PermaSense III & Observability by Design

Jan Beutel, ETH Zurich
With input from Stephan Gruber, UniZH and Kay Roemer, ETH Zurich
PermaSense III – Objectives

- Establishing a *highly reliable and dependable wireless infrastructure* for sensor and actuator networks in *extreme environmental conditions*
 - Terrain movement, evolution of slope stability
 - Long periods of unsupervised operation
 - Limited power sources
 - Maximizing data yield

- Combining *sensor and actuator functionality*

- Paving the road for *future applications in early warning*
PermaSense III – New Horizons

- Multitude of (new) sensors
 - Precision movement detection
 - Resistivity tomography
 - Micro-seismic events
 - High resolution imaging

- Large variety of time scales
 - Real-time actuation and sensing for fast processes
 - Long term for slow processes

- Remote locations
 - No possibility of physical repair/update
 - No infrastructure
 - Sensor node in a pocket
PermaSense III – Acoustic Emission Sensing

- Pilot campaign 04/2010
 - Standard lab equipment with long coaxial cables on Jungfraujoch research station
 - Collaboration with D. Amitrano (U Grenoble)
 - Assessment of small-scale variability -> detailed model

Sensors: Piezo microphone ~150 kHz
Initial Acoustic Emission Data from Jungfraujoch
Observation – Known Scaling Behavior

![Graph showing scaling behavior](image.png)
PermaSense III – Challenges

- Understanding the relevant processes of rock fracturing by ice formation
- Modeling and model validation by measured data
- Identification of suitable measurement techniques
- (Low-power) sensors for distributed acoustic emission measurements
 - High sampling rates (raw data vs. preprocessing)
 - Low-power wireless sensors (batteries or energy scavenging?)
Observability by Design – Objectives

- Sensor networks are fragile
 - Harsh environment, scare resources

- Our goal: To make sensor networks observable
 - Minimal or no interference
 - Systematic and methodology-based
 - Facilitate deployment
 - Improve reliability
A Tool Framework for Observability?

- Energy/resource budget
- Protocols include extra bits of state info in protocols
- Observable state
- Back annotation
- Trace analysis
- Generator
- Executable code
- Observable requirements

Application
Observability – Performance Analysis

Sensor Network

Feedback

SN Data

System/Error Model

System Status

Packet Analysis

Filtered, annotated data

Analysis

User domain Research
Observability – Ongoing/Future Work

- **Tools**
 - Generating event based code from threads
 - Automated communication protocol parameter exploration
 - FlockLab testbed (Multi context tracing)

- **Mechanisms and Concepts**
 - Resource usage vs. observability tradeoff
 - In-system intelligence (online health monitoring)
 - Conformance (model based) testing of trace data
 - Time triggered system architectures