
On the Safety of Mixed-Criticality Scheduling
Stefan Draskovic, Pengcheng Huang and Lothar Thiele

ETH Zurich, Switzerland
firstname.lastname@tik.ee.ethz.ch

Abstract—A common assumption for scheduling mixed-
criticality systems is the degradation of less critical tasks when
the system is in the emergency mode; which is entered when
critical tasks overrun their expected WCET. In the meanwhile,
common safety standards enforce strict safety requirements on all
criticality levels. However, the impact of degrading less critical
tasks on the overall system safety is not well understood. By
introducing probabilistic distributions of task execution times, we
show in this paper a first analysis of safety of mixed-criticality
systems. Inspired by standards, we provide the probability-of-
failure-per-hour (PFH) of a system when no overrun is detected.
We also introduce and analyze the expected mode switching
time, which describes how often emergency mode is entered. Our
results reveal a fundamental trade-off between these two values.
Finally, we discuss other possible safety measures that form a
complete overview of a system’s safety.

I. INTRODUCTION

Today, mixed-criticality is becoming a significant trend for
many major industries including automotive and avionics [1],
where applications of different safety criticality levels are con-
solidated into a common computing platform to reduce cost,
weight, and energy [2]. In the meanwhile, the design process
of mixed-criticality systems is often regulated by industrial
safety standards (see e.g. DO-178C [3] and ISO 26262 [4]),
with the ultimate goal to meet different safety requirements on
all criticality levels. To achieve this, a common safety measure,
probability-of-failure-per-hour (PFH), is often suggested. For
certification, it is required by the safety standards that different
PFHs must be met on different criticality levels. In addition,
criticality segregation is often suggested in safety standards as
“best practice” towards ensuring system safety.

While traditional industrial practice favors static temporal
and spatial isolation for mixed-criticality systems [3], [4], [5],
a significant recent trend is to enforce dynamic and asymmetric
isolation among different criticality levels [6], [1]. This means
having several possible modes of operation for the system,
among which one is chosen based on decisions made at run-
time. The system starts in normal mode, and stays in it as long
as there are no execution time overruns. In this mode, all tasks
are guaranteed to meet their real-time requirements. If any task
overruns its expected WCET, then the system switches to an
emergency mode, where less critical tasks are given degraded
service in order to free system resources for critical tasks.
There can be several emergency modes, depending on which
criticality levels are degraded. In the general case, there are
as many modes of operation as criticality levels. A plethora
of scheduling policies have been proposed based on this
model [1] for both single-core and multi-cores – fixed-priority

scheduling [7], [8], earliest deadline first scheduling [9], [10],
[11], [12] and time-triggered scheduling [13], [6], [14]. Fur-
thermore, the scheduling techniques are extended to consider
fault-tolerance [15], [16], [17], [18], energy-conservation [19],
[20], resource interference [21], [22], etc.

We observe that safety quantification of mixed-criticality
scheduling techniques remains largely unexplored in the state-
of-the-art [1], despite its importance from the certification’s
point of view. On the one hand, system resource efficiencies
can be improved by enforcing asymmetric isolation among
different criticality levels [1], since resources can be “shifted”
to more critical tasks when they execute in emergency mode.
On the other hand, degrading less critical tasks (dropping them
in the extreme case [9], [10], [11], [13], [6], [14]) would
naturally affect the safety of those tasks; this dependency
needs to be understood and bounded in order to meet safety
(PFH) requirements on all criticality levels, as required by
existing safety standards [3], [4]. Existing work either focus
on deadline missing probabilities of individual tasks [23], [24]
or implicitly address system safety [25].

In light of this, we strive in this paper to answer the
following question: How safe is each criticality level for a
mixed-criticality system?

A. Contribution and Organization

As a step to answer the above question, we assume
fixed-priority scheduling and dynamic mode-switched dual-
criticality systems. Our contributions are as follows.

• A new probabilistic mixed-criticality system model is
introduced in Section II. It features a normal and an
emergency mode of operation, and the system choses one
based on run-time events.

• For this model, we propose several safety metrics. These
are the mode independent PFH (in Section II), the PFH in-
side normal and inside emergency mode (see Section III),
and the expected mode switch time (Section IV).

• An analysis that produces the PFH in normal mode is
given in Section III. It is based on the steady state
analysis, presented in [26]. A way to safely use this
analysis for our problem is proven, and it is extended
to produce the PFH in normal mode.

• The expected mode switch time is calculated in Sec-
tion IV. It is derived from execution time thresholds of
higher criticality tasks. A fundamental trade-off, between
normal mode safety and expected mode switch time, is
presented and discussed in Section V.



• Experimental results in Section VI illustrate the PFH in
normal mode and the expected mode switch time, with
the trade-off between these two clearly visible.

II. SYSTEM MODEL

We consider a mixed-criticality system with two criticality
levels, scheduled using fixed-priority on a preemptive unicore.
The criticality levels are denoted HI (high criticality) and
LO (low criticality). The PFHs of criticality levels (PFHHI

and PFHLO) are drawn from the five criticality levels in DO-
178C [3]. The values 10−7 and 10−5 can be used as an
example.

We assume a periodic task set τ , and each instance of a
task is called a job. Task τi is characterized by its criticality
χi ∈ {HI, LO}, period Ti, initial arrival phase φi, worst-case
execution time (WCET) Ci, and deadline Di. We define the
hyper-period (HP) as the least common multiple of all task
periods.

In a conventional model [1], [8], tasks in a dual-criticality
system can have two levels of WCETs. While in the normal
system mode, all tasks are guaranteed to meet their deadlines
adhering to their LO level WCETs (Ci(LO),∀τi). If any HI
criticality task overruns its LO level WCET, then the system
switches to emergency mode. In this mode, all HI tasks are
guaranteed with a more pessimistic WCETs (Ci(HI),∀τi ∈
τHI). In emergency mode LO criticality tasks are guaranteed
with reduced service. As an example, reduced service could
imply less in precision. LO criticality tasks are not allowed to
overrun Ci(LO).

In an attempt to match theoretical insights with applicable
safety standards, we now introduce a probabilistic mixed-
criticality task model. In this model we augument the WCETs
model by making execution times independent random vari-
ables Ci,∀τ , whose probability distributions are known. Well
established methods like static or measurement based proba-
bilistic timing analysis techniques already exist to derive safe
estimations of task execution time distributions, see [27], [28],
[29], [30]. For computational reasons, we assume a discrete
distribution of task execution times.

Similar to the conventional model, we assume a normal and
an emergency system mode. The system starts in normal mode
and switches to emergency mode when any HI criticality task
overruns an execution time threshold θi. LO criticality tasks are
not allowed to exceed their execution thresholds, thus when the
threshold is reached they are killed. In emergency mode, more
resources are provided to HI tasks, at the expense of LO tasks
– LO criticality tasks could be completely dropped [9], [10],
[11], their service could be degraded with longer activation
periods [12], [6], or they can be served as background tasks
by lowering their priorities. We provide general safety analysis
techniques considering all of these cases.

Once in emergency mode, the system could either stay in
that mode forever, or switch back to normal mode when the
system is idle [1], i.e. when there are no jobs executing or
waiting to be executed. We shall assume the later case, the
argument being, that degrading a criticality level indefinitely

execution time

pr
ob

ab
ili

ty
di

st
ri

bu
tio

n

θ WCET

p1

p2

Fig. 1: p2 created by limiting p1 with θ

is not appropriate. The switch back to normal mode is left for
future work.

A value used often in this paper is the backlog. A backlog
bλ,i is a random variable, describing how much more execution
time is needed at time λ to finish old jobs of priority i and
higher. Backlogs are important because they determine when
an arriving job can start its execution.

A. Notations on Probabilities

It is useful to introduce some notations that will be used,
as well as a relation for ordering random variables.

1) Discrete PDFs: We deal with discrete non-negative
random variables in this paper, the probability distributions
of which are modeled with probability density functions
(PDFs). Formally, for a random variable x and its probability
density function px(·), it follows that

∑
u
px(u) = 1 as u

runs through the set of all possible values of x. Without
loss of generality, we assume that the possible values of a
random discrete variable x span the entire range of natural
numbers, where px(u) = 0 if x can not take the value u.
For notational convenience, we omit the random variable in
our notation if it is irrelevant in the context. All probability
distributions are density functions unless otherwise stated.
Note that we alternate between function representation of a
probability density function p(·) and its vector representation
[p(0), p(1), · · · , p(u), · · · ]T whenever it is convenient.

2) Comparison of PDFs: Let us define a relation q � p,
that is used to compare any two probability distributions p and
q. With this relation, we say that p is greater or equal to q, if
the sum from any arbitrary value l onward, is greater or equal
for p than for q. Mathematically this is noted as in (1). Note
that probability densities can be incomparable.

∀l :

∞∑
u=l

q(u) ≤
∞∑
u=l

p(u) ⇔ q � p (1)

3) Limiting PDFs: By limiting a probability distribution
with a threshold θ, we find a conditional probability distribu-
tion, where values above the threshold θ are not allowed. This
new probability distribution is calculated as in (2).



0 4 8

τ1 arrival τ2 arrival τ1, τ2 deadline

t

(a) Events in the scenario

0 1 2

0.
8

0.
1

0.
1

w1

t

w1 = shrink(pτ1 , 4)

0 3 4 5 6

0.
4

0.
4

0.
1

0.
1

pτ1

t

0 2 3 4 5

0.
56

0.
31

0.
1

0.
03

w2

t

w2 = w1 ⊕ pτ2

0 2 3

0.
7

0.
3

pτ2

t

(b) Analysis based on shrinking and convoluation
0 4 8 t

Fig. 2: Finding the failure probabilities of jobs in a simple
scenario – at time 4, w1 is the backlog (unfinished workload)
from τ1 while w2 is the backlog including τ2

p(x|x ≤ θ) =
p(x, x ≤ θ)
p(x ≤ θ)

=

{
p(x)
p(x≤θ) x ≤ θ
0 x > θ

(2)

We can see that this conditional distribution retains the same
shape but is scaled up before the threshold, and is equal to zero
afterwards. This operation is illustrated in Figure 1, where p2

is the limit of p1 with the threshold θ.
4) Convolution of PDFs: The well known convolution

operation [26] defines the addition of independent random
variables. For some discrete probability distributions p and
q, it is defined as in (3).

(p⊕ q)(i) =

i∑
u=0

p(u) · q(i− u) =

i∑
u=0

p(i− u) · q(u) (3)

5) Shrinking PDFs: Shrinking a probability distribution
function p by m is defined as summing up the first m + 1
elements into the first element, and left shifting the remaining
distribution by m. (4) is a formal definition of this shrinking
process.

shrink(p,m)(i) =

{∑m
j=0 p(j) i = 0

p(i+m) i > 0
(4)

We now use a minimal example to show the usage of the
convolution and shrinking functions in analyzing real-time
systems with probabilistic execution times.

Example 1. Let us consider the example shown in Figure 2.
Two tasks τ1 and τ2 are scheduled via fixed-priority (τ2 has
higher priority), with task parameters also as shown in the
figure. Their presented execution times are already limited
by thresholds, pτi = pτifull(x|x ≤ θi), where pτifull are
the execution times with no limiting thresholds. τ1 starts its
execution with no backlog at time 0. At time 4, we get the
backlog w1 = shrink(pτi , 4). Intuitively, we see that this

operation shifts the execution time distribution of τ1 to the
left by 4 time units. In addition, τ2 is arriving at 4 and will
preempt the execution of τ1. For τ2, it can be seen that its
deadline miss probability is zero as it will finish before time 8
for both possible execution times. However, to get the failure
probability of τ1, we need to consider the interference from τ2.
This can be done by applying the convolution operation at time
4 to get the total backlog at this time: w2 = w1 ⊕ pτ2 . From
our derivation as shown in Figure 2 (b), τ2 has a deadline miss
probability of 0.03. Likewise, one could extend this analysis
to arbitrary tasks under deterministic scheduling policies.

III. PLAIN SAFETY ANALYSIS

In this section, we explain how to derive the probability-of-
failure-per-hour (PFH) of a criticality level χ inside a single
mode of operation M, PFHM

χ , with the assumption that the
initial conditions, as well as the priority assignments and
limiting thresholds, are known. It will be shown that this
method can be applied to find the PFH when normal mode
operation is assumed, noted as PFHN

χ.
Deriving the PFH directly, as in Example 1, is computa-

tionally prohibitive, as there could be millions of jobs inside
an hour. An alternative, safe, analysis is presented, which
focuses on one hyper-period, and extrapolates the results
to find the probability of failure inside an interval of any
length. The analysis presented here is built upon the seminal
work Stochastic Analysis of Periodic Real-Time Systems [26].
There, a single-mode system model is assumed. [26] concludes
that task deadline miss probabilities for every job inside a
hyper-period converge, to a steady state value, as more hyper-
periods are executed. The same is true for backlogs at specific
times inside the hyper-period. In this work, we augment Our
paper contributes by investigating when it is safe to use the
steady state analysis to obtain safe PFH values, as required by
safety standards.

Steady state deadline miss probabilities are obtained by first
taking the steady state backlog at the beginning of a hyper-
period, and then analyzing the execution of jobs inside the
hyper-period when this backlog is present.

An important question is whether the steady state backlog
exists in a given system. The existence of such a backlog is
shown to relate to the system utilization, i.e. the ratio of time
that the system is busy processing jobs. Using results from
queuing theory, it has been proven that if the average system
utilization is less than one, a steady state exists [26]. If the
average utilization is greater than or equal to one, the steady
state backlog is infinitely large, essentially making system
safety guarantees impossible. Therefore, we focus on the case
when a steady state exists.

However, we cannot use the steady state backlog for ob-
taining failure rates directly, as it is not known whether the
steady state can be safely used to bound task deadline miss
probabilities. In fact, deadline miss probabilities depend on
the initial backlog, as stated in the following theorem.

Theorem 1. Let {bn} be a sequence of backlogs, where bn is
the backlog present at the beginning of hyper-period n. The



sequence {bn} is monotone in the sense that, if b0 � b1, then
bn+1 � bn+2,∀n ∈ N0, or if b0 � b1, then bn+1 � bn+2,∀n ∈
N0.

The proof is omitted here due to lack of space, but can
be found in our technical report [31]. If the initial backlog at
the start of operation in this mode is b0, and the steady state
backlog is π, then we present the following conclusions.
• If b0 � π, then the steady state deadline miss probabilities

are the worst possible in the system, and they can be used
to obtain safe failure rates.

• If b0 � π, then the deadline miss probabilities found in
the first hyper-period are the worst in the system, and
they can be used to find failure rates.

• If b0 and π are neither comparable w.r.t. � nor �,
we need to find a third probability density q, such that
b0 � q and π � q, and use this as a backlog in order
to get safe failure rates. This value can be calculated as∑∞
u=l q(u) = max (

∑∞
u=l b

0(u),
∑∞
u=l π(u)).

Note, a non-zero initial backlog is unusual at the start of a
system, but can happen after a mode switch.

A. Failure Rates

As we know which backlog to use at a hyper-period’s
beginning, we can continue to determine the PFHM

χ . This is
done firstly by calculating the deadline miss probability of
every job of this hyper-period, and then aggregating these
values into the probability of failure inside an interval of
arbitrary length.

The detailed procedure for obtaining deadline miss proba-
bilities of jobs is presented in [26]. It is in the same manner
as Example 1, where convolutions and shrinking functions
are used to determine when individual jobs will finish their
execution.

Let us observe a time interval ∆. Regardless of the start
time, the worst possible probability of failure inside the
interval shall be denoted as PF∆. Because only jobs whose
deadlines are inside ∆ are of concern, we can link failure rates
inside an interval to job deadline miss probabilities (dmp-s):

PF∆ = max
λ

1−
∏

job’s deadline
in [λ, λ+ ∆]

(1− dmp (job))

 (5)

Checking every possible interval start λ can be computa-
tionally prohibitive. Fortunately, we can reduce the problem
by the following lemma.

Lemma 1. Surely nb =
⌊

∆
HP

⌋
− 1 whole hyper-periods are

present inside an interval ∆, regardless of its start time.

If we note the reminder of the interval as δ = ∆−nb ·HP, we
can calculate the failure rate inside an interval as PF∆ = nb ·
PFHP + PFδ . The values PFHP and PFδ can be easily computed
based on (5). First, the interval HP always has all jobs from
one hyper-period inside it, so the search for maximum from

(5) is not necessary. Second, the δ interval is limited in length,
so the calculating (5) is not computationally prohibitive. More
details, along with the proof of the lemma, can be obtained in
the report [31].

B. Application to Normal Mode

In normal mode, by definition, tasks will not overrun their
execution time thresholds. Thus, we could use the limited
execution time distributions of all tasks and directly apply the
plain safety analysis technique to get the failure rates on each
criticality level, PFHN

LO and PFHN
HI. However, special attention

needs to be paid to LO criticality tasks due to the conventional
mixed-criticality model: in normal mode, if a LO criticality
task exceeds its execution θ threshold, it will be killed. This
also constitutes a failed execution, which was not taken into
account in the afore mentioned analysis. The probability of this
event happening can be obtained directly from the execution
time distribution function of the task, P (Ck > θk). Therefore,
we define that PFHN

LO is the probability that either a LO task is
killed, or it misses its deadline. Because these two sources of
failure are independent, calculating the cumulative probability
of failure can be done directly. Nevertheless, for the scope of
this paper and for simplicity reasons, when mentioning PFHN

LO

only missed deadlines shall be implied.

IV. EXPECTED MODE SWITCH TIME

To show how long the system is expected to stay in normal
mode, or how often the normal to emergency mode switch
occurs, we introduce the expected mode switch time. If the
normal mode starts at time zero, and Tsw is the time the mode
switch happens, then E[Tsw] is the expected mode switch time.
The normal mode start can either be the system start or a safe
switch from emergency to normal mode.

The probability that a mode switch occurs in an interval
[λ, λ+ ∆] can be written as

psw
[λ,λ+∆] = 1−

∏
all HI jobs

in interval[λ,λ+∆]

P (Ck ≤ θk) (6)

In a practical system, the mode switch is expected to be a
rare event, with the time between the start of normal mode
and the mode switch several orders of magnitude larger than
an hour. Accordingly, as a precondition to the usefulness of
this analysis, we expect the hyper-period to be much smaller
than the expected time between two mode switches. Because
of this, it is reasonable to view one hyper-period as a time unit.
If psw

HP is the probability of mode switch in one hyper-period,
then the expected mode switch is after 1/psw

HP hyper-periods.
This can be written as in (7).

E[Tsw] =
1

psw
HP
× HP (7)

V. CHOOSING THE THRESHOLDS

An important and novel question not dealt within the
previous analysis is how to determine the θi (execution time)
thresholds that trigger a mode switch. These are thresholds



for HI tasks. Choosing such thresholds is a design space
exploration problem, but is not a straightforward task. As
we explain, it involves a trade-off between two safety related
values.

Let us first investigate the impact of the threshold on
the expected mode switch time, E[Tsw]. As (6) shows, with
increased thresholds, the probability of mode switch per hyper-
period (psw) will decrease; consequently, the expected mode
switch time (E[Tsw]) will increase, see (7). In practice, we
would like to have the expected switch time to be as long
as possible, in order to keep the system “away” from the
emergency mode. This implies that thresholds should be large.

However, we need to still consider the impacts of selected
thresholds on system safety. We continue to discuss the way
the thresholds influence failure rates in normal mode, PFHN

χ.
Since the execution time of a HI task in normal mode (CN

i )
depends on its threshold θi ≥ CN

i , we observe that the
average normal mode execution time of a task E[CN

i ] decreases
with decreasing θi; accordingly, we get smaller average job
execution times and less average system utilization. This
implies a smaller probability that jobs miss their deadlines
and fail. In summary, we find that the failure rates on each
criticality level in normal mode (PFHN

χ) monotonically increase
with increasing task execution time thresholds (θ). Thus, to
have the failure rates for both LO and HI tasks as low as
possible, we would favor thresholds to be small.

A corner case of this trade-off gives us the comparison
between systems with and without modes of operation – the
latter option being when HI task’s thresholds are their WCETs,
in which case the system never enters emergency mode. We
can see that a system in normal mode of operation is safer than
the same system operating with no modes at all. However, this
comes at a cost, which is the introduction of the emergency
mode.

VI. SIMULATION RESULTS

To illustrate the afore presented analysis, as well as the
impact of execution time thresholds on the system, we present
generalized observations with random simulations.

First, we have used Gumbel distributions to model the
execution times of tasks, as can be seen in Figure 3. The
Gumbel distribution is a standard assumption for task execu-
tion time distributions [32]. It is used to model the distribution
of maximum values, in this case long but unlikely execution
times.

We simulated 54 random systems, each with an average
utilization close to 0.8, a hyper-period of 300µs, and up to
eight jobs. The threshold varied was always the one of the
task with the highest priority; this way the varied threshold
effects tasks of all priority levels. This was varied from the
respective WCET (right side in Figures 4 and 5), to a value
25µs less than that (left side of figures). All other thresholds,
both for HI and LO criticality tasks, were 3µs less than their
respective WCET. In order to present different values together,
we normalized them, so instead of showing absolute values,

20 40 60 80 100 120

10
−

1
0

10
−

8
10
−

6
1
0
−

4
1
0
−

2
10

0

Execution time [µs]

Pr
ob

ab
ili

ty

Fig. 3: Execution times
as Gumbel distributions

0510152025
−10

−8

−6

−4

−2

0

WCET1 - θ1

E
[T

sw
](
θ 1

)
/

m
a
x

E
[T

sw
]

Fig. 4: Expected mode
switch time for various
thresholds, normalized

0510152025
−2

−1.5

−1

−0.5

0

WCET1 - θ1

lo
g
(P

F
H

N H
I(
θ 1

)/
m

ax
P

F
H

N H
I)

0510152025
−2

−1.5

−1

−0.5

0

WCET1 - θ1

lo
g
(P

F
H

N L
O
(θ

1
)/

m
a
x

P
F

H
N L

O
)

Fig. 5: Failure per hour rates, for different values of θ1,
normalized and in logarithmic scale

all values are relative to the case when the threshold of the
highest priority task is at its WCET.

Figures 4 and 5 are box-whisker plots aggregating results
from all of the systems. On one hand, we observe in Figure 5
that increasing threshold θ1 increases the system failure rates
in normal mode. On the other hand, Figure 4 shows that a
higher threshold delays the expected time the system switches
to emergency mode. This is in line with the analysis from
Sections IV and V: a fundamental trade-off between normal
mode safety and the expected mode switch time does exist.

VII. FUTURE WORK: SAFETY OF EMERGENCY MODE

The plain safety analysis, used to describe normal mode,
would be pessimistic to be used for emergency mode. Thus,
finding the safety of this mode is left for future work.

The reason is twofold. First, at the start of emergency mode,
the backlog is expected to be large. This is because one of
the jobs, the one causing the mode switch, is experiencing a
high execution time. Backlogs later shall drop as time passes,
and due to LO criticality tasks being degraded. However,
Theorem 1 implies that this large backlog should be used to get
deadline miss probabilities of all the jobs, and this potentially
makes the failure rates unjustifiably high.

Second, the emergency mode is conceived by the system
model to last as short as the safety requirements allow it,
and having degraded service longer than necessary is not
acceptable. This is why we can not take for granted that the
steady state values will be reached during the operation of this
mode.

Generally speaking, an analysis dealing with emergency
mode should address the following challenges:



• The time of mode switch is unknown, as well as the job
causing it. This causes the initial backlog to be unknown.

• The switch back to normal mode has to be understood,
including proving when it is statistically safe to switch
back. The statistically safe to switch back condition
would be met if for example, after the switch the failure
rates are in accordance with safety standards.

• For jobs in emergency mode, an algorithm to safely
obtain deadline misses should be presented.

Apart from understanding the emergency mode, addressing
these challenges would contribute to provide a holistic, mode
independent PFH.

VIII. CONCLUSION

In this paper, we showed that it is possible to analyze the
safety of mixed-criticality systems. We introduced a proba-
bilistic model for dual-criticality systems, and defined safety
metrics for this model in line with industry standards. These
are the holistic or mode-independent PFH, the PFH in a single
mode, and the expected mode switch time.

Next, we proved that the values we obtained for PFH in
normal mode are safe. Expected mode switch times, from
normal to emergency, were also analyzed.

Towards designing a feasible system, we showed that a
trade-off has to be taken into account: this exists between the
failure rates in normal mode for both HI and LO tasks, and
the expected mode switch time. This was confirmed with the
simulation results as well.

However, further work towards understanding emergency
mode is still needed to form a complete view of the safety of
a mixed-criticality system.

REFERENCES

[1] A. Burns and R. Davis, “Mixed criticality systems-a review,” Department
of Computer Science, University of York, Tech. Rep, 2016.

[2] S. Trujillo, R. Obermaisser, K. Grüttner, F. Cazorla, and J. Perez,
“European project cluster on mixed-criticality systems,” in Design,
Automation and Test in Europe (DATE) Workshop 3PMCES, 2014.

[3] “Rtca/do-178c, software considerations in airborne systems and equip-
ment certification,” 1992.

[4] “ISO 26262, Road Vehicles - Functional Safety,” 2011.
[5] D. Tămaş-Selicean and P. Pop, “Design optimization of mixed-criticality

real-time embedded systems,” ACM Trans. on Embeddded Computing
Systems, vol. 14, no. 3, pp. 50:1–50:29, 2015.

[6] G. Giannopoulou, N. Stoimenov, P. Huang, and L. Thiele, “Scheduling
of mixed-criticality applications on resource-sharing multicore systems,”
in EMSOFT, 2013, pp. 1–15.

[7] S. K. Baruah, A. Burns, and R. I. Davis, “Response-time analysis for
mixed criticality systems,” in Real-Time Systems Symposium (RTSS),
2011 IEEE 32nd. IEEE, 2011, pp. 34–43.

[8] S. Vestal, “Preemptive scheduling of multi-criticality systems with
varying degrees of execution time assurance,” in Real-Time Systems
Symposium, 2007. RTSS 2007. 28th IEEE International. IEEE, 2007,
pp. 239–243.

[9] S. Baruah, V. Bonifaci, G. D’Angelo, A. Marchetti-Spaccamela, S. Ster,
and L. Stougie, “Mixed-criticality scheduling of sporadic task systems,”
in Algorithms - ESA, 2011.

[10] T. Park and S. Kim, “Dynamic scheduling algorithm and its schedulabil-
ity analysis for certifiable dual-criticality systems,” in EMSOFT, 2011,
pp. 253–262.

[11] P. Ekberg and W. Yi, “Bounding and shaping the demand of mixed-
criticality sporadic tasks,” in ECRTS, 2012, pp. 135–144.

[12] P. Huang, G. Giannopoulou, N. Stoimenov, and L. Thiele, “Service adap-
tions for mixed-criticality systems,” in Design Automation Conference
(ASP-DAC), 2014 19th Asia and South Pacific. IEEE, 2014, pp. 125–
130.

[13] S. Baruah and G. Fohler, “Certification-cognizant time-triggered
scheduling of mixed-criticality systems,” in RTSS, 2011, pp. 3–12.

[14] P. Huang, G. Giannopoulou, R. Ahmed, D. B. Bartolini, and L. Thiele,
“An isolation scheduling model for multicores,” ETH Zurich, Laboratory
TIK, Tech. Rep, vol. 361, 2015.

[15] P. K. Saraswat, P. Pop, and J. Madsen, “Task migration for fault-
tolerance in mixed-criticality embedded systems,” ACM SIGBED Re-
view, vol. 6, no. 3, p. 6, 2009.

[16] S. Islam, R. Lindström, and N. Suri, “Dependability driven integration
of mixed criticality sw components,” in Object and Component-Oriented
Real-Time Distributed Computing, 2006. ISORC 2006. Ninth IEEE
International Symposium on. IEEE, 2006, pp. 11–pp.

[17] R. M. Pathan, “Fault-tolerant and real-time scheduling for mixed-
criticality systems,” Real-Time Systems, vol. 50, no. 4, pp. 509–547,
2014.

[18] S.-H. Kang, H. Yang, S. Kim, I. Bacivarov, S. Ha, and L. Thiele,
“Reliability-aware mapping optimization of multi-core systems with
mixed-criticality,” in Design, Automation and Test in Europe Conference
and Exhibition (DATE), 2014. IEEE, 2014, pp. 1–4.

[19] V. Legout, M. Jan, and L. Pautet, “Mixed-criticality multiprocessor
real-time systems: Energy consumption vs deadline misses,” in First
Workshop on Real-Time Mixed Criticality Systems (ReTiMiCS), 2013,
pp. 1–6.

[20] E. R. Wognsen, R. R. Hansen, and K. G. Larsen, “Battery-aware
scheduling of mixed criticality systems,” in Leveraging Applications of
Formal Methods, Verification and Validation. Specialized Techniques and
Applications. Springer, 2014, pp. 208–222.

[21] G. Giannopoulou, N. Stoimenov, P. Huang, L. Thiele, and B. D.
de Dinechin, “Mixed-criticality scheduling on cluster-based manycores
with shared communication and storage resources,” Real-Time Systems,
pp. 1–51, 2015.

[22] H. Yun, G. Yao, R. Pellizzoni, M. Caccamo, and L. Sha, “Memory access
control in multiprocessor for real-time systems with mixed criticality,”
in ECRTS, 2012, pp. 299–308.

[23] A. Masrur, “A probabilistic scheduling framework for mixed-criticality
systems,” in Proceedings of the 53rd Annual Design Automation Con-
ference. ACM, 2016, p. 132.

[24] L. Santinelli and L. George, “Probabilities and mixed-criticalities: the
probabilistic c-space,” in Proc. 3rd Workshop on Mixed Criticality
Systems (WMC), RTSS, 2015, pp. 30–35.

[25] Z. Guo, L. Santinelli, and K. Yang, “Edf schedulability analysis on
mixed-criticality systems with permitted failure probability,” in 2015
IEEE 21st International Conference on Embedded and Real-Time Com-
puting Systems and Applications. IEEE, 2015, pp. 187–196.

[26] J. L. Dı́az, D. F. Garcı́a, K. Kim, C.-G. Lee, L. L. Bello, J. M. López,
S. L. Min, and O. Mirabella, “Stochastic analysis of periodic real-time
systems,” in Real-Time Systems Symposium, 2002. RTSS 2002. 23rd
IEEE. IEEE, 2002, pp. 289–300.

[27] M. Orshansky and K. Keutzer, “A general probabilistic framework for
worst case timing analysis,” in Proceedings of the 39th annual Design
Automation Conference. ACM, 2002, pp. 556–561.

[28] L. Cucu-Grosjean, L. Santinelli, M. Houston, C. Lo, T. Vardanega,
L. Kosmidis, J. Abella, E. Mezzetti, E. Quinones, and F. J. Cazorla,
“Measurement-based probabilistic timing analysis for multi-path pro-
grams,” in Real-Time Systems (ECRTS), 2012 24th Euromicro Confer-
ence on. IEEE, 2012, pp. 91–101.

[29] A. Devgan and C. Kashyap, “Block-based static timing analysis with
uncertainty,” in Proceedings of the 2003 IEEE/ACM international con-
ference on Computer-aided design. IEEE Computer Society, 2003, p.
607.

[30] S. Malik, M. Martonosi, and Y.-T. S. Li, “Static timing analysis of em-
bedded software,” in Proceedings of the 34th annual Design Automation
Conference. ACM, 1997, pp. 147–152.

[31] S. Draskovic, P. Huang and L. Thiele, “On the safety of mixed-criticality
scheduling,” Technical Report, ETH Zurich, Laboratory TIK, 2016.

[32] F. Wartel, L. Kosmidis, C. Lo, B. Triquet, E. Quinones, J. Abella,
A. Gogonel, A. Baldovin, E. Mezzetti, L. Cucu et al., “Measurement-
based probabilistic timing analysis: Lessons from an integrated-modular
avionics case study,” in Industrial Embedded Systems (SIES), 2013 8th
IEEE International Symposium on. IEEE, 2013, pp. 241–248.


