Overview

- Scheduling with real-time constraints:
 - Table with some known algorithms:

<table>
<thead>
<tr>
<th></th>
<th>Equal arrival times</th>
<th>Arbitrary arrival times</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>non preemptive</td>
<td>preemptive</td>
</tr>
<tr>
<td>Independent tasks</td>
<td>EDD (Jackson)</td>
<td>EDF (Horn)</td>
</tr>
<tr>
<td>Dependent tasks</td>
<td>LDF (Lawler)</td>
<td>EDF* (Chetto)</td>
</tr>
</tbody>
</table>

Earliest Deadline Due (EDD)

- Jackson’s rule: Given a set of n tasks. Processing in order of non-decreasing deadlines is optimal with respect to minimizing the maximum lateness.

- Proof concept:

\[L_{\text{max}} = f_a \cdot d_a \]

If \(J_a \geq J_b \), then
\[L_{\text{max}} = f_a \cdot d_a < f_a \cdot d_b \]

If \(J_a \leq J_b \), then
\[L_{\text{max}} = f_b \cdot d_b < f_a \cdot d_b \]

In both cases: \(L_{\text{max}} < L_{\text{max}} \)

Example 1:

<table>
<thead>
<tr>
<th></th>
<th>J_1</th>
<th>J_2</th>
<th>J_3</th>
<th>J_4</th>
<th>J_5</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>d</td>
<td>3</td>
<td>10</td>
<td>7</td>
<td>8</td>
<td>5</td>
</tr>
</tbody>
</table>

\[L_{\text{max}} = L_4 = 0 \]
Earliest Deadline Due (EDD)

Example 2:

<table>
<thead>
<tr>
<th>J1</th>
<th>J2</th>
<th>J3</th>
<th>J4</th>
<th>J5</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>d1</td>
<td>2</td>
<td>5</td>
<td>4</td>
<td>8</td>
</tr>
</tbody>
</table>

Earliest Deadline First (EDF)

Horn’s rule: Given a set of n independent tasks with arbitrary arrival times, any algorithm that at any instant executes the task with the earliest absolute deadline among the ready tasks is optimal with respect to minimizing the maximum lateness.

Concept of proof: For each time interval \([t, t+1] \), it is verified, whether the actual running task is the one with the earliest absolute deadline. If this is not the case, the task with the earliest absolute deadline is executed in this interval instead. This operation cannot increase the maximum lateness.

Used quantities and terms:
- \(\sigma(t) \) identifies the task executing in the slice \([t, t+1]\)
- \(E(t) \) identifies the ready task that, at time \(t \), has the earliest deadline
- \(t_E(t) \) is the time \((\geq t)\) at which the next slice of task \(E(t) \) begins its execution in the current schedule
Earliest Deadline First (EDF)

- **Guarantee:**
 - worst case finishing time of task i: $f_i = \sum_{k=1}^{i} c_k(t)$
 - EDF guarantee condition: $\forall i = 1, \ldots, n \sum_{k=1}^{i} c_k(t) \leq d_i$
 - algorithm:

    ```
    Algorithm: EDF_guarantee (J, Jnew)
    { J'=J \cup \{Jnew\}; /* ordered by deadline */
      t = current_time();
      f_0 = 0;
      for (each Ji \in J') {
        f_i = f_{i-1} + c_i(t);
        if (f_i > d_i) return(INFEASIBLE);
      }
      return(FEASIBLE);
    }
    ```

Earliest Deadline First (EDF*)

- The problem of scheduling a set of n tasks with precedence constraints (concurrent activation) can be solved in polynomial time complexity only if tasks are preemptable.
- The EDF algorithm minimizes the maximum lateness in the case of tasks with precedence constraints if the timing parameters are modified adequately.
- By the modification it is guaranteed that if there exists a valid schedule at all then
 - a task starts execution not earlier than its release time and not earlier than the finishing times of its predecessors (a task cannot preempt any predecessor)
 - all tasks finish their execution within their deadlines

Earliest Deadline First (EDF*)

- **Modification of release times:**
 - Task must start the execution not earlier than its release time.
 - Task must start the execution not earlier than the minimum finishing time of its predecessor.
 - Solution: $r_j^* = \max(r_j, \max(r_i^* + C_i : J_i \rightarrow J_j))$
Earliest Deadline First (EDF*)

- **Modification of deadlines:**
 - Task must finish the execution time within its deadline
 - Task must finish the execution not later than the maximum start time of its successor

- **Solution:**
 \[d_i^* = \min(d_i, \min(d_j^* - C_j : J_i \to J_j)) \]

Algorithm for modification of release times:
1. For any initial node of the precedence graph set \(r_i^* = r_i \)
2. Select a task \(j \) such that its release time has not been modified but the release time of all immediate predecessors \(i \) have been modified. If no such task exists, exit.
3. Set \(r_j^* = \max(r_j, \max(r_i^* + C_i : J_i \to J_j)) \)
4. Return to step 2

Algorithm for modification of deadlines:
1. For any terminal node of the precedence graph set \(d_i^* = d_i \)
2. Select a task \(i \) such that its deadline has not been modified but the release time of all immediate successors \(j \) have been modified. If no such task exists, exit.
3. Set \(d_i^* = \min(d_i, \min(d_j^* - C_j : J_i \to J_j)) \)
4. Return to step 2

Earliest Deadline First (EDF*)

- **Proof concept**
 - Show that if there exists a feasible schedule for the modified task set under EDF then the original task set is also schedulable.
 - To this end, show that the original task set meets the timing constraints. This can be done by using \(d_i^* \leq d_i \), \(r_i^* \geq r_i \).
 - In addition, show that the precedence relations in the original task set are not violated. In particular, show that
 - a task cannot start before its predecessor and
 - a task cannot preempt its predecessor.