: teich@date.uni-paderborn.de

Eckart Zitzler
Computer Engineering and Networks Laboratory (TIK)
Department of Electrical Engineering
Swiss Federal Institute of Technology (ETH) Zurich
CH-8092 Zürich, Switzerland
E-mail: zitzler@tik.ee.ethz.ch

Shuvra S. Bhattacharyya
Institute for Advanced Computer Studies (UMIACS)
Department of Electrical Engineering
University of Maryland
College Park, MD 20742
E-mail: ssb@eng.umd.edu

TIK-Report No. 56
Institut für Technische Informatik und Kommunikationsnetze, ETH Zürich
Gloriastrasse 35, ETH-Zentrum, CH-8092 Zürich, Switzerland

April 15, 1999
Abstract

When implementing software for programmable digital signal processors (PDSPs), the design space is defined by a complex range of constraints and optimization objectives. Three implementation metrics that are crucial in many PDSP applications are the program memory requirement (code size), data memory requirement, and execution time. This paper addresses the problem of exploring the 3-dimensional space of trade-offs that is defined by these crucial metrics. Given a software library for a target PDSP, and a dataflow-based block diagram specification of a DSP application in terms of this library, our objective in this paper is to compute a full range of Pareto-optimal solutions. For solving this multi-objective optimization problem, an evolutionary algorithm based approach is applied, where two different Pareto-optimization methods are considered. We illustrate our techniques by analyzing the trade-off fronts of a practical application for a number of well-known, commercial PDSPs. Moreover, the two evolutionary Pareto-optimization methods are quantitatively compared on nine DSP applications.
1 Introduction

Starting with a data flow graph specification to be implemented on a digital signal processor, we study the effects between instantiating code by inlining or subroutine calls as well as the effect of loop nesting and context switching on a target processor (PDSP) that is used as a component in a memory and cost-critical environment, e.g., a single-chip solution. For such applications, a careful exploration of the possible spectrum of implementations is of utmost importance because the market of these products is driven by tight cost and performance constraints. Frequently, these systems are once programmed to run forever. Optimization and exploration times in the order of hours are therefore neglectable.

We present the first systematic optimization framework for exploring implementation trade-offs in the 3-dimensional execution time / program memory / data memory space of implementations, and we compare two evolutionary algorithm based Pareto-front exploration approaches to solve this multi-objective optimization problem.

The methodology begins with a given synchronous dataflow graph (Lee and Messerschmitt 1987), a restricted form of dataflow in which the nodes, called actors have a simple firing rule: The number of data values (tokens, samples) produced and consumed by each actor is fixed and known at compile-time.

Example 1 A practical example is a sample-rate conversion system. In Fig. 1, a digital audio tape (DAT), operating at a sample rate of 48 kHz is interfaced to a compact disk (CD) player operating at a sampling rate of 44.1 kHz, e.g., for recording purposes, see (Vaidyanathan 1993) for details on multistage sample rate conversion.

![CD to DAT conversion benchmark](image)

The major reason why the SDF model is widely used as the underlying specification model are the abilities to express multirate systems, parallelism, and that many important aspects such as deadlock detection and scheduling can be determined at compile-time.

As a matter of fact, there exist rapid prototyping environments that use SDF graphs or related models as input for code generators for programmable digital signal processors (PDSPs) (Buck, Ha, Lee, and Messerschmitt 1991; Lauwereins, Engels, Peperstraete, Steegmans, and Ginderdeuren 1990; Ritz, Pankert, and Meyr 1992).

As reported by DSP analysts (e.g., the DSPStone benchmarking group (Zivojnovic, Martinez, Schläger, and Meyr 1994)), today’s DSP compilers still produce several 100% over head with respect to assembly code written and optimized by hand. Hence, the hardware capabilities such as zero-loop overhead, execution of multiple instructions (e.g., memory write and execute), and specialized instruction sets (e.g., multiply-add operations) as well as special addressing modes (e.g., indexed versus pointer addressing) cannot be sufficiently exploited at this point in time.

A commonly used approach in SDF-based design environments that avoids the limitations of current compiler technology is to store optimized assembly code for each actor (e.g., filter components) in a target-specific library and to generate code from
a given schedule by instantiating actor code in the final program. By doing this, the influence of the compiler technology may be taken out as one unknown factor of efficiency.

Prior work on code size minimization of SDF schedules has focused on an inline code generation model (Bhattacharyya, Murthy, and Lee 1996). The total memory requirement may then be approximated by a linear combination of the (weighted) number of actor appearances in a schedule. Evidently, so called single appearance schedules (SASs), where each actor appears only once in a schedule, are program memory optimal under this model. However, they may not be data memory minimal, and in general, it may be desirable to trade-off some of the run-time efficiency of code inlining with further reduction in code size by using subroutine calls, especially with system-on-a-chip implementations. For example, if only a very small amount of program memory is available for a signal processing subsystem, but the data memory and speed constraints are not tight, then a compact looped schedule organization with heavy use of subroutines would be desirable. Similarly, if the data memory and execution time are severe "bottlenecks", but program space is abundant, then a minimal buffer schedule organization (which typically precludes the use of extensive looping (Bhattacharyya, Murthy, and Lee 1999) with inline code) would be preferable.

Figure 2 depicts the trade-off that has to be made. The buffer memory is mainly influenced by the schedule and the chosen buffer model. Software loops increase the execution time, however, decrease the program memory. Since it depends on the schedule to which extent looping can be applied, there is a trade-off between program memory and data memory. The use of subroutine calls causes a higher execution time, but decreases again the program memory requirements. With inlining, the target code gets faster, but larger.

![Figure 2: Trade-off between the three performance criteria](image)

Because of this trade-off, the software synthesis based on a SDF specification is a typical multi-objective optimization problem. Three conflicting goals have to be optimized, which are all of equal importance. This means, that many “best” solutions coexist. One implementation might be faster, but consumes much more buffer memory, while another is a bit slower but has a shorter program code. So both implementations are good in some way. The optimization process should find the set of this “best” solutions, the set of so called Pareto optimal solutions. The final decision to choose one of these implementations has to be made by the designer depending on external requirements of the application, e.g., cost for memory or a faster signal processor.

The present study extends our previous work (Teich, Zitzler, and Bhattacharyya 1998) where we considered the single-objective case of minimizing only data memory.
requirements for a restricted class of schedules (SAS) and implementations (no subroutine calls). Here, we seek to explore the dimensions of program memory, data memory, and execution time requirements simultaneously for arbitrary schedules, a demanding multi-objective optimization problem. One approach to perform this exploration are evolutionary algorithms (EAs). These are optimization methods based on nature’s evolution process. Solutions in the search space are considered as individuals of a population. A selection mechanism will give preference to strong individuals and disfavor weaker ones similar to the survival-of-the-fittest principle. Figure 3 shows the basic mechanisms of an EA. The iterations represent the sequence of generations of the population.

![Figure 3: Outline of an evolutionary algorithm](image)

Here, two multiobjective evolutionary algorithms are investigated. The description of these two EAs as well as a mathematical notion of the concept of Pareto optimality are given in Section 5. First, the optimization problem and metrics are formally defined (Section 2 and 3). The CDPO algorithm (code-size dynamic programming post-optimization), which is implemented in the evolutionary framework for computing optimally nested loops for a given schedule, is described in Section 4. Finally, Sections 6 and 7 deal with aspects of the EAs, and the experiments performed, respectively, including a quantitative comparison of the two EAs for solving the exploration problem.
2 SDF Scheduling Framework

Synchronous dataflow (Lee and Messerschmitt 1987) is a restricted form of data flow in which nodes of a directed graph represent actors, consume a fixed amount of data items (tokens, samples) per invocation and produce a fixed amount of output samples per invocation.

Definition 1 (SDF graph) An SDF graph G denotes a 5-tuple $G = (V, A, produced, consumed, delay)$ where

- V is the set of nodes (actors) $(V = \{v_1, v_2, \cdots, v_{|V|}\})$.
- A is the set of directed arcs. With source(α) (sink(α)), we denote the source node (target node) of an arc $\alpha \in A$.
- produced : $A \rightarrow \mathbb{N}$ denotes a function that assigns to each directed arc $\alpha \in A$ the number of produced tokens produced(α) per invocation of actor source(α).
- consumed : $A \rightarrow \mathbb{N}$ denotes a function that assigns to each directed arc $\alpha \in A$ the number of consumed tokens produced per invocation of actor sink(α).
- delay : $A \rightarrow \mathbb{N}_0$ denotes the function that assigns to each arc $\alpha \in A$ the number of initial tokens delay(α) that reside on α.

Example 2 The graph in Fig. 1 has $|V| = 6$ nodes (or actors). Each presents a function that may be executed as soon as its input contains at least consumed(α) data tokens on each ingoing arc α, see the numbers annotated with the arc heads. E.g., actor B requires one input token on its input arc, and produces 2 output tokens on its outgoing arc when firing. In the shown graph, delay(α) = 0 $\forall \alpha \in A$. Hence, initially, only actor A, the source node, may fire. Afterwards, B may fire for the first time. After that, however, node C still cannot yet fire, because it requires consumed(α) = 3 tokens on its ingoing arc, however, there are only two produced by the firing of B. In general, many firing sequences of actors may evolve.

A schedule is a sequence of actor firings. A properly-constructed SDF graph is compiled by first constructing a finite schedule S that fires each actor at least once, does not deadlock, and produces no net change in the number of tokens queues associated with each arc. When such a schedule is repeated infinitely, we call the resulting infinite sequence of actor firings a valid periodic schedule, or simply valid schedule.

SDF graphs for which valid schedules exist are called consistent graphs. Systematic techniques exist to efficiently determine whether or not a given SDF graph is consistent and to compute the minimum number of times that each actor must execute in the body of a valid schedule (Lee and Messerschmitt 1987). We represent these minimum numbers of firings by a function q_G or simply q in case G is known from the context with $q: V \rightarrow \mathbb{N}$.

Example 3 The CDtoDAT graph in Figure 1, is consistent because there exists a (non-zero) finite actor firing sequence such that the initial token configuration is obtained again. The minimal number of actor firings is obtained as $q(A) = q(B) = 147, q(C) = 98, q(D) = 28, q(E) = 32, q(F) = 160$. The schedule $(\infty(7(7(3AB)(2C))(4D))(32E(5F)))$ represents a valid schedule.

Each parenthesized term $(n S_1 S_2 \cdots S_k)$ is referred to as schedule loop having iteration count n and iterands S_1, S_2, \cdots, S_k. We say that a schedule for an SDF graph is a looped schedule if it contains zero or more schedule loops. A schedule is called single
appearance schedule, or simply SAS in the following, if it contains only one appearance of each actor.

Example 4 The schedule \((∞(147A)(147B)(98C)(28D)(32E)(160F))\) is a valid SAS for the graph shown in Fig. 1.

Although SAS offer minimal code size, they are not necessarily optimal in terms of data-memory consumption (Bhattacharyya, Murtley, and Lee 1999). In general, a schedule of the form \((∞ (q(N_1), q(N_2), \ldots, q(N_{|V|}))\) where \(N_i\) denotes the (label of the) \(i\)th node of a given SDF graph, and \(|V|\) denotes the number of nodes of the given graph, is called flat single appearance schedule.

Example 5 Consider the simple SDF graph \(G\) in Fig. 5a). With \(produced(\alpha) = 2\) and \(consumed(\alpha) = 3\), we obtain \(q(A) = 3\), \(q(B) = 2\) as the minimal actor repetition numbers. The schedule \((∞(3A)(2B))\) is a valid (flat) SAS, requiring 6 units of memory to store the maximal amount of data that accumulates on the arc \(\alpha\) (after the firing of the first schedule loop). The schedule \((∞(2A)BAB)\) requires only 4 units (after the first two firings of actor \(A\)).

The above example shows us that single appearance schedules, though compact, are not necessarily data-memory minimal. In order to exploit also multiple-appearance schedules (called MAS in the following), we must be able to look at the unfolding of the SDF graph that represents the causal properties of each single actor invocation in a periodic schedule.

Definition 2 (Unfolding) Given a consistent SDF graph \(G = (V, A, consumed, produced, delay)\) and the minimal repetition vector \(q = (q(N_1), q(N_2), \ldots, q(N_{|V|}))\). Then the marked graph \(G' = (V', A', consumed', delay')\) obtained as follows is called its unfolding:

- \(|V'| = \sum_{i=1}^{|V|} q(N_i)\) and for each node \(N_i \in V\) there exists a set \(V_i' = \{N_i^1, \ldots, N_i^q(N_i)\}\) in \(V'\) \((V' = \bigcup_{i=1}^{|V|} V_i')\).

- The arc set \(A'\) and the initial data \(delay\) are obtained as follows (we consider each arc \(\alpha = (N_i, N_j) \in A\) separately and instantiate corresponding arcs in \(A'\)). Thereby, \(δ_i\), with \(1 \leq δ_i \leq q(N_i)\), denotes the counting index for the \(q(N_i)\) instances \(N_i^δ\).

For each arc \(\alpha = (N_i, N_j) \in A\), there exist \(q(N_i) \cdot produced(\alpha)\) arcs \(\alpha' = (N_i^{δ_k}, N_j^{δ_j}) \in A'\), where the \(k\)th arc \((k = 1, \ldots, q(N_i) \cdot produced(v_i, v_j))\) is directed from node \(N_i^{δ_k}\) with

\[δ_i = ((k - 1) \div produced(N_i, N_j)) + 1\]

to node \(N_j^{δ_j}\) with

\[δ_j = (((delay(\alpha) + k - 1) \mod (q(N_j) \cdot consumed(\alpha))) \div consumed(\alpha)) + 1\]

Furthermore, the \(l\)th initial token \((l = 1, \ldots, delay(\alpha))\) is situated on the \(k\)th arc between nodes \(N_i\) and \(N_j\) in \(A'\) with

\[k = q(N_i) \cdot produced(\alpha) - (l - 1) \mod (q(N_i) \cdot produced(\alpha))\]
Figure 4: Unfolding of the SDF graph as introduced in Example 5.

Obviously, the unfolding $G' = (V', A', delay')$ contains
- $|V'| = \sum_{i=1}^{|V|} q(N_i)$ nodes, and
- $|A'| = \sum_{j=1}^{|A|} produced(\alpha_j) \cdot consumed(\alpha_j)$ arcs.

Example 6 Consider again the simple SDF graph G as introduced in Example 5. The unfolding of this graph is shown in Fig. 4. There are three actor instantiations of actor A and two instances of actor B. It can be shown that single-appearance schedules of this graph represent all valid schedules of the corresponding SDF graph. For example, the schedule $(\infty AABAB)$ is a valid schedule, whereas $(\infty ABABA)$ is not. Vice versa, if a schedule of the unfolding is not valid, then the schedule of actor names is also invalid in the original SDF graph. In this sense, both of them are equivalent.

2.1 Code generation model

For each actor in a valid schedule S, we insert a code block that is obtained from a library of predefined actors or a simple subroutine call of the corresponding subroutine, and the resulting sequence of code blocks (and subroutine calls) is encapsulated within an infinite loop to generate a software implementation. Each schedule loop thereby is translated into a loop in the target code.

Example 7 For the simple SDF graph in Fig. 5a, a buffer model for realizing the data buffer on the arc α as well as a pseudo assembly code notation (similar to the Motorola DSP56k assembly language) for the complete code for the schedule $S = (\infty(3A)(2B))$ is shown in Fig. 5b, c) respectively. There is a location loc that is the address of the first memory cell that implements the buffer and one read ($rp(\alpha)$) and write pointer ($wp(\alpha)$) to store the actual read (write) location. The notation $do \# N \text{LABEL}$ denotes
Figure 5: SDF graph a), memory model for arc buffer b), and Motorola DSP56k-like assembly code realizing the schedule $S = (\infty(3A)(2B))$

Figure 6: Memory accesses for the schedule $S = (\infty AABAB)$

A statement that specifies N successive executions of the block of code between the do-statement and the instruction at location LABEL. First, the read pointer $rp(a)$ to the buffer is loaded into register $R1$ and the write pointer $wp(a)$ is loaded into $R2$. During the execution of the code, the new pointer locations are obtained without overhead using autoincrement modulo addressing ($(R1)+, (R2)+$). For the above schedule, the contents of the registers (or pointers) are shown in Fig. 6.

Thus, for a valid schedule S, the code for each actor has to be instantiated from a predefined library corresponding to the sequence of actor firings of S. This can happen in two ways: the code can either be inserted in line into the target code or be invoked as a subroutine call. The mode of code invocation should be specified for each actor separately. We introduce a function $flag(N_i) \in \{0, 1\}$ that indicates for each actor N_i whether it should be instantiated by a subroutine call ($flag(N_i) = 0$) or inlined into the final program code ($flag(N_i) = 1$) for all actor invocations.

Also, it can also be specified whether software loops should be implemented or not. If loops are desired, each schedule loop is translated into a software loop.

In the end, the whole resulting code block is encapsulated within an infinite loop to obtain a software implementation of the periodic schedule.

Example 8 (A schedule and different implementations) Consider the schedule $AAABB$ of the SDF graph depicted in Fig. 5a). The figure below shows some possible software implementations in assembly code. The first uses code inlining only. The second invokes the code with subroutine calls. The last implementation uses program loops corresponding to the single appearance schedule $(3A)(3B)$.

7
Figure 7: Different ways of generating code using inlining (left), subroutine calls (middle), and loops with inlined code. Many intermediate solutions, e.g., using loops and subroutine calls, may be imagined.

3 Optimization Metrics

3.1 Program memory overhead $P(S)$

Assume that each actor N_i in the library has a program memory requirement of $w(N_i) \in \mathbb{N}$ memory words. Let $\text{flag}(N_i) \in \{0, 1\}$ denote the fact whether in a schedule, a subroutine call is instantiated for all actor invocations of the schedule ($\text{flag}(N_i) = 0$) or whether the actor code is inlined into the final program text for each occurrence of N_i in the code ($\text{flag}(N_i) = 1$). Hence, given a schedule S, the program memory overhead $P(S)$ will be accounted for by the following equation:\footnote{$\text{app}(N_i, S)$: number of times, N_i appears in the schedule string S.}

$$
P(S) = \sum_{i=1}^{[V]} (\text{app}(N_i, S) \cdot w(N_i) \cdot \text{flag}(N_i))
+ (w(N_i) + \text{app}(N_i, S) \cdot P_S) \cdot (1 - \text{flag}(N_i))
+ P_L(S)
$$

Note that in case one subroutine is instantiated ($\text{flag}(N_i) = 0$), the second term is non-zero adding the fixed program memory size of the module to the cost and the subroutine call overhead P_S (code for call, context save and restore, and return commands). In the other case, the program memory of this actor is counted as many times as it appears in the schedule S (inline model). The additive term $P_L(S) \in \mathbb{N}$ denotes the program overhead for looped schedules. It accounts for a) the additional program memory needed for loop initialization, and b) loop counter increment, loop exit testing and branching instructions. This overhead is processor-specific, and in our computations proportional to the number of loops in the schedules. Let P_L denote the processor specific constant that models the number of code words for an entire loop instruction. We have to add this constant as many times as schedule loops appear in.
a schedule S. Assume that $n_{\text{loop}}(S)$ is the total number of loops in the schedule S. Thus, the loop overhead $PL(S)$ becomes:

$$PL(S) = n_{\text{loop}}(S) \cdot P_L$$

3.2 Buffer memory overhead $D(S)$

Note that the individual actor code blocks might need data memory for storing local variables (e.g., filter coefficients, counter variables, etc.). As this is a fixed amount of overhead for each actor, and as this amount is independent from the fact whether inlining or subroutine calls are used, we account only for overhead due to data buffering for the communication of actors (buffer cost).

There are many different ways the buffer memory can be organized. The memory can be allocated fixed to one actor or it can be shared during execution of a schedule. A buffer block can be considered as existing the whole schedule period or only as long as it is used. Obviously, sharing of buffer will in general reduce memory requirements. On the other hand a more complex buffer organization will cause an additional overhead for storing information about the structure of the memory.

For simplicity, it is assumed here that a distinct segment of memory is allocated for each arc of a given graph. For this unshared buffer model, the amount of data needed to store the tokens that accumulate on each arc during the evolution of a schedule S is given as:

$$D(S) = \sum_{\alpha \in A} \max_{\text{tokens}}(\alpha, S)$$

Here, $\max_{\text{tokens}}(\alpha, S)$ denotes the maximum number of tokens that accumulate on arc α during the execution of schedule S. This is the minimal size required for one buffer and can easily be computed by simulating the schedule execution and tracing the tokens accumulating on the arc α.

Example 9
Consider the schedule in Example 4 of the CDtoDAT benchmark. This schedule has a buffer memory requirement of $1471 + 1472 + 982 + 288 + 325 = 1021$. Similarly, for the looped schedule $(\infty(7(7(3AB)(2C))(4D))(32E(5F)))$ the buffer memory requirement is 264.

3.3 Execution Time Overhead $T(S)$

With execution time, we denote the duration of execution of one iteration of a SDF graph comprising $q(N_i)$ activations of each actor N_i in clock cycles of the target processor.\(^2\)

In this work, we account for the effects of (1) loop overhead, (2) subroutine call overhead, and (3) buffer (data) communication overhead in our characterization of a schedule. Our computation of the execution time overhead of a given schedule S therefore consists of the following additive components:

Subroutine call overhead: For each instance of an actor N_i with $\text{flag}(N_i) = 0$, we add a processor specific latency time $L(N_i) \in \mathbb{N}$ to the execution time. This number accounts for the number of cycles needed for storing the necessary amount of context

\(^2\)Note that this measure is equivalent to the inverse of the throughput rate in case it is assumed that the outermost loop repeats forever.
prior to calling the subprogram (e.g., compute and save incremented return address),
and to restore the old context prior to returning from the subroutine (sometimes a simple branch).\(^3\) For a given schedule \(S\), we define the subroutine overhead \(SO(S)\) as:

\[
SO(S) = \sum_{i=1}^{\mid V \mid} (1 - \text{flag}(N_i)) \cdot L(N_i) \cdot q(N_i)
\]

\(^4\)

Communication time overhead: Due to static scheduling, the execution time of an actor may be assumed fixed (no interrupts, no I/O-waiting) necessary, however, the time needed to communicate data (read and write) depends in general a) on the processor capabilities, e.g., some processors are capable of managing pointer operations to *modulo buffers* in parallel with other computations, and b) on the chosen buffer model (e.g., contiguous versus non-contiguous buffer memory allocation). In a first approximation, we define a penalty for the read and write execution cycles that is proportional to the number of data read (written) during the execution of a schedule \(S\). For example, such a penalty may be of the form

\[
IO(S) = 2 \sum_{a=(N_i,N_j) \in A} q(N_i)\text{produced}(N_i)T_{io}
\]

\(^5\)

where \(T_{io}\) denotes the number of clock cycles that are needed between reading (writing) 2 successive input (output) tokens.

Loop overhead: For looped schedules, there is in general the overhead of initializing and updating a loop counter, and of checking the loop exit condition, and of branching, respectively. The loop overhead for one iteration of a simple schedule loop \(L\) (no inner loops contained in \(L\)) is assumed a constant \(T_L \in \mathbb{N}\) of processor cycles, and its initialization overhead \(T^{init}_L \in \mathbb{N}\). Let \(x(L) \in \mathbb{N}\) denote the number of loop iterations of loop \(L\), then the loop execution overhead is given by \(O(L) = T^{init}_L + x(L) \cdot T_L\). For nested loops, the total overhead of an innermost loop is given as above, whereas for an outer loop \(L\), the total loop overhead is recursively defined as

\[
O(L) = T^{init}_L + x(L) \cdot \left(T_L + \sum_{L' \text{ evoked inL}} O(L') \right)
\]

The *total loop overhead* \(O(S)\) of a looped schedule \(S\) is the sum of the loop overheads of the outermost loops.

Example 10 Consider a given SDF graph with 4 actors \(\{A,B,C,D\}\), and furthermore let \(\infty \cdot (3(3A)(4B)) \cdot (4(3C)(2D))\) be a valid schedule for this graph. Assume that the overhead for one loop iteration \(T_L = 2\) cycles in our machine model, the initialization

\(^3\)Note that the exact overhead may depend also on the register allocation and buffer strategy. Furthermore, we assume that no nesting of subroutine calls is allowed. Also, recursive subroutines are not created and hence disallowed. Under these conditions, the context switching overhead will be approximated by a constant \(L(N_i)\) for each module \(N_i\) or even to be a processor-specific constant \(T_S\), if no information on the compiler is available. Then, \(T_S\) may be chosen as an average estimate or by the worst-case estimate (e.g., all processor registers must be saved and restored upon a subroutine invocation).

\(^4\)Note that this overhead is then highly dependent on the register allocation strategy.
overhead being \(T_{\text{inv}}^L = 1 \). The outermost loop consists of 2 loops \(L_1 \) (left) and \(L_2 \) (right). With \(O(S) = 1 + 1 \cdot (2 + O(L_1) + O(L_2)) \) and \(x(L_1) = 3, x(L_2) = 4, \) we obtain the individual loop overheads as \(O(L_1) = 1 + 3 \cdot (2 + O(3A) + O(4B)) \) and \(O(L_2) = 1 + 4 \cdot (2 + O(3C) + O(2D)) \). The innermost loops (3A), (4B), (3C), (2D) have the overheads \(1 + 6, 1 + 8, 1 + 6, 1 + 4, \) respectively. Hence, \(O(L_1) = 1 + 3 \cdot 18 \) and \(O(L_2) = 1 + 4 \cdot 14, \) and \(O(S) \) becomes 115 cycles.

In total, \(T(S) \) of a given schedule \(S \) is defined as

\[
T(S) = SO(S) + IO(S) + O(S)
\]

(7)

Example 11 Consider again Example 10. Let the individual execution time overheads for subroutine calls be \(L(A) = L(B) = 2, \) and \(L(C) = L(D) = 10 \) cycles. Furthermore, let code for \(A \) and \(C \) be generated by inlining (\(\text{flag}(A) = \text{flag}(C) = 1 \)) and by subroutine call for the other actors. Hence, \(T(S) = L(B) \cdot q(B) + L(D) \cdot q(D) + O(S) + IO(S) \) results in \(T(S) = 2 \cdot 12 + 10 \cdot 8 + 115 + IO(S) = 219 + IO(S) \). Hence, the execution overhead is 219 cycles with respect to the same actor execution sequence but with only inlined actors and no looping at all.

3.4 Target processor modeling

For the following experiments, we will characterize the influence of a chosen target processor by the following overhead parameters using the above target (overhead) functions:

- \(P_S \): subroutine call overhead (number of cycles) (here: for simplicity assuming independence of actor, and no context to be saved and restored except PC and status registers).
- \(P_L \): the number of program words for a complete loop instruction including initialization overhead.
- \(T_S \): the number of cycles required to execute a subroutine call and a return instruction and to store and recover context information.
- \(T_L, T_{\text{inv}}^L \): loop overhead, loop initialization overhead, respectively in clock cycles.

Table 1: The parameters of 3 well-known DSP processors. All are capable of performing zero-overhead looping. For the TMS320C40, however, it is recommended to use a conventional counter and branch implementation of a loop in case of nested loops. P1 is a fictive processor modeling high subroutine overheads.

<table>
<thead>
<tr>
<th>System</th>
<th>Motorola DSP56k</th>
<th>ADSP 2106x</th>
<th>TI 320C40</th>
<th>P1</th>
</tr>
</thead>
<tbody>
<tr>
<td>(P_S)</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>(P_L)</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>10</td>
</tr>
<tr>
<td>(T_S, T_{\text{inv}}^L)</td>
<td>0.6</td>
<td>0.1</td>
<td>8.1</td>
<td>0.1</td>
</tr>
<tr>
<td>(T_L)</td>
<td>8</td>
<td>2</td>
<td>8</td>
<td>16</td>
</tr>
</tbody>
</table>
Three real PDSPs and one fictive processor P1 have been modeled, see Table 1. One can observe that the DSP56k and TMS320C40 have high subroutine execution time overhead; the DSP56k, however, has a zero-loop overhead and high loop initialization overhead; and the TMS320C40 has a high loop iteration overhead but low loop initialization overhead. P1 models a processor with high subroutine overheads.

4 CDPPO: Code-size dynamic programming post-optimization

Prior work on the construction of looped schedules for SDF graphs has focused on single appearance schedules. A single appearance schedule can be uniquely represented as a parenthesization of a lexical ordering of the input SDF graph, and vice versa (Bhattacharyya, Murthy, and Lee 1996). Here, by a lexical ordering, we simply mean a linear ordering \((a_1, a_2, \ldots, a_N) \) of the actors in the graph. Different parenthesizations of a given lexical ordering lead in general to different schedules (sequences of actor invocations), and thus, to different buffer memory requirements.

The problem of optimally parenthesizing a single appearance schedule to minimize the buffer memory requirement has been shown to have a similar structure as the matrix chain multiplication problem (Cormen, Leiserson, and Rivest 1992), which is the problem of determining the most efficient order (sequence of pairwise matrix multiplications) in which to evaluate a product \(M_1 M_2 \ldots M_k \) of matrices. It is well-known that the matrix-chain multiplication problem is amenable to an efficient dynamic programming solution (Cormen, Leiserson, and Rivest 1992). The GDPPO algorithm presented in (Bhattacharyya, Murthy, and Lee 1996) can be viewed as an adaptation of this dynamic programming solution to the parenthesization problem for single appearance schedules.

As discussed in Section 1, our multi-objective optimization techniques developed in this paper go beyond the class of single appearance schedules since multiple appearance schedules can provide significantly lower buffer memory requirements over the best single appearance schedules: when attempting to determine the Pareto-optimal front of an SDF design space, it is essential to consider multiple appearance schedules. When considering arbitrary schedules (schedules that are not necessarily single appearance schedules), a new parenthesization problem becomes relevant. This is the problem of parenthesizing groups of repetitive invocation patterns that can be consolidated into loops. Formally, this is the problem of computing a minimum code size loop hierarchy for a given sequence of actor invocations, and a given code size \(C(i) \) associated with each actor invocation \(i \). Typically, all invocations of an actor \(A \) that are inlined will have the same code size cost \(C_i(A) \), and all invocations that are executed with subroutine calls will have the code size cost of the associated call \(C_s(A) \). In such cases, an actor \(A \) that has both inlined and subroutine call invocations in the given invocation sequence can be handled by decomposing the actor into two separate actors (within the invocation sequence) — one actor \(A_i \) that represents the inlined invocations and has code size \(C(A_i) = C_i(A) \), and another actor \(A_s \) for the subroutine call invocations, which has code size \(C(A_s) = C_s(A) \).

Note that unlike the form of parenthesization handled by GDPPO for single appearance schedules, the parenthesization of arbitrary invocation sequences into optimally-compact loop hierarchies does not change the actor execution order, and thus, does
not affect the buffering cost.

Example 12 Consider an SDF graph that consists of three actors \(\{X,Y,Z\} \), and two edges \(\{X,Y\}, \{Y,Z\} \) such that produced\((X,Y)\) = consumed\((X,Z)\) = 2, and consumed\((X,Y)\) = produced\((Y,Z)\) = 3. For clarity, assume that all invocations of each actor \(V \) are implemented with an inlined implementation having code size cost \(C(V) \). Given the actor invocation sequence \((X,Y,X,Y,Z,Y,Z) \), one of two parenthesizations leads to an optimum looping, depending on the relative code sizes of \(X \) and \(Z \). If \(C(X) > C(Z) \), then the optimum parenthesization is \((XYXY)YZ \), which leads to the looped schedule \((2XY)YZ \); if \(C(X) < C(Z) \), however, the best parenthesization is \(XY(XYZ) \), which leads to the looped schedule \(XY(X2YZ) \).

The CDPPO algorithm was first proposed in (Bhattacharyya, Murthy, and Lee 1995), where the algorithm was outlined as an interesting extension of GDPPO. In this paper, we introduce the first reported implementation of the CDPPO algorithm, and the application of the algorithm to a practical design space exploration problem. CDPPO computes an optimal parenthesization in a bottom-up fashion. Given, an SDF graph \(G = (V,E) \) and an actor invocation sequence \(f_1, f_2, \ldots, f_n \), where each \(f_i \in V \), CDPPO first examines all 2-invocation sub-chains \((f_1,f_2),(f_2,f_3),\ldots,(f_{n-1},f_n) \) to determine an optimally-compact looping structure (subschedule) for each of these sub-chains. For a 2-invocation sub-chain \((f_i,f_{i+1}) \), the most compact subschedule is easily determined: if \(f_i = f_{i+1} \), then \((2f_i) \) is the most compact subschedule, otherwise the original (unmodified) subsequence \(f_if_{i+1} \) is the most compact. After the optimal 2-node subschedules are computed in this manner, these subschedules are used to determine optimal 3-node subschedules (optimal looping structures for subschedules of the form \(f_i,f_{i+1},f_{i+2} \)); the 2- and 3-node subschedules are then used to determine optimal 4-node subschedules, and so on until the \(n \)-node optimal subsequence is computed, which gives a minimum code size implementation of the input invocation sequence \(f_1, f_2, \ldots, f_n \).

To understand the general approach for computing optimal subschedules given optimal subschedules for all “lower-order sub-chains,” suppose that \(\sigma = (f_i,f_{i+1},\ldots,f_{i+k}) \) is an arbitrary sub-chain of the input schedule \(f_1, f_2, \ldots, f_n \) \((1 \leq k \leq (n-i)) \), and suppose that optimal subschedules for all \(k \)-node sub-chains are available. An optimal subsequence for \(\sigma \) can be determined by first computing \(C_j \equiv Z_{i,j+1} + Z_{(i+j+1),(i+k)} \), where \(Z_{e,g} \) denotes the minimum code size cost for the sub-chain \((f_e,f_{e+1},\ldots,f_g) \). Any value of \(j \) that minimizes \(C_j \) gives an optimum point at which to “split” the sub-chain \(\sigma \) if \(f_i, f_{i+1}, \ldots, f_{i+k} \) are not to be executed through a single loop.

Thus, it remains only to compute the minimum cost attainable for \(\sigma \) if the entire sub-chain is to be executed through a single loop. This minimum cost can be computed by determining those values of \(m \in \text{divides}(k+1) \), where \(\text{divides}(k+1) \) denotes the set of integers that divide the integer \((k+1)\) (with zero remainder), for which \(\sigma \) is equivalent to the invocation sequence generated by a loop of the form \((m f_1 f_2 \ldots f(k+1)/m) \). For each such \(m \), the code size of the associated single-loop implementation can be expressed as \(C_L + Z_{1,(k+1)/m} \), where \(C_L \) is the code size overhead of looping. If one or more values of \(m \) exist that give single-loop structures for implementing \(\sigma \), then the associated code sizes are compared to determine an optimal single-loop structure, and this optimal single-loop structure is compared to the minimum value of \(C_j \) to determine an optimal looping structure for \(\sigma \). Otherwise, the optimal looping structure for \(\sigma \) is simply taken to be that corresponding to the minimum value of \(C_j \).
The time-complexity of the overall CDPPO algorithm is \(O(n^4) \), where \(n \) is the total number of actor invocations in the input schedule. Our initial experiments with CDPPO indicated that the run time of the algorithm can be high when the algorithm is applied to complex multirate systems. For example, when we applied our implementation of CDPPO to a minimum buffer schedule for a sample-rate conversion application, we observed a run time of 30 seconds. While such run times are acceptable for deterministic scheduling strategies in which CDPPO is applied only once, they are not acceptable in probabilistic algorithms, such as our evolutionary algorithm, that evaluate numerous candidate implementations, and invoke CDPPO for each candidate.

Thus, in our implementation of CDPPO, we have introduced two pairs of parameters \(\alpha_1, \alpha_2 \) and \(\beta_1, \beta_2 \) in the CDPPO algorithm to trade-off the accuracy of the optimization with the required run-time. These parameters are to be set experimentally — based on the specific SDF application under consideration — to yield the desired trade-off. The parameters \(\alpha_1 \) and \(\alpha_2 \) (\(1 \leq \alpha_1 \leq \alpha_2 \)) specify the minimum and maximum sub-chain sizes for which optimal single-loop implementations (loop structures of the form \(m f_1 f_2 \ldots f(k+1)/m \)) will be considered. Similarly, the algorithm parameters \(\beta_1 \) and \(\beta_2 \) specify the minimum and maximum sub-chain sizes for which alternative split positions will be evaluated. For sub-chain lengths less than \(\beta_1 \) or greater than \(\beta_2 \), the split will be taken to be halfway in the middle. We have found that the parameters \(\alpha_1, \alpha_2, \beta_1, \beta_2 \) provide an effective means for systematically trading-off between the run-time of CDPPO, and the code size cost of the resulting looping structures.

5 Evolutionary Multi-objective Optimization

The problem under consideration involves three different objectives: program memory, buffer memory, and execution time. These cannot be minimized simultaneously, since they are conflicting - a typical multi-objective optimization problem. In this case, one is not interested in a single solution but rather in a set of optimal trade-offs which consists of all solutions that cannot be improved in one criterion without degradation in another. The corresponding set is denoted as \textit{Pareto-optimal} set. Mathematically, the concept of Pareto optimality can be defined as follows.

Definition 3 Let us consider, without loss of generality, a multi-objective minimization problem with \(m \) decision variables and \(n \) objectives:

Minimize \(\bar{y} = f(\bar{x}) = (f_1(\bar{x}), \ldots, f_n(\bar{x})) \)

subject to \(\bar{x} = (x_1, x_2, \ldots, x_m) \in X \)

\(\bar{y} = (y_1, y_2, \ldots, y_n) \in Y \)

where \(\bar{x} \) is called the decision vector, \(X \) is the parameter space, \(\bar{y} \) is the objective vector, and \(Y \) is the objective space. A decision vector \(\bar{a} \in X \) is said to dominate a decision vector \(\bar{b} \in X \) (also written as \(\bar{a} \succ \bar{b} \)) iff

\[
\forall i \in \{1, \ldots, n\} : \quad f_i(\bar{a}) \leq f_i(\bar{b}) \quad \land
\]

\[
\exists j \in \{1, \ldots, n\} : \quad f_j(\bar{a}) < f_j(\bar{b})
\]

Additionally, in this study we say \(\bar{a} \) covers \(\bar{b} \) (\(\bar{a} \succ \bar{b} \)) iff \(\bar{a} \succ \bar{b} \) or \(f(\bar{a}) = f(\bar{b}) \). All decision vectors which are not dominated by any other decision vector of a given set
are called nondominated regarding this set. The decision vectors that are nondominated within the entire search space are denoted as Pareto optimal and constitute the so-called Pareto-optimal set or Pareto-optimal front.

Evolutionary algorithms (EAs) seem to be especially suited to multi-objective optimization because they are able to capture multiple Pareto-optimal solutions in a single simulation run and may exploit similarities of solutions by crossover. Some researchers even suggest that multi-objective search and optimization might be a problem area where EAs do better than other blind search strategies (Fonseca and Fleming 1995). The numerous applications and the rapidly growing interest in the area of multi-objective EAs supports this assumption. Moreover, up to now there are few if any alternatives to EA-based multi-objective optimization (Horn 1997).

Several multi-objective EAs have been proposed since 1985, which mainly differ in fitness assignment scheme and the way of maintaining diversity in the population\(^5\). In this study, the Strength Pareto Evolutionary Algorithm (SPEA), a recent technique proposed in (Zitzler and Thiele 1999), is used. In Section 7.2, it is compared with another approach called niched Pareto genetic algorithm (NPGA) (Horn and Nafpliotis 1993). Both methods are briefly described in the following.

5.1 Strength Pareto Evolutionary Algorithm

SPEA maintains besides the regular population an external set of individuals that contains the nondominated solutions of all solutions generated so far. This set is updated every generation and if necessary reduced in size in case the maximum number of members is exceeded. The reduction is accomplished by a clustering technique which preserves the characteristics of the nondominated front.

Fitness assignment is performed in two steps:

Step 1: Each solution \(i\) in the external nondominated set is assigned a real fitness value \(f_i \in [0, 1]\), where \(f_i\) is the number of population members \(j\), for which \(i \geq j\), divided by the population size plus one.

Step 2: The fitness of an individual \(j\) in the population is calculated by summing the fitness values of all external nondominated solutions \(i\) that cover \(j\). One is added to the total in order to guarantee that members of the external set have better fitness than members of the population (note that fitness is to be minimized, i.e., small fitness values correspond to high reproduction probabilities).

Finally, both population and external nondominated set take part in the selection process. Thereby, binary tournament selection with replacement is used to fill the mating pool.

5.2 Niched Pareto Genetic Algorithm

NPGA combines tournament selection and the concept of Pareto dominance. Two competing individuals and a comparison set of \(t_{\text{dom}}\) other individuals are picked at

\(^5\)For reviews of multi-objective evolutionary algorithms, the interested reader is referred to (Fonseca and Fleming 1995; Tamaki, Kita, and Kobayashi 1996; Horn 1997)
random from the population. If one of the competing individuals is dominated by any member of the set and the other is not, then the latter is chosen as the winner of the tournament. If both individuals are dominated (or not dominated), the result of the tournament is decided by fitness sharing (Goldberg and Richardson 1987): The individual which has less individuals in its neighborhood, i.e., within a given distance (defined by the parameter \(\sigma_{\text{share}} \)), is selected for reproduction.

6 Problem Coding

Each genotype consists of four parts which are encoded in separate chromosomes:

1. schedule,
2. code model,
3. actor implementation vector, and
4. loop flag.

The schedule represents the order of actor firings and is fixed in length because the number of firings of each actor is known a priori. Since arbitrary actor firing sequences may contain deadlocks, etc., a repair mechanism is applied in order to map every schedule chromosome unambiguously to a valid schedule. It bases on a topological sort algorithm, and is shown in Figure 8: at each point in time, the leftmost fireable actor is chosen whose maximum number of firings has not been reached yet.

The code model chromosome determines the way how the actors are implemented and contains one gene with three possible alleles: all actors are implemented as subroutines, only inlining is used, or subroutines and inlining are mixed. For the last case, the actor implementation vector, a bit vector, encodes for each actor separately whether it appears as inlined or subroutine code in the implementation.

Finally, a fourth chromosome, the loop flag, determines whether to use loops as a mean to reduce program memory. If the loop flag is set, the CDPPO algorithm (cf. Section 4) is applied to the flat schedule encoded in the individual, otherwise the schedule is not looped. As mentioned in Section 4, CDPPO has four parameters by which the run-time as well as the accuracy can be adjusted. These parameters are set by the user and fixed per optimization run.

Due to the heterogeneous chromosomes, a mixture of different crossover and mutation operators accomplishes the generation of new individuals. For the schedule, order-based uniform crossover and scramble sublist mutation are used (Davis 1991). As illustrated in Figure 9, these operators only permute the actor firing sequence and guarantee that the number of occurrences per actor remains constant. Concerning the other chromosomes, we work with one-point crossover and bit flip mutation (as the code model gene is represented by an integer, mutation is done by choosing one of the three alleles at random).

7 Experiments

Two kinds of experiments were performed: design space exploration for the CDtoDAT example using different processors and comparison of SPEA and NPGA on nine practical examples. In all cases, the following EA parameters were used:
PROCEDURE Repair

IN: permutation : NodeList
 graph : SDFGraph

OUT: toposort : NodeList

BEGIN

topsort := NIL;
WHILE NOT Empty(permutation) DO
 node := First(permutation);
 WHILE node <> NIL
 AND (Indegree(node, graph) > 0 OR IsNotFireable(node)) DO
 node := Next(node, permutation);
 ENDWHILE
 IF node = NIL THEN
 Error("cyclic graph");
 Stop;
 ENDIF
 Remove(node, permutation);
 Append(node, toposort);
 FOR edge IN OutgoingEdges(node, graph) DO
 DeleteEdge(edge, graph);
 ENDDO
 ENDWHILE
END

Figure 8: Repair algorithm for mapping permutations to topological sorts

uniform order-based crossover

1. select parents
2. generate random bit string
3. fill in selected positions
4. collect missing elements in list
5. re-order list
6. fill up children

scramble sublist mutation

1. select individual
2. choose two random positions
3. permute sublist randomly

Figure 9: Order-based uniform crossover and scramble sublist mutation
Moreover, before every run a heuristic called APGAN (acyclic pairwise grouping of adjacent nodes (Bhattacharyya, Murthy, and Lee 1996)) was applied to this problem. The APGAN solution was inserted in two ways into the initial population: with and without looping. Finally, the set of all nondominated solutions found during the entire evolution process was considered as outcome of one single optimization run.

7.1 CDtoDAT Design Space Exploration

SPEA was used to compare the design spaces of the different DSP processors listed in Table 1; thereby, the size of the external nondominated set was unrestricted in order to find as many solutions as possible.

The experimental results are visualized in Fig. 10 to 14. Four times, the parameters of CDPPO were set to \(\alpha_1 = 1, \alpha_2 = \infty, \beta_1 = 10, \beta_2 = 40 \) leading to suboptimal looping (about 5 hours run-time for one EA optimization run on a Sun ULTRA 30), one run has also been made with optimal looping, i.e., maximum accuracy and run-time of the CDPO algorithm (the EA ran about 5 days).\(^7\)

To make the differences between the processors clearer, the plots have been cut at the top without destroying their characteristics.

The trade-offs between the three objectives are very well reflected by the extreme points. The rightmost points in the plots represent schedules that neither use looping nor subroutine calls. Therefore, they are optimal in the execution time dimension, but need a maximum of program memory because for each actor firing there is an inlined code block. In contrast, the leftmost points make excessive use of looping and subroutines which leads to minimal program memory requirements, however at the expense of a maximum execution time overhead. Another extreme point (not shown in the figures) satisfies \(D(S) = 1021 \), but has only little overhead in the remaining two dimensions. It stands for an implementation which includes the code for each actor only once by using inlining and looping. The schedule associated with this implementation is a single appearance schedule.

Furthermore, the influence of looping and subroutine calls is remarkable. Using subroutines does not interfere with buffer memory requirements; there is only a trade-off between program memory and execution time. Subroutine calls may save much program memory, but at the same time they are expensive in terms of execution time. This fact is reflected by "gaps" on the execution time axis in Figures 11 to 13. Looping, however, depends on the schedule: schedules which can be looped well may have high buffer memory requirements and vice versa. This trade-off is responsible for the variations in buffer memory requirements and is illustrated by the points that are close to each other regarding program memory and execution time, but strongly differ in the buffer memory required.

Comparing the three real processors regarding suboptimal looping, one can observe that the ADSP 2106x produces less execution time overhead than the other processors.

\(^6\)The bit vector was mutated with a probability of \(1/L \) per bit, where \(L \) denotes the length of the vector.

\(^7\)Note that this optimization time is still quite low for processor targets assumed to be programmed once and supposed to run an application forever.
which is in accordance with Table 1. Subroutine calls are most frequently used in case of the TMS320C40 because of the high loop iteration overhead.

For processor P1 (Fig. 12), it can be seen that points at the front of minimal program memory require much more program memory than the other processors. This is in accordance with the high penalty in program memory and execution time when subroutines are used. In fact, none of the 186 non-dominated points found used subroutine calls for any actor.

The effect of the looping algorithm on the obtained non-dominated front can be clearly seen by comparing Figs. 13 and 14: Much buffer memory may be saved in case the optimal looping algorithm is used, the trade-off surface becoming much more flat in this dimension. It is also remarkable that a point with program memory requirements of 171 was found lowest as opposed to 961 for a point with lowest program memory requirements when using the suboptimal looping algorithm. As a result, the optimization time spent by the looping algorithm has a big influence on the shape of the non-dominated front.
Figure 12: Processor P1 (suboptimal looping)

Figure 13: Motorola DSP56k (suboptimal looping)

Figure 14: Motorola DSP56k (optimal looping)
Table 2: Comparison of SPEA and NPGA on nine practical examples

<table>
<thead>
<tr>
<th>System</th>
<th>C(SPEA,NPGA)</th>
<th>C(NPGA,SPEA)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>mean</td>
<td>min</td>
</tr>
<tr>
<td>1</td>
<td>99%</td>
<td>97%</td>
</tr>
<tr>
<td>2</td>
<td>98%</td>
<td>93%</td>
</tr>
<tr>
<td>3</td>
<td>94%</td>
<td>78%</td>
</tr>
<tr>
<td>4</td>
<td>99%</td>
<td>95%</td>
</tr>
<tr>
<td>5</td>
<td>99%</td>
<td>96%</td>
</tr>
<tr>
<td>6</td>
<td>91%</td>
<td>79%</td>
</tr>
<tr>
<td>7</td>
<td>97%</td>
<td>89%</td>
</tr>
<tr>
<td>8</td>
<td>98%</td>
<td>93%</td>
</tr>
<tr>
<td>9</td>
<td>97%</td>
<td>90%</td>
</tr>
</tbody>
</table>

7.2 Comparison of SPEA and NPGA

Nine practical DSP applications, which were taken from (Bhattacharyya, Murthy, and Lee 1996), form the basis to compare the performance of SPEA and NPGA. The number of actors of the corresponding SDF graphs varies between 12 and 92, the length of the associated schedules ranges from 30 to 313 actor firings.

To evaluate the performance of the two EAs, a metric introduced in (Zitzler and Thiele 1998) is used here:

Definition 4 Let A and B be two sets of decision vectors. The function C maps the ordered pair (A,B) to the interval [0,1]:

\[C(A,B) := \frac{|\{b \in B : \exists a \in A : a \succeq b\}|}{|B|} \]

(10)

The value \(C(A,B) \) gives the fraction of B that is covered by members of A. Note that both \(C(X',X'') \) and \(C(X'',X') \) have to be considered, since \(C(X',X'') \) is not necessarily equal to \(C(X'',X') \) (e.g., if \(X' \) dominates \(X'' \) then \(C(X',X'') = 1 \) and \(C(X'',X') = 0 \)). Although, this metric does not say anything about the distributions and the distances of the two fronts, it is sufficient here, as the results will show.

On each example, SPEA and NPGA ran in pairs on the same initial population, using optimal looping: then the two resulting nondominated sets were assessed by means of the C function. Altogether, eight of these pairwise runs were performed per application, each time operating on a different initial population. Furthermore, in the SPEA implementation the population size was set to 80 and the size of the external nondominated set was limited to 20. Concerning NPGA, we followed recommendations given in (Horn and Nafpliotis 1993) and chose \(t_{dom} = 10 \) (10% of the population size); the niching parameter \(\sigma_{share} = 0.4886 \) was calculated based on guidelines given in (Deb and Goldberg 1989).
The experimental results are summarized in Table 2. On all nine applications, SPEA covers more than 78% of the NPGA outcomes (in average more than 90%), whereas NPGA covers in average less than 10% of the SPEA outcomes. This means that the fronts generated by SPEA dominate most parts of the corresponding NPGA fronts, whereas only very few solutions found by NPGA are not covered. Since SPEA incorporates an elitist strategy in contrast with NPGA, the results suggest that elitism might be an important factor to improve evolutionary multi-objective search. This observation was also made in (Zitzler and Thiele 1999).

References

