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Abstract
While automatic methods for phonetic segmentation of speech
can help with rapid annotation of corpora, most methods rely
either on manually segmented data to initially train the process
or manual post-processing. This is very time-consuming and
slows down porting of speech systems to new languages. In the
context of prosody corpora for text-to-speech (TTS) systems,
we investigated methods for fully automatic phoneme segmen-
tation using only the corpora to be segmented and an auto-
matically generated transcription. We present a new method
that improves the performance of HMM-based segmentation
by correcting the boundaries between the training stages of the
phoneme models with high precision. We show that, while ini-
tially aimed at single speaker corpora, it performs equally well
for multi-speaker corpora.
Index Terms: speech synthesis, segmentation, boundary cor-
rection

1. Introduction
Phonetically labelled speech corpora are widely used in speech
processing and, consequently, automatic phonetic segmentation
has been widely researched. However, improvement of segmen-
tation methods has focused on reducing the amount of required
manually segmented data, less on completely eliminating hu-
man intervention. In the context of our multi-lingual text-to-
speech system SVOX, we require annotated monolingual cor-
pora of each supported language for the training of the duration
models of the prosodic component [1]. To be able to use the
system also with less widely used languages, the segmentation
process must not rely on the availability of any manually seg-
mented data for the language. Instead, it should use only in-
formation extracted from the corpora to be segmented. Prosody
corpora are normally recorded by professional speakers, so they
contain very few slips and the phones are spoken very consis-
tently. A transcription of the corpus can be obtained in an auto-
matic way from the orthographic text presented to the speaker
with the help of the syntactic component of the TTS system.
Such an automatic transcription does not necessarily reflect the
exact content of the speech signal as the speaker may use dif-
ferent pronunciation variants or rapid speech phenomena like
assimilation may occur.

In summary, we require a segmentation process that is able
to segment a corpus using only corpus data and a transcription.
It must not use any manually annotated data, neither for training
of statistical segmentation models nor during the segmentation
process itself. In addition, it must be robust even in the presence
of transcription errors.

Existing segmentation methods can be grouped into those
that rely on statistical models and those that are text-
independent, i.e. those that try to estimate phone boundaries
from information in the speech signal only. Examples for the

latter are [2], who proposes boundary detection based on jumps
in the feature distance of acoustic features, and [3], who es-
timates boundaries by analysing energy changes in different
spectral bands. While these methods report a very high recall
rate, they suffer from the problem of over-segmentation. The
problem remains to correctly assign the transcription.

Statistical methods can be used if the models can be trained
directly on the corpus to be segmented. Most widely used
are HMMs in forced-alignment mode. The phone models can
be flat-start initialized and then trained directly on the corpus.
However, the resulting segmentation is less accurate than when
manually segmented training material is used (see e.g. [4]). [5]
reported better results by using a hierarchical method, segment-
ing into broader phonetic classes first.

Various methods have been proposed to improve HMM-
based segmentation. The largest group uses statistical models,
for example, [6] proposes regression trees, [7] applies statisti-
cal error models followed by a boundary correction using neu-
ral networks. These approaches improve boundaries well but
are not suitable for a fully automated segmentation approach,
as the training of these statistical correction models again re-
quires manually segmented training material. [8] proposes a
text-independent method for boundary correction. The spectral
discontinuity in the signal is computed and the boundaries are
moved to the closest local maximum. They report a very high
error rate for the correction and propose to impose empirically
determined limits on how much a boundary can be moved by
the correction process, again requiring human intervention.

We propose a boundary-correction algorithm similar to [8].
It relies on the local feature distance between adjacent phones
and allows to predict the correct boundary with a much smaller
error rate. In addition, we propose to embed the correction into
the HMM training process to improve the quality of the phone
models. The following section gives an overview of the seg-
mentation process, after which the processing of the automatic
transcription and the boundary correction is discussed in detail.
Finally, the method is evaluated on a prosody corpus and the
TIMIT speech database.

2. Overview of the segmentation process
An important reason for the worse performance of flat-started
phone models in comparison to models trained on manual seg-
mentation is that an unrestricted iterative embedded training is
performed on data that is badly balanced in terms of phonetic
context. The frequency of phoneme pairs in the corpus is de-
termined by the language of the corpus. If a phoneme occurs
very frequently in the same context then this fact is ’learned’ by
the HMM by including part of the context in the model. Dur-
ing segmentation it results in a systematic error in the boundary
placement. Table 1 shows the percentage of correct boundaries
within a 5ms and 20ms deviation for a HMM-based segmen-
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Max. deviation Mis-
HMM training method 5ms 20ms aligned
isolated phoneme training 51.13 89.50 0.59
embedded training 44.67 87.87 0.56
flat-start init. + embedded tr. 41.96 85.36 0.46

Table 1: Segmentation performance for various HMM train-
ing methods trained on the TIMIT corpus. Percentage of cor-
rectly placed boundaries for different maximum deviations and
of misaligned labels, i.e. labels not overlapping with those in
the reference segmentation.

tation that uses manually segmented data and the performance
after the same models have been further trained for 40 itera-
tions using embedded training. The boundary correctness has
decreased significantly after the embedded training.

To avoid this issue, we divide the segmentation process in
two stages as depicted in Figure 1. The first stage uses the au-
tomatic transcription as a basis. The phone models are flat-start
initialized and iteratively trained using embedded training. A
segmentation is produced via forced alignment and, at the same
time, optional silences, plosive pauses and glottal stops inserted.
The boundaries of the resulting segmentation are corrected, re-
sulting in a preliminary segmentation that is the base for the
next stage.

In the second stage, the phone models are estimated from
the preliminary segmentation using isolated-unit training only,
thus the models retain the boundary information. Another seg-
mentation is computed, the insertion of silences, glottal stops
and plosive pauses is reevaluated and the boundaries are cor-
rected giving the final segmentation. The second stage can be
repeated, if required.

3. HMM-based segmentation
The objective of the HMM-based segmentation is to obtain a
segmentation where the phones are placed as close as possible
to their true position. Experiments showed that the most sta-
ble results are obtained with 5-state left-to-right linear models
with features computed every 4ms over a 20ms window. This
results in a minimum length of 20ms for each phone. The fea-
tures are comprised of the commonly used set of the first 12
MFCC coefficients, log energy and their first-order derivatives.
Only one Gaussian mixture was used as the targeted corpora
consists of only one speaker speaking with high consistency.
The HMM-based segmentation process was implemented with
the HTK toolkit [9].

3.1. Extending the automatic transcription

The automatic transcription determines the phoneme set present
in the final segmentation and thus the set of phone models. Each
phoneme is mapped to one phone model with the exception of
diphthongs and affricates. Diphthongs contain two stable re-
gions, splitting them into two parts improves the boundary cor-
rection algorithm below. Affricates are handled like fricatives
with plosive pauses in front.

Silences, glottal stops and plosive pauses require special
handling. As the speaker has a high degree of freedom in how to
realise them, they do not appear in the automatic transcription.
They must be added to the segmentation for two reasons: first,
they are required for the training of the prosodic models which
should learn how they are realised. Second, they are very dif-
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Figure 1: Complete segmentation process. The first stage on the
left prepares a segmentation, which in the second stage on the
right is used for training of HMMs.

ferent from the rest of the phoneme set. Having separate mod-
els improves therefore both, HMM-based segmentation and the
boundary correction.

The realisations of silences and glottal stops can be learned
and determined during the HMM-based segmentation. Silence
models are initially trained from the silences at the beginning
and end of the utterances, glottal stop models from manda-
tory glottal stops as transcribed. If no mandatory glottal stops
exist, a heuristic needs to be used. Experiments showed that
the assumption that there is a glottal stop between each silence
and vowel is sufficient. The actual placement of the phonemes
is then determined by introducing variants during the forced-
alignment process. Optional silences are added after each word
and optional glottal stops in front of each syllable that begins
with a vowel.

3.2. Plosive splitting

The plosive-pause model cannot be trained like the silence
model. If plosive pauses are added in front of each plosive for
the initial training, the left context of plosives is restricted to
plosive pauses only. As explained in section 2, this causes parts
of the pause to be trained into the plosive models. Therefore,
the plosive models are trained to contain the plosive pause in
the first stage and phones are subsequently split into pause and
plosion.

The splitting algorithm has to take into account that plosives
may not be realized because of fusion or elision. In that case
only a silence will be seen. It can also be observed, albeit less
frequently, that the plosive pause is omitted, for example, after
fricatives.

As the boundary between pause and plosion is normally vis-
ible over the entire spectrum, it is sufficient to search for jumps
in the overall spectral energy. For each frame in the plosive, the
difference in the spectral energy over a 30ms window on both
sides of the frame is computed. If the resulting function con-
tains a peak and its maximum value is above 0, the phoneme is
split at the position of the maximum. Otherwise, a heuristic is
used to determine the nature of the phone: if its mean energy is
below the mean energy of the silences in the utterance, a plo-
sive pause is assumed, otherwise a plosion. Finally, where the
splitting process created any succeeding plosive pauses, they are
fused together.
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Figure 2: Feature-distance digram (a), reference segmentation
(b) and distribution of boundary placement (c) for phrase ’she
took one’.

4. Boundary correction
Phone boundaries can be considered as a transition phase be-
tween relatively stable centers of the phones and as such are
very well visible in a frame-to-frame similarity matrix. Figure
2 (a) shows such a matrix for the phrase she took one. This
property can be used to locally correct the boundary between
two phones.

Given two adjacent phones pi and pi+1, the boundary is
located between the perceptual centers of these phones. We
call these centers core frames. Given the core frames ci and
ci+1, the ideal boundary is placed such that all frames to the
left are closer to the left core frame and all frames to right are
closer to the right core frame. Such a boundary does not nec-
essarily exist, so we compute the best boundary as follows: if
xci

, ..., xci+1
is the series of feature vectors between the two

core frames, the confident boundary b̂i,i+1 from the left core
frame and b̂i+1,i from the right core frame are computed as

b̂i,i+1 = b | D(xci
, xb) ≥ D(xci+1

, xb) ∧ (1)
∀
ˆ
ci < f < b : D(xci

, xf ) < D(xci+1
, xf )

˜
b̂i+1,i = b | D(xci

, xb) ≤ D(xci+1
, xb) ∧ (2)

∀
ˆ
b < f < ci+1 : D(xci

, xf ) > D(xci+1
, xf )

˜
where D(x,y) is the Euclidean distance between two feature vec-
tors x and y. Then, the final boundary between the phones pi

and pi+1 is

bi,i+1 =

—
b̂i,i+1 + b̂i+1,i

2

�
(3)

If the core frames are located in the true center of each
phone, the boundaries will be placed as expected: on jumps in
the distance function, if there is one, and equidistant from both
core frames otherwise. However, the position of the core frames

needs to be estimated from the placement of the phones in the
imperfect preliminary segmentation. In order to evaluate how
strongly the boundary function depends on the correct choice
of the core frames, we computed the boundaries for any two
frames from two adjacent phones from the reference segmen-
tation. Figure 2(c) shows the result for the example phrase she
took one. There is a clear preference of frames close to the ref-
erence boundaries. Therefore, choosing any frame that is close
to the center of the phone is sufficient as core frame.

Assuming that the HMM-based segmentation has placed
the phones in the right vicinity, we compute the frame that is
most typical of the ones in the phone, i.e. that is closest to all
other frames. The core frame ci of a phone pi with the prelimi-
nary boundaries b′i and b′i+1 is then

ci = argmin
b′
i
<f<b′

i+1

`
median

b′
i
<f ′<b′

i+1

D(xf ′ , xf )
´

(4)

where D(x, y) is again the Euclidean distance. A median is
used instead of a mean to be more robust against noise in the
signal.

In contrast to the HMM-based segmentation, where rela-
tively coarse features are required to minimize segmentation er-
rors, the boundary correction yields the best results with short-
term features computed every 1ms over a 10ms window. Ex-
periments show that perceptional features give slightly better
results. The first 12 PLP coefficients as computed by the HTK
toolkit together with normalized log energy are used.

5. Evaluation
The segmentation process was evaluated against a German
prosody corpus recorded in our group and against the TIMIT
Continuous Speech Corpus ([10]). We evaluated the precision
of boundary placement on the one side, and the robustness of
the segmentation on the other side, the latter by evaluating the
number of misaligned labels, that is, labels that have no overlap
in time with the corresponding labels from the reference seg-
mentation.

5.1. Prosody corpus segmentation

The German prosody corpus consists of 186 sentences spoken
by one male professional speaker sampled at 16kHz. A manual
segmentation of the entire corpus was available from a previous
project. The automatic transcription of the corpus is very close
to the manual transcription. Differences are mostly related to
optional glottal stops.

The corpus is very small for the training of the HMM.
The phone models from the first stage generalize badly, which
causes 0.9% of the phones to be misaligned. The boundary cor-
rection allows better models to be trained in the second stage.

Max. deviation Mis-
stage 5ms 10ms 20ms aligned
HMM (1st stage) 40.23 66.61 86.61 0.93
HMM (2nd stage) 46.39 71.58 89.06 0.66
with bnd. correction 53.03 72.04 89.14 0.43
10th iteration 53.47 72.70 89.45 0.29

Table 2: Segmentation of German prosody corpus. Percentage
of correctly set boundaries for different maximum deviations
after HMM-based segmentation in 1st and 2nd stage, after cor-
rection in 2nd stage and after 10th iteration of 2nd stage.
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That is why the iteration of the second stage does not suffer
from diverging boundaries like embedded HMM training with-
out correction does. The iteration process further reduces the
number of misalignments by 47% after 10 iterations.

The boundary correctness of 89% within a 20ms deviation
is close to the performance of similar HMMs trained with man-
ually segmented data reported by e.g. [4] or [6]. Segmentation
of a larger corpus is expected to perform equally well. With a
correctness of 53% for a 5ms maximum deviation the boundary
correction clearly outperforms any HMM-based segmentation
in terms of precision.

5.2. TIMIT corpus segmentation

In order to evaluate the robustness of the segmentation with re-
spect to imprecise transcription, we also segmented the TIMIT
speech corpus of American English. The corpus differs from
the targeted prosody corpora in that it was recorded from mul-
tiple speakers without professional training speaking multiple
dialects. We used all 1344 sentences from the test set spoken by
168 different speakers of 6 different dialect regions. To compen-
sate for the resulting greater phoneme variety the phone mod-
els have been trained with 4 Gaussian mixtures. Otherwise the
HMM configuration was the same as described in section 3.

We did two sets of experiments, the first using manual, the
second automatic transcription. We used the standard TIMIT
phoneme set as defined in the lexicon. Where the reference
segmentation distinguished additional phoneme variants, they
were mapped to their closest counterpart from the standard set.

The manual transcription was taken directly from the refer-
ence segmentation including silences, glottal stops and plosive
pauses. The plosive splitting algorithm was applied nonethe-
less. The automatic transcription was produced with the TIMIT
lexicon and the word list provided for each sentence. If there
was more than one transcription for a word one was chosen ran-
domly.

Table 3 shows the results. Boundary correction improves
the segmentation by 2.3% relative for manual and 3.0% rela-
tive for automatic transcription for a 20ms maximum deviation.
[8] reported only 1.8% relative improvement, but on a segmen-
tation with a higher baseline. The results are similar to those
achieved on the prosody corpus. That shows that the correction
works equally well for corpora with a higher variety in segmen-
tal quality.

For both experiments, the number of misaligned labels is
reduced after boundary correction, making the method very ro-

Max. deviation Mis-
segmentation method 5ms 10ms 20ms aligned
Manual transcription
HMM (1st stage) 41.96 67.57 85.36 0.46
HMM (2nd stage) 49.43 73.44 88.22 0.48
with bnd. correction 54.26 77.09 90.23 0.40
after 5th iteration 54.21 76.92 90.07 0.41
Automatic transcription
HMM (1st stage) 36.69 61.26 80.17 0.82
HMM (2nd stage) 47.82 71.08 85.80 1.17
with bnd. correction 53.48 75.58 88.40 1.16
after 5th iteration 53.36 75.41 88.36 1.16

Table 3: Segmentation of TIMIT corpus. Percentage of correct
boundaries and percentage of misaligned labels after the differ-
ent segmentation stages.

bust against transcription errors. Additional errors are intro-
duced by the HMM-based segmentation in the second stage,
though, most probably, because the more precisely trained mod-
els are less flexible in skipping over transcription deviations. In-
creasing the Gaussian mixtures to allow more variation counters
the effect in the case of manual transcription but not for the au-
tomatic one. Introduction of variants may be necessary instead.

The boundary correction performs better than the statistical
correction proposed in [7]. However, the boundary refinement
based on neural networks in [7] as well as the regression tree
refinement investigated in [6] outperform our method in terms
of total precision. This is not very surprising because statistical
boundary corrections learn the particularities of the manual seg-
mentation they are trained on while a text-independent correc-
tion method relies on properties of the signal only, which might
disagree with the human labeler. Whether a higher agreement
with the reference is desirable, eventually depends on what the
segmentation is used for.

6. Conclusion
In this paper, we presented a phonetic segmentation method
that is completely independent of manually segmented data,
making it suitable for efficient segmentation of corpora in lan-
guages where no reference data is available. We showed that a
boundary correction, that relies on signal properties only, can
reduce the systematic errors made during HMM-based segmen-
tation thus resulting in phone models better suited for the seg-
mentation task. The boundary correction further allows to set
very precise boundaries which is important for exact training of
prosodic duration models.
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