Using TinyOS on BTnodes

A little more than porting to another platform...

Jan Beutel
Outline

Devices
- BTnode rev3 architecture details

Software
- Current state of TinyOS 1.x
- Porting TinyOS 1.x onto the BTnode rev3

Cross platform applications
- Interfacing Motes and BTnodes using Surge
- Experiences with TinyOS – Outlook to TinyOS 2.x
New BTnode rev3: a lightweight dual radio platform

BTnode success story

- Running both, TinyOS and the BTnut system software
- Prototyping Wireless Sensor Networks with BTnodes [EWSN2004]
- 3rd generation node commercialized with industrial partners AoT and Iftest
- Open-source policy has led to commercial replicas (Cobalt Blue by Vitronics)
BTnode rev3 architecture details

System core
- Atmel ATmega128, AVR RISC, 8 MIPS @ 8 MHz, 128 kB Flash, 64 kB SRAM, 180 kB data cache, 4 kB EEPROM
- 4 LEDs, reset button
- External DC supply or 2 AA cells with on/off switch
- Generic sensor interfaces

Bluetooth radio
- Zeevo ZV4002, supporting AFH/SFH Scatternets with max. 4 Piconets/7 Slaves, BT v1.2 compatible

Low-power radio
- Chipcon CC1000 operating in ISM Band 433-915 MHz
Related development on TinyOS 1.x

TOS 1.x radio interfaces are bit-stream oriented

Tinybt – TinyOS on BTnodes rev2
- Proof of concept and benchmarks

Imotes – TinyOS with Bluetooth and 802.15 radios
- Using ARM7 and PXA273 processors

Telos – 802.15 radio
- Link oriented stack
TinyOS Integration: BTnode rev3 platform definition

TinyOS 1.x prerequisites

- Platform definitions, radio stacks and applications separated
- New platform definition and drivers integrated into build system
- Driver functions often application dependant
Interfacing Motes and BTnodes

Seamless interoperation using TinyOS standard applications

- Blink, RfmToLeds, CntToRfm, CntToLedsAndRfm
- 3 BTnodes and 2 Mica2 Motes interoperate on Surge (no sensors)
- 1-click build from same application code

```c
module BlinkM |
  previous { |
    interface StdControl;
  } |
  user { |
    interface Timer;
    interface Leds;
  } |
  command result StdControl.init() |
    call Leds.init();
    return SUCCESS;
  command result StdControl.start() |
    // Start a repeating timer that fires every 1000usec
    call Timer.start(TIMER_REPEAT, 1000);
  command result StdControl.stop() |
    return call Timer.stop();
  event result Timer.fire() |
    call Leds.toggle();
    return SUCCESS;
```

make btnode3
make mica2
Experiences – TinyOS on the BTnode rev3

Basics are working: BTnode rev3 is a Mica2 replacement

- Cooperation with Uni Copenhagen/ P. Bonnet
- BTnode3 platform definition available in contrib/tinybt
- Hard to “just port” without an application requirement because of hardware dependencies in the software
- tinyos-1.x – 162 MB CVS nightmare
- nesC makes debugging harder, complexity is hidden within
Experiences 2 – beyond the proof-of-concept

Emerging (open) standards?

- Monthly TinyOS 1.1.x developer releases
- Stable “even” deployment release: TinyOS 1.2
- nesC 1.1 -> 1.2 major revision with new features is breaking compatibility

A clean break for a new architecture: TinyOS 2.x

- Recently a lot of “back to the roots” discussion in the 2.0 WG – component based – platform design – hardware independence – compatibility – robustness – reuse – many new platforms
- Fixing many well known problems (multiple threads/tasks, RT issues, abstractions, modularity)
- TinyOS Enhancement Proposals: Open discussion
- Beta is available – looks very promising
Acknowledgements

Attila Dogan – term thesis @ ETHZ

Manatee Project – University of Copenhagen
 - Philippe Bonnet, Mads Dydensborg, Martin Leopold, Klaus Madsen

Imote Project – Intel Research
 - Ralph Kling

TinyOS 2.x Working Group – UC Berkeley...

BTnode Team @ ETHZ
To probe further...

HTM

BTnodes – A Distributed Environment for Prototyping Ad Hoc Networks

Welcome to the BTnode Platform

Overview

The BTnode is an autonomous wireless communication and computing platform based on a Bluetooth radio and a microcontroller. It serves as a demonstration platform for research in mobile and ad hoc connected networks (PANETs) and distributed sensor networks. The BTnode has been jointly developed at ETH Zurich and the Computer Engineering and Networks Laboratory (ETZ) and the Information Group for Distributed Systems. Currently, the BTnode is primarily used in two major research projects: XENIC [13] and SMARTEX.

The Bluetooth radio is the same as used in the Bluetooth Minimates, allowing the BTnodes’ a tour of both the old and the new BTnode. Both radios can be operated simultaneously or be independently powered off completely, when no Bluetooth devices are connected using the USB power consumption of the device.

News

- Project: Deployment Support Network (Dovetail Tapping, Control, Extensions)
- BTnode login datapoint and data uploading (modified space)
- New Bluetooth System Software (Bluetooth function)
- BTnodes available online for external connection
- BTnodes available online for external connection

BTnode overview at a glance

- Microcontroller: ATmega 328 (8 MHz @ 5 V)
- Memory: 8KB x 8, 1KB x 8 (I/O), 1KB x 8 (SRAM), 1KB x 8 (Flash)
- Bluetooth subsystem: ZF9590, supporting a USB connection with a driver (Virtual COM, BT compatible)
- Two-port Ethernet: IEEE 802.3ab, compatible with propiety drivers, BT4.1 compatible
- Two-port Ethernet: IEEE 802.3ab, compatible with propiety drivers, BT4.1 compatible
- Two-port Ethernet: IEEE 802.3ab, compatible with propiety drivers, BT4.1 compatible
- Two-port Ethernet: IEEE 802.3ab, compatible with propiety drivers, BT4.1 compatible
- Standard C Programming, TinyOS compatible

Quickstart

To get started, visit the following websites before you can start developing applications for the BTnodes:

- Download and install the development tools and the TinyOS System Software
- Buy a hardware programmer, the modules for the ethernet size
- Download the drivers for the Bluetooth device that can be used in simulation mode
- Compile and download your first example application

http://www.btnode.ethz.ch
Backup: BTnode rev3 additional information

Power Budget on typical AA cells (2x1.2V, 2500mAh)
- 0.5 – 150 mA current consumption
- ~80% efficiency in up-conversion to 3.3V
- Non power-aware apps can last a few days on batteries
- Power optimized apps can last many weeks depending on duty cycle

Commercialization
- **Availability** samples now, volume Q1/2005
- **Pricing** USD 215/EUR165/CHF255 for samples, larger quantities upon request
- **Contract Manufacturer** Art of Technology, Zurich, Switzerland