Embedded Systems

4a. Example Network Processor

Lothar Thiele
Contents of Course

1. Embedded Systems Introduction

2. Software Introduction
3. Real-Time Models
4. Periodic/Aperiodic Tasks
5. Resource Sharing
6. Real-Time OS

7. System Components
8. Communication
9. Low Power Design

10. Models
11. Architecture Synthesis

12. Model Based Design

Software and Programming Processing and Communication Hardware
Software-Based NP

Network Processor: Programmable Processor Optimized to Perform Packet Processing

- How to Schedule the CPU cycles meaningfully?
 - Differentiating the level of service given to different flows
 - Each flow being processed by a different processing function
Our Model – Simple NP

- Real-Time Flows (RT)
- Best Effort Flows (BE)

- Real-time flows have deadlines which must be met
- Best effort flows may have several QoS classes and should be served to achieve maximum throughput
Packet processing functions may be represented by directed acyclic graphs.

End-to-end deadlines for RT packets.
Architecture

Input ports

Classifier

F1

F2

F3

Fn

Real-time Flows

Packet Processing functions

Output ports

Packet Scheduler

Best effort flows

CPU Scheduler

Real-time Flows

Best effort flows
CPU Scheduling

First Schedule RT, then BE (background scheduling)
- Overly pessimistic

Use EDF Total Bandwidth Server
- EDF for Real-Time tasks
- Use the remaining bandwidth to server Best Effort Traffic
- WFQ (weighted fair queuing) to determine which best effort flow to serve; not discussed here ...
CPU Scheduling

Real-time Flows

Packet Processing functions

Classifier

F_1

F_2

F_3

... F_n

Has Deadlines

Use EDF

Assign Deadline using remaining CPU bandwidth

WFQ

Best effort flows

One Packet out

CPU Scheduling

Swiss Federal Institute of Technology

Computer Engineering and Networks Laboratory
As discussed, the **basis is the TBS:**

\[d_k = \max\{r_k, d_{k-1}\} + \frac{c_k}{U_s} \]

- computation demand of best effort packet
- deadline of best effort packet
- utilization by real-time flows
- arrival of best effort packet

But: utilization depends on time (packet streams)!

- Just taking upper bound is too pessimistic
- Solution with time dependent utilization is (much) more complex – BUT IT HELPS …
CPU Scheduling

Before

- plain best effort + EDF scheme

- deadline RT flows

end-to-end packet delay [sec]
CPU Scheduling

After

c) approximation with two segments

deadline RT flows

simulation time [sec]

RT video flow

nRT ftp flow

RT video flow