Embedded Systems

4a. Example Network Processor

Lothar Thiele
Contents of Course

1. Embedded Systems Introduction

2. Software Introduction
3. Real-Time Models
4. Periodic/Aperiodic Tasks
5. Resource Sharing
6. Real-Time OS

7. System Components
8. Communication
9. Low Power Design

10. Models
11. Architecture Synthesis
12. Model Based Design

Software and Programming
Processing and Communication
Hardware
How to Schedule the CPU cycles meaningfully?

- Differentiating the level of service given to different flows
- Each flow being processed by a different processing function
Our Model – Simple NP

- Real-Time Flows (RT)
- Best Effort Flows (BE)

![Diagram showing packet processor and streams from RT and BE flows]

- Real-time flows have deadlines which must be met
- Best effort flows may have several QoS classes and should be served to achieve maximum throughput
Task Model

- Packet processing functions may be represented by directed acyclic graphs
- End-to-end deadlines for RT packets
Architecture

Input ports

Classifier

F1

F2

F3

Fn

Real-time Flows

Packet Processing functions

Output ports

CPU Scheduler

Best effort flows

Real-time Flows

Packet Scheduler

Best effort flows
CPU Scheduling

- First Schedule RT, then BE (background scheduling)
 - Overly pessimistic

- Use **EDF Total Bandwidth Server**
 - EDF for Real-Time tasks
 - Use the remaining bandwidth to serve Best Effort Traffic
 - WFQ (weighted fair queuing) to determine which best effort flow to serve; not discussed here …
CPU Scheduling

Real-time Flows

Packet Processing functions

Has Deadlines

Use EDF

Assign Deadline using remaining CPU bandwidth

One Packet out

Classifier

F_1

F_2

F_3

...

F_n

WFQ

Best effort flows
CPU Scheduling

As discussed, the **basis is the TBS**:

\[d_k = \max\{r_k, d_{k-1}\} + \frac{c_k}{U_s} \]

- computation demand of best effort packet
- deadline of best effort packet
- arrival of best effort packet
- utilization by real-time flows

But: utilization depends on time (packet streams)!

- Just taking upper bound is too pessimistic
- Solution with time dependent utilization is (much) more complex – BUT IT HELPS …
CPU Scheduling

Before

a) plain best effort + EDF scheme

end-to-end packet delay [sec]

deadline

RT flows
CPU Scheduling

- After

```
c) approximation with two segments

RT video flow

simulation time [sec]
```

deadline RT flows

```
c) approximation with two segments

NRT ftp flow

RT video flow

simulation time [sec]
```