Scheduling of “On-Chip Shared Resources” on Multicores for Predictability

Wang Yi
Joint work with Pontus Ekberg, Guan Nan & Martin Stigge
Uppsala University

UPMARC
Uppsala Programming for Multicore Architectures Research Center
Multi-core Architecture

L2 Cache

L2 caches
Bandwidth
Cores

Shared Resources

Off-chip memory

Bandwidth
What are we doing now in Uppsala?

- **Cache partitioning/Cache-Aware-Scheduling** [EMSOFT 09]
 - for task-level timing analysis, Use existing techniques e.g. aiT/Absint
 - for system-level timing analysis, Use RTA techniques - response time analysis for multiprocessor scheduling e.g. [RTSS 09]

- **Scheduling of Bandwidth/Bus Access**
 - (in progress)

- **Multiprocessor Scheduling**
 - Mainly “theory work” but hope for “insightful results”
 - We have developed a fixed-priority algorithm for multiprocessor scheduling with Liu & Layland’s utilization bound – [submitted RTAS 2010]
UPMARC Research Areas
10 Millions $, 10 years @ Uppsala

Applications & Algorithms
- Climate simulation
- PDE solvers
- Parallel algorithms for RT signal processing
- Parallelization of network protocols

Language Technology, Verification
- Erlang, language constructs/libraries, run-time systems
- Static analysis, Model-checking, testing, UPPAAL

Resource Management
- Efficiency: soft RT applications
- Predictability: hard RT applications
- Both hard & soft RT applications
Real-Time Control Systems

the software contains both Hard and Soft RT tasks

- Migration to multicore platform
- How to exploit performance gains, but maintain predictability?
Assumptions (from the industries)

- No specific “hardware support”
 - we can not simply “remove” the shared caches!
- Everything we do should be implementable in software e.g. cache coloring
 - easy to integrate in existing standard software e.g. RT-LINUX
- However, you can change your applications to make Efficient and Predictable uses of the shared hardware resources
Cache-Aware Scheduling [EMSOFT 09]
coloring the cache for predictability
An Experiment on a LINUX machine with 2 cores

(by Zhang Yi, North Eastern Univ, China)
Cache analysis on multicores

- L2 cache contents of task 1 may be over-written by task 2
Typical Multicore Architecture

- core 1: Private L1 cache
- core 2: Private L1 cache
- core 3: Private L1 cache
- core 4: Private L1 cache
- Task 5

Shared L2 cache
Cache-Coloring: partitioning and isolation
Cache-Coloring: partitioning and isolation

- E.g. LINUX – Power5 (16 colors)
Cache-Coloring: partitioning and isolation

Task 1

Task 2

Task 3

Task 4
An Experiment on a LINUX machine with 2 cores

with Cache Coloring/Partitioning

(by Zhang Yi, North Eastern Univ, China)
What to do when \#tasks > \#cores?

Cache-Aware Scheduling and Analysis
Cache-Coloring: partitioning and isolation
Cache-Coloring: partitioning and isolation
Fixes-Priority Scheduling Algorithms

- (1) algorithm with blocking (FPb): a task can run if
 - it has the highest priority among waiting tasks
 - there is a free core and
 - there are enough free colors
 otherwise all in the queue must wait

- (2) algorithm without blocking: a task may run if
 - There is a free core and
 - It has the highest priority among those that have enough free colors

Problem with non-blocking sch: unbounded priority-inversion
• Can all task instances meet their deadlines?
• This problem can be solved as an LP problem
Problem Window Analysis (due to Baruah)

- Suppose that the task set is non-schedulable.
- Let J_k be the first job missing its deadline. Its release time is r_k, and define $l_k = r_k + S_k$.
- $[r_k, l_k]$ of length S_k is the problem window.
Problem Window Analysis (with cache)

- J_k cannot run if at least $A - A_{k}^{\text{max}} + 1$ colors are busy

where $A_{k}^{\text{max}} = \max_{i \leq k} A_i$ (in the blocking-style scheduling, a job waits as long as any higher priority job is waiting)
Dividing the problem window

- **α-interval**: in which all cores are busy;
- **β-interval**: in which
 - at least one core is idle and
 - at least $A - A_k^{\text{max}} + 1$ cache partitions are “busy”
Resource usages within the windows

- α_i denotes τ_i's accumulated execution time during α - intervals.
- β_i denotes τ_i's accumulated execution time during β - intervals.
Towards a sufficient schedulability test

- Assume that J_k is not schedulable. Then the sum of the accumulated lengths of the α- and β- intervals is at least S_k

- So it must hold that

$$\sum_i \left(\frac{1}{M} \alpha_i + \frac{A_i}{A - A_{k}^{\text{max}} + 1} \beta_i \right) \geq S_k$$

- We can use an LP solver to detect, if α_i and β_i can be chosen in a way to satisfy this condition. If this is not the case, then J_k is schedulable.
As an LP problem

Maximize \[\sum_i \left(\frac{1}{M} \alpha_i + \frac{A_i}{A - A_{k}^{\text{max}} + 1} \beta_i \right) \]

subject to:

\[\forall j : \alpha_j + \beta_j \leq I_k^j \]

\[\forall j : \alpha_j \leq \frac{1}{M} \sum_i \alpha_i \]

\[\forall j : \beta_j \leq \frac{1}{A - A_{k}^{\text{max}} + 1} \sum_i A_i \beta_i \]
As an LP problem

Maximize \[\sum_i \left(\frac{1}{M} \alpha_i + \frac{A_i}{A - A_k^{\text{max}} + 1} \beta_i \right) \]

subject to:

\[\forall j : \alpha_j + \beta_j \leq I_k^j \]

\[\forall j : \alpha_j \leq \frac{1}{M} \sum_i \alpha_i \]

\[\forall j : \beta_j \leq \frac{1}{A - A_k^{\text{max}} + 1} \sum_i A_i \beta_i \]

Interference Constraint:

I_k^j is the upper bound of the work done by τ_j in the problem window.
As an LP problem

\[
\text{Maximize } \sum_{i} \left(\frac{1}{M} \alpha_i + \frac{A_i}{A - A_{max}^k + 1} \beta_i \right)
\]

\text{subject to: } \forall j : \alpha_j + \beta_j \leq I_j^k

\forall j : \alpha_j \leq \frac{1}{M} \sum_i \alpha_i

\forall j : \beta_j \leq \frac{1}{A - A_{max}^k + 1} \sum_i A_i \beta_i

Core Constraint:
The work done by a task in the \(\alpha \)-intervals cannot be larger than the total length of the \(\alpha \)-intervals.
As an LP problem

Maximize \(\sum_i \left(\frac{1}{M} \alpha_i + \frac{A_i}{A - A_k^{\text{max}} + 1} \beta_i \right) \)

subject to:

\(\forall j : \alpha_j + \beta_j \leq I_k^j \)

\(\forall j : \alpha_j \leq \frac{1}{M} \sum_i \alpha_i \)

\(\forall j : \beta_j \leq \frac{1}{A - A_k^{\text{max}} + 1} \sum_i A_i \beta_i \)

Cache Constraint:
The work done by a task in the \(\beta \) - intervals can not be larger than (the upper bound of) the total length of the \(\beta \) - intervals.
A sufficient schedulability test for multicores

For each task τ_k, let χ_k denote the solution of the LP problem

Maximize \[\sum_i \left(\frac{1}{M} \alpha_i + \frac{A_i}{A - A_k^{\text{max}} + 1} \beta_i \right) \]

subject to:
\[\forall j : \alpha_j + \beta_j \leq I_k^j \]
\[\forall j : \alpha_j \leq \frac{1}{M} \sum_i \alpha_i \]
\[\forall j : \beta_j \leq \frac{1}{A - A_k^{\text{max}} + 1} \sum_i A_i \beta_i \]

τ is schedulable by FP_{CA}, if for each task $\tau_k \in \tau$ it holds

$\chi_k < S_k$
Conclusions

- To achieve predictability of “hard real-time applications”
 - We need “Resource isolation”
 - e.g. cache partitioning/coloring, time slicing
 - The scheduler must ensure that tasks using the same colors, don’t run in parallel

- The schedulability problem can be solved using LP solvers
 - Scalable, may deal with task sets with thousands of tasks
 - Sufficient test (due to over-approximation)

- Future work (in progress):
 - Improving the analysis precision
 - Studying the influence of cache-coloring and allocation on system performance and timing behaviours
Scheduling and Analysis of Bus Access (recent work)
Multi-core Memory System

- Core 1: Private L1 cache
- Core 2: Private L1 cache
- Core 3: Private L1 cache
- Core 4: Private L1 cache

- Shared Memory
 - 1-2 cycles
 - 5-20 cycles
 - 100 – 200 cycles
Scheduling of Bus Access

Task: (1) Memory Read, (2) Local Computation in L1, (3) Memory Write

Task 1

Task 2

Task 3

Task 4

M: Shared Memory
System-level timing analysis

- #cores < #tasks
- What is the WCRT (worst case response time) for each task?
The behaviour will be repeated with a period: T
The execution of task would look like:

Read input or load context

Local computation

Write output or save context
The execution of task would look like:

- **Local scheduling**
- **Local computation**
- **Bus request**
- **Bus scheduling**
The Bus Scheduling problem to solve:

Bus request

Local computation

C

Bus request

Local scheduling

R

W

Bus scheduling

Bus scheduling

Make sure the various Schedulers work such that This point is not later than The deadline
Task graph/Arbitrary Acyclic Graph

guaranteeing End-to-End timing constraints
An example system

Problem (to solve): How to schedule the Bus access such that all task instances will be computed within their periods?
Preliminary results

- This can be easily modelled using UPPAAL
 - model the scheduling strategies e.g. TDMA, EDF, FCFS, RoundRobin … as a timed automaton
 - the R/W-operations, task releases as timed automata
 - schedulability analysis as a reachability problem
- The TIMES tool is even better for this purpose – schedulability analysis
- The analysis is surprisingly efficient
Thanks