
Reconfigurable Hardware OS Prototype

Herbert Walder and Marco Platzner
Computer Engineering & Networks Lab

Swiss Federal Institute of Technology (ETH) Zurich, Switzerland

Abstract In this paper, we approach the rather new area
of reconfigurable hardware operating systems in a top-down
manner. First, we describe a design concept that defines ba-
sic abstractions and operating system services in a device-
independent way. Then, we refine this model to an imple-
mentation concept on the Xilinx Virtex XCV-800 technol-
ogy. The implementation concept proposes a multitasking
environment that executes relocatable hardware tasks, uses
a memory management unit translating task requests to in-
ternal and external memory accesses, and relies on device
drivers and triggers to connect to external I/O. Finally, we
present a detailed prototypical implementation and an ap-
plication case study. The application consists of a set of dy-
namically loaded and executed networking and multimedia
tasks such as IP packet processing, AES decryption, and au-
dio stream decoding.

Keywords: Hardware Operating System, FPGA, partial
reconfiguration, multitasking

1 Introduction
Embedded systems may consist of a large variety of
different processing elements, memories, I/O devices,
sensors, and actors. The processing elements split into
software-programmableCPUs, fixed-function hardware
(ASICs), and (re)programmable hardware. Until re-
cently, such systems used programmable hardware
mainly as ASIC replacements with much shorter time-
to-market and the capability of hardware updating after
system deployment.

Today, the increasing densities and reconfiguration
modes of SRAM-based field-programmable gate ar-
rays (FPGAs) and configurable systems on a chip
(CSoCs) advocate more dynamic uses of these com-
ponents. Many promising application domains for re-
configurable embedded systems, such as wearable com-
puting [7], mobile systems [5], and network processors
[3], combine high performance demands with frequent
application changes. The dynamics in such systems is
caused by user requests and packet flows in the commu-
nication networks.

As a consequence of treating reconfigurable de-
vices as dynamic processing elements, the introduction

Design Concept

Implementation Concepts

Case Studies Case Studies

Figure 1: Design Layers

of reconfigurable hardware operating systems follows.
Much like real-time operating systems for CPUs, a re-
configurable hardware operating system offers a set of
services to the application developer. At design time,
an application is composed out of objects such as tasks,
buffers, semaphores, and timers. The main abstraction
is the hardware task which captures an application func-
tionality in a as much as possible device-independent
way. At runtime, the operating system resolves resource
conflicts and ensures connectivity between the applica-
tion objects. A reconfigurable hardware operating sys-
tem results in a number of benefits as it

• increases productivity: The operating system ob-
jects and the task abstraction facilitate the re-use
of tested and reliable code and circuitry. This
can considerably speed up development cycles and
shorten time-to-market.

• increases portability: Porting applications is
greatly simplified by operating systems that are
available for different target platforms. Recom-
pilation/resynthesis often results in a functionally
correct ported version, allowing the developer to
concentrate on performance figures.

• eases system re-partitioning: The system can be
repartitioned between different hardware compo-
nents or even between hardware and software com-
ponents. A task that was previously implemented
in software running on a CPU could be mapped
to an FPGA to increase its performance. New ob-
jects can be inserted or existing objects can be re-
moved while the rest of the system remains un-
changed. This allows to fix bugs and to enhance
and customize applications. In much shorter peri-



ods of time, repartitioning can be used to balance
the load.

• simplifies debugging: Debugging dynamically re-
configured hardware or communicating hardware
and software objects is a challenge for its own. An
operating system supports debugging with moni-
toring and triggering facilities that give insight into
the interaction between the application objects.

A reconfigurable hardware operating system forms
an abstraction that hides the details of the underlying
technology from the developer. As any abstraction in
system design, the gained productivity is paid for by an
overhead in runtime and area/memory.

Reconfigurable hardware operating systems are a
rather new line of research. The first description of
hardware multitasking is due to Brebner [1]. Recently,
Wigley et al. discussed OS services including device
partitioning, placement and routing [11]. Multitask-
ing, task preemption, and scheduling was investigated
by Simmler et al. [9], Brebner/Diessel [2], and Walder
et al. [10], respectively. In [6], Mignolet et al. intro-
duce relocatable tasks which can be executed either in
software or in hardware, depending on the available re-
sources and the performance required.

Many questions have not been addressed yet. This
holds for conceptual, algorithmic, as well as practical
issues. Due to the many open ends in this field, it is
difficult to compare existing work or even to separate
conceptual issues from implementation details and lim-
itations of currently available FPGA technology.

To foster a more structured view of reconfigurable
hardware operating systems, we follow a top-down ap-
proach in this paper, as depicted in Figure 1.

In Section 3, we start out with the discussion of a de-
sign concept. The design concept describes the recon-
figurable hardware operating system on a rather high
level of abstraction, focusing on general aspects such as
models, modules, and required operating system func-
tions and services. The design concept does not address
implementation or technology specific details.

Section 4 refines the design concept to an implemen-
tation concept. The implementation concept maps the
objects of the operating system to a specific technol-
ogy, while it still maintains application independency.
We have chosen Xilinx Virtex as target technology and
demonstrate a complete implementation of an operating
system. We address the most critical issues and limita-
tions when realizing an operating system on this tech-
nology.

Finally, Section 5 presents a prototypical case study.
The case study implements a control/data-flow applica-
tion running on our reconfigurable hardware operating
system. The application executes networking and mul-
timedia tasks, such as IP packet processing, DES de-
cryption, audio streaming, and display functions.

Figure 2: System architecture (concept)

2 Target System
In this work, we consider the system architecture con-
ceptualized in Figure 2. A partially reconfigurable
SRAM-based FPGA resource is coupled to a host CPU
by two bidirectional channels:

• The configuration and readback port (C/R) enables
the CPU to completely control the FPGA’s config-
uration. During system runtime full and partial bit-
streams can be downloaded to the FPGA, and full
and partial device states can be read back.

• The interface port provides a number of general-
purpose signals (GP I/O) between the host CPU
and the FPGA. This port allows for communica-
tion between host and FPGA application functions.

Both CPU and FPGA are further connected to a num-
ber of external components C1 to Ci, such as memories
and I/O devices. In this work we do not address arbi-
tration issues between CPU and FPGA to access shared
resources. Hence, the components in our system archi-
tecture are either connected to the CPU or the FPGA.
The architectural concept of Figure 2 covers many im-
plementations. The system can be realized by several
devices or as integrated Configurable System on a Chip
(CSoC).

3 Design Concepts
Task and resource management are central issues in any
operating system. Tasks are the smallest units of exe-
cution. Developers compose their applications from a
set of interacting tasks. While these abstractions are
well-established in software, they are still in discus-
sion for hardware operating systems. This section first
proposes design concepts for resource and task abstrac-
tions. Then, a set of operating system modules is pre-
sented and the design flows for building applications
and the operating system itself are outlined. Finally,
we discuss quality metrics that can be used to evaluate
implementations of reconfigurable hardware operating
systems.

2



3.1 Reconfigurable Surface Partitioning
The reconfigurable device, offers a number of config-
urable logic units and routing elements. We propose to
partition this reconfigurable area into two kinds of re-
gions:

• The OS frame accommodates circuits that con-
stitute the runtime part of the operating system.
These circuits are required to establish operating
system functions such as memory access, commu-
nication, and I/O. The OS frame is static and re-
mains stable during the system’s operation.

• The user area is devoted to accommodate the ap-
plication functions, implemented in form of hard-
ware tasks. Tasks are dynamically allocated to
the user space, executed there, and removed upon
completion.

3.2 Hardware Tasks
Hardware tasks are user circuits with the following

characteristics that have to be exposed to the operating
system:

• The size is the area requirement of the task’s cir-
cuit, given in number of reconfigurable units.

• The clock range gives the frequencies at which the
task can run. Design tools usually report an upper
bound for the clock rate. A task may, however, re-
quire a specific clock rate, for example to derive
a timer object that relates events to physical time.
A task might further require a clock rate in a cer-
tain interval to preserve timing requirements of I/O
devices or memory.

A task has a number of required cycles to execute,
which might or might not be known in advance. The
actual execution time is determined by the number of
cycles and the clock rate at which the task runs.

Generally, the user area will be large enough to ac-
commodate several tasks at once, enabling true parallel
processing. As hardware tasks are dynamically loaded
into the user area, we cannot ensure that a certain task
always gets allocated to the same area. Consequently,
we require task relocatability. The use of position-
dependent resources limits the relocatability of tasks.
Modern FPGAs have special resources such as block
RAM and multipliers. Block RAMs are memory re-
sources and are controlled by the operating system, as
any other external memory.

Software tasks use kernel calls to make use of op-
erating system services. Similarly, hardware task need
a means to issue service requests to the reconfigurable
hardware operating system. Therefore every task has
a standard task interface (STI). All tasks in the system
implement the same standard task interface.

More efficient systems can be built if tasks may be
preempted and later on resumed. Preemption of hard-
ware tasks requires the readback and of the task’s cir-
cuit and the subsequent extraction of the task’s con-
text. The context of a task is defined by the state of
all its state-holding elements. To allow the context ex-
traction, a preemptible task must provide a list of all
its state-holding elements to the operating system. For
preemptible tasks, we further define time critical sec-
tions. A time critical section denotes a time period dur-
ing which a task must not be preempted.

3.3 OS-Modules
Figure 3 presents a set of modules that provide the op-
erating system services. The modules are partitioned
between the host CPU and the FPGA. The CPU mod-
ules can be categorized into three levels. The highest
level of operating system modules are responsible for
task, resource, and time management:

• Task Scheduler
The task scheduler decides which task has to be ex-
ecuted next, among all tasks ready to run. This de-
cision is based on some scheduling policy. Our de-
sign concept supports a wide range of scheduling
policies. Scheduling can be off-line or on-line. An
off-line schedule is suitable for statically-defined
applications and is reflected by a rather simple task
sequence table. On-line schedulers are priority-
driven and split into non-preemptive or preemptive
schedulers. The task scheduler receives events that
are generated by different sources during runtime,
e.g., by queues, timers, device drivers, and trig-
gers.

• Resource Manager
This modules keeps track of all dynamically as-
signed resources, such as user area, queues, trig-
gers, and device drivers. Once the task sched-
uler decides to execute a task, the resource man-
ager is responsible to provide a suitable free space
in the user area and all other resources the task
requires. Task scheduling and resource manage-
ment are strongly coupled, which is in contrast to
scheduling software tasks on single processors.

• Time Manager
This modules offers time-based services to tasks,
such as one-shot and periodic timer events.

The intermediate level of operating system modules
performs the handling of task bitstreams and tasks
states:

• Raw Task Repository
This repository stores task circuits in their raw
form, i.e., in a position-independent form which

3



Figure 3: OS Modules running on CPU and FPGA

is generated by the task design flow. Before a raw
task can be downloaded to the FPGA, it must be
relocated to a specific location in the user area.

• Context Store
This modules holds the contexts that have previ-
ously been extracted from preempted tasks.

• Task Preparation Unit (TPU)
The TPU generates and analyzes partial bitstreams
that represent the tasks. Following services are
provided: Task relocation takes a raw task and a
position in the user area and generates a partial bit-
stream that can be downloaded to the FPGA. Con-
text extraction takes a readback partial bitstream
and extracts the context. Context insertion takes
a raw task and its previously stored context and
generates a partial bitstream. For example, resum-
ing a task in a preemptive scheduling scenario re-
quires to call the context insertion service and, sub-
sequently, the task relocation service. Another ser-
vice is parameter insertion which takes a raw task
and inserts a set of parameters at predefined loca-
tions. This service allows for load-time customiza-
tion of tasks.

The lowest level of operating system modules on the
CPU deal with communication and configuration:

• OS Bridge
Since both CPU and FGPA accommodate part of
the operating system, a communication channel
between the two devices is required. The operating
system modules use this channel to exchange com-
mands and data. The OS bridge provides a device-
independent command interface. Physically, the

communication channel is mapped to the GP I/O.
port (see Figure 2).

• FPGA Driver
This driver provides device-independent configu-
ration and readback services to the TPU. The ser-
vices comprise full and partial configuration as
well as full and partial readback. Physically, the
driver connects to the FPGAs configuration and
readback port.

The list of modules mapped to the FPGA includes:

• Task Controller
The task controller is the operating system’s coun-
terpart of the standard task interface and forms the
border between OS frame and user area. Each
loaded task has one task controller assigned that
supplies the task with control signals and provides
connectivity to OS elements.

• Memory Management Unit (MMU)
The MMU offers memory services to the tasks,
such as FIFO queues with specific access modes
(blocking/non-blocking), private memory blocks,
or shared memory blocks. The memory structures
are implemented with the FPGA’s internal memo-
ries and externally connected memory devices.

• Special Function Manager
The special function manager offer services to
tasks, based on hardware functions implemented
in the FPGA, such as multiplyers.

• Device Driver / Trigger
Device drivers implement circuits that control ex-
ternal devices and offer services to user tasks. En-
capsulating access to external devices in device
drivers offers similar advantages as in software:
the access functions are independent of the ac-
tual I/O device and mutual exclusion issues can be
resolved. Further, time-critical I/O protocols are
handled by permanently resident optimized driver
functions. This is an important issue for a hard-
ware operating system as loading a driver function
on demand with the same (rather long) reconfigu-
ration latency as a user task could easily violate the
timing constraints.
A trigger is basically a special form of a device
driver that is used for rather simple external de-
vices, e.g. switches, that can only generate events,
which are then routed to operating system mod-
ules.

3.4 Programming Model and Design Flow
The hardware operating system we discuss in this paper
requires that an application is decomposed from tasks
and objects such as buffers, timers, etc. While the task

4



functionality has to be defined by the developer, the in-
teraction with the operating system modules must fol-
low predefined patterns. Therefore, we provide the de-
veloper with i) a task template including the standard
task interface used to request OS services and ii) a task
design flow that generates raw (position-independent)
tasks.

The task template itself depends on the actual im-
plementation details of the target system, e.g., the set
of supported queues and device drivers, or the maxi-
mum size of a task. Our design concept proposes an OS
builder which is a design flow that generates both the
OS frame and the task template for a given target. The
OS builder is used in two different ways: to port the
hardware operating system to a different target, and to
customize the runtime parts of the operating system to
an application. The latter use is crucial for many cost-
sensitive embedded systems. There, all OS modules and
services that are not needed to implement the applica-
tion are removed to save reconfigurable area.

3.5 Operating System Benchmarking
A design concept for a reconfigurable hardware operat-
ing system must include the evaluation of the OS per-
formance. Such an evaluation is necessary to motivate
the use of an operating system, to characterize single
OS functions, and to compare different operating sys-
tem implementations. An evaluation consists of a well-
defined set of benchmark applications together with a
description of the benchmarking procedure to derive
quantitative data. While in the current state of our work
there exists neither the application set nor the bench-
marking procedure, we feel that following quality met-
rics should be included:

• area overheads: These metrics measure the
amount of reconfigurable resources and memory
that are needed to implement the runtime modules
on the FPGA and the CPU, respectively.

• runtime overheads: A number of metrics relate to
the times needed for task relocation, context in-
sertion/extraction, task configuration, memory ac-
cesses, etc. Another important metric is the in-
terrupt latency, i.e., the time between an external
event and the start of the task loaded in response.

• fragmentation: The external fragmentation de-
notes the partitioning of free space in the user area
which is a result of the resource manager’s quality.
A low external fragmentation keeps the free space
in a few big blocks, whereas a high external frag-
mentation keeps many small blocks scattered over
the user area. A low fragmentation is desirable as
it leads to an improved system performance.

The internal fragmentation for a mapped task de-
notes the difference between the task template area

PCI I/O

PC
OS-Modules

RS232

LEDs

Audio-
Codec

Eth.-
Transc.

SW1

SW2

XESS-Board

FPGA
(Xilinx Virtex XCV-800)

D
A

SelectMAPGP I/O

Figure 4: Implementation Platform

and the actual task area. Uniform task templates
greatly simplify placement and scheduling at the
cost of a high internal fragmentation. Differently-
sized task templates reduce internal fragmentation
but require more involved resource managers and
schedulers.

4 Implementation Concepts
In this section, we describe the implementation of a re-
configurable operating system based on Xilinx Virtex
technology.

4.1 Target Technology and -Platform
We have chosen the XESS XSV-800 board [12] as im-
plementation platform. This board integrates a Virtex
XCV-800 SRAM based FPGA and a variety of differ-
ent I/O devices, i.e. Ethernet and RS232 transceivers,
video digitizer and RAMDAC, display elements, user
switches and an audio codec. Figure 4 shows the block
diagram of the XESS board and indicates which com-
ponents we use in our system.

We have modified the board’s configuration con-
troller to allow for full and partial configuration and
readback. A PC equipped with a PCI I/O card directly
connects to the configuration controller and thus pro-
vides bidirectional access to the FGPA’s configuration
and readback port (SelectMAP). In parallel, a number
of wires implement general purpose I/O between PC
and FPGA. The PC substitutes the host CPU, referred
in Section 2. In our system, all external components are
connected to the FPGA.

Xilinx’ ISE Foundation 5.1 in combination with the
Modular Design package [13] served as development
environment for circuit / bitstream generation; all PC-
software was created with MS Visual C++ using library
functions to access the PCI I/O-card.

5



Figure 5: OS frame parts and task slots

4.2 FPGA Surface Partitioning
Xilinx Virtex devices allow for partial reconfiguration
and readback during runtime. However, these oper-
ations are limited to vertical chip-spanning columns.
Due to this constraint, the partitioning of the reconfig-
urable area, as described in Section 3.1, is also done
column oriented.

We split the FPGA surface into several vertically or-
dered OS-frame parts and task slots (see Figure 5).This
structure ensures reconfiguration of task slots, with-
out affecting neighboring OS-frame parts. A number
of inter-frame communication channels (IFCC) make
communication between OS-frame parts possible.

4.3 HW-Tasks and Task Slots
Task slots are placeholders for HW-tasks. A task slot
defines obligatory guidelines for HW-tasks:

• Width: Tasks to be loaded into a task slot must not
exceed the slot’s width.

• Standard task interface (STI): The only way for
tasks to interact with outside elements is across the
standard task interface. The STI forms a conven-
tion, that all tasks must implement.

• Inter-frame communication channels (IFCC): A
number of IFCCs need to pass through tasks to
ensure OS-frame connectivity. Tasks must imple-
ment these lines.

To speed up the creation of slot-compatible tasks, the
OS provides task templates with predefined STI und
IFCC, as depicted in Figure 6. Consequently, the task
development process just comprises in embedding the
task’s functionality into the task circuit area.

The STI as well as IFCC endpoints are realized with
location invariant bus macros, a new design element of
Xilinx’ Modular Design package [13].

Figure 6: HW-Task / Task Template

4.4 Standard Task Interface
All running tasks are controlled by the OS via thier stan-
dard task interface (STI). Tasks must provide a minimal
set of functions which can be invoked by the OS through
dedicated STI pins:

• RST (Reset): After loading the task into a slot, the
task circuit needs to be initialized. This is done by
applying a logical ’1’ to this pin.

• ENA (Enable): Starts (logical ’1’) or stops (logical
’0’) task execution.

• FIN (Finished): A task signalizes its completion
by applying a logic ’1’ to this pin, whereupon the
OS controller generates an event. This event can
cause the schedling module to load the next ready
task into the slot.

On the other hand, tasks can make use of services of-
fered by the OS, as for example

• reading from / writing to FIFO buffers and check
their states,

• sending to / receiving form device drivers, or
• checking triggers.

The STI implements a number of pins to provide access
to these services.

4.5 OS Frame Insides
As a part of the OS-frame, the OS-Bridge module im-
plements a synchronous bidirectional communication
channel, connecting to the OS modules running on the
PC. This channel is used by several OS modules to send
and receive commands for the purpose of controlling
OS elements. The following 4 commands are available:

• OSConfig(): Allows for resetting the board,
the OS-frame or single OS-elements (as buffers
or device drivers), as well as initializing or
reparametrizing OS-elements;

• TS0Config(), TS1Config(): Controls STI pins of
the OS-controller of task slot 0, and 1, respectively.
In addition, these commands control multiplexers
which connect buffers to STIs.

6



• ReadState(): Reads the status of OS-elements,
e.g. FIN-pins of task slots, status information of
buffers, device drivers and triggers.

Furthermore, a dedicated interupt line is available to
signalize events from FPGA to PC.

The XCV-800 FGPA includes a total amount of
114.7kbit Block RAM, divided in 28 portions (Selec-
tRAM cells). A Memory Management Unit (MMU)
forms 8 FIFO-buffers out of it and puts them at task’s
disposal. The depth of these FIFOs ranges between 512
and 2048 8bit words. Tasks can read and write FIFOs
by using the STI.

4.6 Device Drivers and Triggers
Device driver circuits are physically connected to ex-
ternal components and perform low-level controlling of
the devices. In our system, we implemented one device
driver for each component, Ethernet transceiver, RS232
transceiver, audio codec and LED bar.

In contrast, buttons like SW1 and SW2 don’t need
much controlling, hence, no device drivers are needed.
Triggers generate events upon pressing and releasing
buttons.

All device drivers and triggers mentioned above are
implemented in the OS-frame.

5 Case Study
To put our concepts into practice, we have implemented
a case study, using the XESS prototyping board [12]
and some of its components. The case study executes
a control/data-flow application, performing networking
and multimedia tasks in an OS environment.

5.1 Functional Description
From a users point of view, the application

• generates an artificial audio signal, when SW1 is
pressed;

• displays some pattern on the LED bar, when SW2
is pressed;

• receives UDP packets via the Ethernet interface
and forwards their payload either to the RS232
interface or to the audio codec (audio streaming,
12kHz, 16bit, mono). Data for the RS232 output
can be plain-text or AES encrypted;

• replies to incoming ARP (adress resolution proto-
col) and ICMP (internet control message protocol)
echo requests received via the Ethernet interface.

The incoming IP/UDP packets in our case study are
generated and sent by another PC connected to the
LAN.

Figure 7: DFG of case study

5.2 Tasks
The tasks T1 to T10 execute the following functions:

• (T1) Eth Rx (Ethernet receiver): Receives packets
form Ethernet transceiver; verifies frame check-
sum; forwards packet to Q2 if MAC- and IP-
adresses match (MAC- and IP-adresses are hard
wired inside the task).

• (T2) Paket Discriminator / Data Extractor:
Checks if packet is UDP; extracts application data
and puts it into the appropriate queue (Q2, Q3, Q4

or Q6), depending on the UDP port number, which
identifies the application.

• (T3) LED Driver: Reads data from Q2 and dis-
plays bit patterns on the LED bar.

• (T4) Crypto AES-Decoder: Decrypts data received
from Q4 and forwards the results to Q3.

• (T5) Asynchronous Serial Driver: Reads data from
Q3 and generates an asynchronous serial signal,
with a baudrate of 115kbit/s.

• (T6) Codec Driver: Gets data from Q5 and for-
wards it to the audio codec.

• (T7) LED Pattern Generator: Generates some bit
patterns and writes them into Q2.

• (T8) Sound Generator: Generates a audio wave-
form and is written into Q5.

• (T9) ARP / ICMP: Reads ARP / ICMP requests
out of Q6, creates the appropriate reply packet and
forwards it to Q7.

• (T10) Ethernet Sender: Reads data from Q7, puts
Ethernet packets together (frame header, payload
and checksum) and sends them using the Ethernet
transceiver.

Since T1, T3, T5, T6 and T10 directly connect to I/O
devices and implement time-critical tasks, they are
mapped into the OS frame and act as device drivers.
However, T2, T4, T7, T8 and T9 perform non time-
critical tasks and can be loaded into slot S0 or S1, as

7



soon as the scheduler receives a corresponding event,
that requests the task. Events are generated either by
FIFO buffers Q1 to Q7 or triggers TR1 or TR2.

Priorities of the loadable tasks descend in the order:
T7, T8, T2, T4, T9.

The scheduler follows a non-preemptive, priority
based policy to determine the next task to be loaded.

5.3 OS Disposition
A Xilinx Virtex XCV-800 devices includes an array
built of 84 columns and 56 rows of configurable logic
blocks (CLBs). For this case study, we created an
OS frame, consisting of 3 OS-frame parts, OS left,
OScenter and OSright) and two task slots S0 and S1.
The widths of the three OS-frame parts amount to 8,
10, 8 CLB columns, the task slots have a width of 28
CLB columns each. OSleft and OSright are located at
the FPGA’s left and right edges, since all BRAM cells
need to be captured by the OS-frame.

Each standard task interface (STI) consumes 12 bus
macros (=48 pins).

A total amount of 44 inter-frame communication
channels (IFCCs) are established in each task slot to
provide inter-frame communication.

This layout results in an OS area overhead of about
33.3%.

5.4 Observations and Measurements
The case study application works well. However, since
there are only two task slots available, but as much as
5 tasks are loadable into slots, not all functions can run
at the same time. In addition, the audio-streaming part
needs some improvements in data flow control. Queue
underruns in Q5 interrupting the audio stream occur
quite often.

The file length of the partial bitstreams stored in
the raw task repository ranges from 84.2kB (for T 8) to
182.8kB for the most complex task (T4, AES decryp-
tion).

Task activation time, including download phase and
reset/enable commands, amounts to about 290ms for
small tasks, and up to 510ms for large tasks (AES). The
PCI I/O card turned out to be the bottleneck in the con-
figuration path.

6 Conclusion and Further Work
In this paper we used a top-down approach to discuss
issues in reconfigurable hardware operating systems.
We started with a design concept that describes op-
erating system abstractions and services in a device-
independent way. Then we refined the design concept
to an implementation concept based on the Xilinx Vir-
tex XCV800 technology. We showed how the entities

of the design concept map to this specific technology.
Finally, we presented a prototype running a networking
and multimedia application. Our experience with this
prototype demonstrates the feasibility of hardware mul-
titasking and the concept of hardware operating systems
in general.

Further work will include the application of the im-
plementation concept to larger FPGAs, the creation of
OS frames with more than two task slots, and the imple-
mentation and experiments with differently-sized task
slots, as reported in [10].

7 Acknowledgements
This work was supported by the Swiss National Science
Foundation (SNF) under grant number 2100-59274.99.
We would further like to thank Andres Erni, Stefan Re-
ichmuth [4] and Michael Ruppen [8] for their valuable
work on getting the case study running.

References
[1] G. Brebner. A Virtual Hardware Operating System for the Xil-

inx XC6200. In Proceedings of the 6th International Workshop
on Field-Programmable Logic and Applications (FPL), pages
327–336. Springer, 1996.

[2] G. Brebner and O. Diessel. Chip-Based Reconfigurable Task
Management. In Proceedings of the 11th International Work-
shop on Field Programmable Gate Arrays (FPL), pages 182–
191. Springer, 2001.

[3] S. Chakraborty, M. Gries, S. Künzli, and L. Thiele. Design
Space Exploration of Network Processor Architectures. In Net-
work Processor Design: Issues and Practices, Volume 1, pages
55–89. Morgan Kaufmann Publishers, October 2002.

[4] A. Erni and S. Reichmuth. Inter-Task-Communication in Re-
configurable Hardware OS. Master’s thesis, ETH Zurich, 2003.

[5] IMEC Interuniversity Micro Electronic Center, T-ReCS Gecko,
http://www.imec.be.

[6] J.-Y. Mignolet, V. Nollet, P. Coene, D. Verkest, V. S., and
R. Lauwreins. Infrastructure for Design and Management of
Relocatable Tasks in a Heterogeneous Reconfigurable System-
on-Chip. In Proceedings of Design, Automation and Test in Eu-
rope (DATE), pages 986–991. IEEE Computer Society, March
2003.

[7] C. Plessl and et al. Reconfigurable Hardware in Wearable Com-
puting Nodes. In Proceedings of the 6th International Sym-
posium on Wearable Computers (ISWC), pages 215–222. IEEE
Computer Society, October 2002.

[8] M. Ruppen. Reconfigurable OS Prototype. Master’s thesis, ETH
Zurich, 2003.

[9] H. Simmler, L. Levinson, and R. Männer. Multitasking on
FPGA Coprocessors. In Proceedings of the 10th International
Workshop on Field Programmable Gate Arrays (FPL), pages
121–130. Springer, 2000.

[10] H. Walder and M. Platzner. Online Scheduling for Block-
partitioned Reconfigurable Devices. In Proceedings of Design,
Automation and Test in Europe (DATE), pages 290–295. IEEE
Computer Society, March 2003.

8



[11] G. Wigley and D. Kearney. Research Issues in Operating Sys-
tems for Reconfigurable Computing. In Proceedings of the In-
ternational Conference on Engineering of Reconfigurable Sys-
tem and Algorithms(ERSA), pages 10–16. CSREA Press, Juni
2002.

[12] Xess Corporation, XSV-800 Xilinx Virtex Prototyping Board,
http://www.xess.com.

[13] Xilinx Inc., Advanced Design Techniques, Modular Design,
http://www.xilinx.com.

9


