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Abstract

Modern embedded systems that are integrated as multi-processor system on chips, are often characterized by the complex
behaviors and dependencies between system components. Different events that trigger such systems may cause different execution
demands, depending on their event type as well as on the task they are processed by, leading to complex workload correlations.
For example in data processing systems, the size of an event’s payload data will typically determine its execution demand on
most or all system components, leading to highly correlated workloads. Performance analysis of such systems is often difficult,
and conventional analysis methods have no means to capture the possible existence of workload correlations. This leads to overly
pessimistic performance analysis results, and thus to expensive system designs with considerable performance reserves. We propose
an abstract model to characterize and capture workload correlations present in a system architecture, and we show how the captured
additional system information can be incorporated into an existing framework for modular performance analysis of embedded
systems.
© 2006 Elsevier Inc. All rights reserved.
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1. Introduction

Today’s complex real-time embedded systems are often comprised of a combination of different hardware and
software components that are triggered by a number of different incoming event streams, and that communicate via
some communication network. Such systems are often integrated as a Multi-processor System on Chip (MpSoC) and
many alternatives for partitioning, allocation and binding lead to a large design space.

During the system level design process of such a complex system, a designer is typically faced with the questions
whether the timing properties of a certain implementation will meet the design requirements, what architectural ele-
ment will act as a bottleneck, or what the on-chip memory requirements will be. One of the major challenges in the
design process is therefore to analyze essential characteristics of a system architecture, such as end-to-end delays,
or buffer requirements in an early design stage. This analysis is typically referred to as system-level performance
analysis, and supports the choice of important design decisions before much time must be invested in detailed imple-
mentations.
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Obtaining tight results for the above-mentioned characteristics of a system design is not only difficult because of
the heterogeneity and complexity of the complete system, but also because of the possibly complex behaviors and
dependencies of the different components in the system. Different events may arrive on incoming event streams of a
component, and they may create different resource demands, depending on their event type as well as on the task they
are processed by. Due to this, there often exist complex correlations in such systems. We can thereby differentiate
between correlations in the occurrence of different event types on incoming event streams, which we call event stream
correlations (see [17]), and correlations of different resource demands that an event of a given type causes on different
system components, which we call workload correlations. Highly correlated resource demands are for example typical
in data processing systems, where the resource demand that an event creates on a component directly depends on the
size of its payload data. In such a system, an event with a large payload will typically cause a large resource demand
on most or all components it is processed on, and in turn, an event with a small payload will cause a small resource
demand on most or all components.

The system-level analysis of such complex and heterogeneous systems with a high degree of internal correlations
is currently mainly based on simulation, using for example SystemC, or trace-based simulation as in [10]. These tech-
niques allow modeling and simulation of complex systems in any level of detail. However, in terms of completeness,
simulation-based approaches do not allow to obtain worst-case results, because any concrete simulation-run can in
general not guarantee to cover all corner cases. But most of all, simulation often suffers from long run-times and from
a high set-up effort for each new architecture and mapping to be analyzed, and is therefore not very well suited for
performance analysis in early design stages.

Other existing techniques use probabilistic models to describe real-time systems, see, e.g., [16]. Such models can
capture statistical characteristics of complex components. The results obtained from an analysis with these proba-
bilistic models will however again be of probabilistic nature. Hence, they are not applicable for the analysis of hard
real-time systems.

In contrast to the above-mentioned methods, formal analytical methods allow to obtain the hard-bounded results
that are needed for the analysis of hard real-time systems. A well-known technique to model real-time components are
Timed Automata [1]. In [6], it was shown that timed automata can be used as task models for event-driven systems and
that the schedulability problem in such a model can be transformed to a reachability problem for timed automata and
is thus decidable. While we could theoretically model complex component behaviors in any level of detail using this
technique, the limitation to synchronous communication in timed automata, but also the existence of different event
types would require to explicitly model all buffers in a stream based multi-processor application with asynchronous
communication. But a single buffer of size b that may hold events of e different types, already requires e(b+1) − 1
states. Analysis of a multi-processor system with explicitly modeled buffers would therefore quickly lead to state-
space explosion, turning the analysis effort for a complete system to be prohibitive.

In [14], an analytical framework for system-level performance analysis was proposed that is based on classical
scheduling results from hard real-time system design. This framework uses a number of well-known abstractions to
capture the timing behavior of event streams and provides additional interfaces between them. Recently, effort was put
into the refinement of component interaction models in this framework [13]. These models however do not explicitly
consider workload correlations yet. In [7], intra event and inter event stream contexts were presented that address the
problem of correlations present in complex embedded systems. Intra event stream contexts consider the correlations
of different event types on a single processor, while inter event stream contexts consider the correlations of different
event streams on a single processor. None of the methods however consider the workload correlations on multiple
consecutive processors presented in this work. A general disadvantage of the framework presented in [14], and hence
of all methods based on it, is its confinement to a limited number of event stream timing behaviors. Due to this, the
framework can only capture limited aspects of event streams that exhibit arbitrary timing behaviors.

On the other hand, powerful abstractions have been developed in the domain of communication networks, to model
flow of data through a network. In particular the theoretical framework called Network Calculus [9] provides means to
deterministically reason about timing properties of data flows in queuing networks. Real-Time Calculus [15] extends
the basic concepts of Network Calculus to the domain of real-time embedded systems and in [2] a unifying approach to
modular system level performance analysis with Real-Time Calculus has been proposed. It is based on a general event
model, allows for hierarchical scheduling and arbitration, and can take computation and communication resources
into account.
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The framework presented in [2] has been successfully used in several case studies for hard real-time system analysis
(see, e.g., [3]). However, since it is also not capable to capture the above mentioned correlations, that are often
present in complex embedded systems, the results obtained from performance analysis with [2] are sometimes overly
pessimistic. In [17], a new method was presented that extended the existing framework by allowing to characterize
event stream correlations. And in this work, we present a new method that extends the same framework and that allows
to characterize, capture and exploit workload correlations in the performance analysis of complex systems.

1.1. Contributions

• We provide an insight to the problem of performance analysis of distributed hard real-time systems with varying
worst-case and best-case resource demands, and we point out the performance reserves that often exist in such
systems due to workload correlations on different system components. These are typically not considered by
existing performance analysis methods.

• We present a new abstract model that allows to characterize and capture workload correlations between different
components in a system architecture, and we show how the captured information of workload correlations can be
incorporated into the framework presented in [2]. Further, we present an analytic method to extract the workload
correlation information from a typical system model.

• We show the applicability of the presented model and methods in a detailed case study of a Multi-processor
System on Chip, where the analysis results obtained using the new methods are considerably improved compared
to the results obtained using conventional methods.

2. Workload correlations—an application scenario

We first present an application scenario of a multi-processor system on chip (MpSoC) with workload correlations,
that will serve as a case study throughout the paper, and that will help to visualize the effects and the importance of
the presented methods. In Section 5, we provide the complete analysis of this application scenario, and discuss the
obtained results.

An overview of the MpSoC in consideration is depicted in Fig. 1. The figure shows a two-processor system on
chip, that must serve two event streams, both entering and leaving independently through the I/O-interfaces of the
chip. Both event streams have hard-real time processing requirements.

Stream 1 is processed consecutively by Task 1 and Task 2, that are running on Processor I and Processor II,
respectively. In the long-term average, the events on this stream arrive periodically with a period of 4 ms. From
time to time, bursts in the event arrival are possible on this stream, the full specification of Stream 1 is provided
in Example 1. The events arriving on Stream 1 may be differentiated into two event types, with different execution
demands. Events of type A have an execution demand of 20,000 cycles in Task 1 and a demand of 15,000 cycles in
Task 2. Events of type B on the other hand are less resource demanding and demand only 5000 cycles, both in Task 1

Fig. 1. A multi-processor system on chip with correlating execution demands. The execution demands are indicated in units of 1000 cycles.



210 E. Wandeler, L. Thiele / Journal of Computer and System Sciences 73 (2007) 207–224
as well as in Task 2. Further let us suppose that events of both types may arrive equally frequently and that we know
nothing about possible correlations or arriving patterns of the two event types on the first event stream.

Stream 2 is processed by Task 3 that is running on Processor II. Events on Stream 2 arrive periodically, with a
period of 6 ms and a maximal jitter of 1 ms. The events on this event stream are all of type C and have an execution
demand of 5000 cycles in Task 3.

On Processor II, Task 2 and Task 3 are scheduled using a preemptive fixed priority scheduler, where, according
to the Rate Monotonic scheduling scheme [11], Task 2 (processing the stream with period p = 4 ms) has the higher
priority than Task 3 (processing the stream with period p = 6 ms). Since processing Task 3 has a lower priority than
processing Task 2, the events on Stream 2 may experience a processing delay due to the interference of Task 2.

Let the speed of Processor I in the system be fixed to 6 MHz. Our design problem will then be to determine upper
bounds to the maximum delay that events on Stream 2 experience during processing on the MpSoC, as a function of
the processor speed of Processor II. We thereby define the maximum delay as the maximum time that elapses between
the arrival of an event on Stream 2 and the finishing time of the corresponding Task 3 that processes the event.

In this MpSoC, we nicely see the correlations of the workloads that Stream 1 is creating on the two processors:
an event of type A, that creates a high demand of 20,000 cycles on Processor I again creates a high demand of
15,000 cycles on Processor II. On the other hand, an event of type B that only creates a demand of 5000 cycles on
Processor I, creates also a low demand of 5000 cycles on Processor II.

More details of this application scenario are provided in the example sections of this work. The complete analysis,
and the results obtained for the design problem are presented and discussed in Section 5.

3. Modular performance analysis of hard real-time systems

Figure 2 shows an overview of an approach to Modular Performance Analysis (MPA). The central idea of MPA
is to construct a performance model of a system, that captures the properties of the different system elements, such
that they can be used for performance analysis. The approach described here is based on Real-Time Calculus [15],
that itself is based on the theoretical framework called Network Calculus [9]. Network Calculus provides means to
deterministically reason about timing properties of data flows in queuing networks. In the here described approach
to MPA, performance models are built using three basic abstract elements: arrival curves model the environment
(incoming and outgoing event streams), service curves model the capacity of resources and abstract components
define the semantics of task execution in the system. The following sections give a short introduction to these basic
elements and to the analysis methods.

Fig. 2. Elements of Modular Performance Analysis and methods to obtain them.
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3.1. Model of environment (Arrival Curves)

Every event on an event stream, has a time when it occurs. This timing information of an event stream is captured
using the concept of upper and lower arrival curves [5]:

Definition 1 (Arrival Curves). Let R[s, t) denote the number of events that arrive on an event stream in the time
interval [s, t). Then, R, ᾱu and ᾱl are related to each other by the following inequality:

ᾱl(t − s) � R[s, t) � ᾱu(t − s), ∀s < t, (1)

where ᾱl(0) = ᾱu(0) = 0.

In this model, the timing information of standard event stream models like periodic, periodic with jitter, periodic
with bursts, sporadic or of any event stream with a known analytical timing behavior can be represented by an appro-
priate choice of ᾱu and ᾱl [2]. Moreover, it is also possible to determine the values of ᾱu and ᾱl corresponding to any
given finite length event trace, obtained for example from observation or simulation.

Example 1. In literature, standard event arrival patterns are often specified by a parameter triple (p, j, d), where
p denotes the period, j the jitter, and d the minimum inter-arrival distance of events in the modeled stream. Event
streams that are specified using these parameters can directly be modeled by the following arrival curves:

ᾱl(Δ) =
⌊

Δ − j

p

⌋
, (2)

ᾱu(Δ) = min

{⌈
Δ + j

p

⌉
,

⌈
Δ

d

⌉}
. (3)

In Fig. 3, the relation between these parameters and the corresponding arrival curves is graphically depicted, and
Fig. 4 shows the arrival curves of the two input event streams Stream 1 and Stream 2 that trigger the MpSoC in Fig. 1.

3.2. Model of resources (Service Curves)

The capacity of a resource can be characterized using lower and upper service curves βl and βu [9]:

Definition 2 (Service Curves). Let C[s, t) denote the number of processing or communication units available from a
resource over the time interval [s, t), then the inequality

βl(t − s) � C[s, t) � βu(t − s), ∀s < t, (4)

holds, where again βl(0) = βu(0) = 0.

The service curves of a resource can be determined using data sheets, using analytically derived properties or by
using measuring.

Fig. 3. Arrival curves from (p, j, d).
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Fig. 4. The event stream model of Stream 1 (left) and Stream 2 (right) that trigger the MpSoC in Fig. 1.

Example 2. Both processors of the MpSoC in Fig. 1 are initially unloaded, i.e. fully available. We therefore model
both as a pair of straight upper and lower service curves, with a slope corresponding to the processor speed. For
example for Processor I with a processor speed of 6 MHz, βu

PI = βl
PI = 6,000,000 · Δ.

3.3. Abstract components and Real-Time Calculus

Abstract components are the basic building blocks to construct a performance model of a system. They model the
application tasks in a concrete system and define the semantics of how application tasks are executed on architectural
elements. At the same time, they also build the basis for performance analysis.

A very common execution semantics for application tasks in embedded systems is greedy preemptive computation,
where a component is triggered by the events of an incoming event stream. A fully preemptable task is instantiated at
every event arrival to process the incoming event, and active tasks are processed greedily in FIFO order, while being
restricted by the availability of resources.

In the presented framework, concrete components are modeled by abstract components with a set of internal re-
lations that transform incoming arrival curves α and service curves β into outgoing arrival curves α′ and service
curves β ′, according to the execution semantics of the concrete component. For a component with a greedy preemp-
tive computation semantics, these relations were first derived in [2] using Real-Time Calculus:

αl ′(Δ) = min
{

inf
0�μ�Δ

{
sup
λ�0

{
αl(μ + λ) − βu(λ)

} + βl(Δ − μ)
}
, βl(Δ)

}
, (5)

αu ′(Δ) = min
{

sup
λ�0

{
inf

0�μ�λ+Δ

{
αu(μ) + βu(λ + Δ − μ)

} − βl(λ)
}
, βu(Δ)

}
, (6)

βl ′(Δ) = sup
0�λ�Δ

{
βl(λ) − αu(λ)

}
, (7)

βu ′(Δ) = max
{

inf
λ�Δ

{
βu(λ) − αl(λ)

}
,0

}
. (8)

In Real-Time Calculus, the maximum delay experienced by an event stream with an upper arrival curve αu that is
processed at an abstract component with greedy preemptive computation semantics and with a lower service curve βl

is bounded by the maximum horizontal distance between αu and βl [9]:

dmax � sup
t�0

{
inf

{
τ � 0: αu(t) � βl(t + τ)

}}
. (9)

Analogously, the maximum buffer space bmax that is required to buffer this event stream is bounded by the maxi-
mum vertical distance between αu and βl [9]:

bmax � sup
{
αu(λ) − βl(λ)

}
. (10)
λ�0
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Fig. 5. Delay and backlog obtained from arrival and service curves.

In Fig. 5, the relations between α, β , dmax and bmax are depicted graphically.
We may connect abstract components into a network according to the system model that is obtained after mapping

and scheduling the various applications on a system architecture. Event flows that exit abstract components (tasks)
can be connected to an event flow input of another component and similarly, resource capacity that is not consumed
by an abstract component can be connected to the resource input of a lower priority abstract component. Together
with the models of all system resources (service curves) and incoming event streams (arrival curves), we obtain the
performance model of a complete system.

3.4. The importance of workload transformations

As defined above, the arrival curves ᾱl and ᾱu, used to model event streams, capture the number of events that arrive
on an event stream in a given time interval. On the other hand, the service curves βl and βu denote the number of
resource units (e.g. cycles) that are available on an architectural element in a given time interval. It becomes apparent,
that in order to apply formulas (5)–(9), both the arrival curves and the service curves need to be expressed in the same
base unit. For this, we can either transform the event based arrival curves ᾱl and ᾱu into resource-based arrival curves,
denoted by αl and αu. Or alternatively, we can transform the resource-based service curves βl and βu into event-based
service curves, denoted by β̄l and β̄u. It is important to note, that these transformations must be conservative, such
that the analysis still provides hard bounded results.

In the most simple case, where only one type of events is processed in a task, and where each event always creates
exactly the same, constant resource demand (i.e. the worst-case demand equals the best-case demand), resource-based
quantities can be transformed lossless into event-based quantities and vice versa. Event-based quantities simply need
to be multiplied with the resource demand of a single event, and resource-based quantities need to be divided by the
same number. In the latter case, for resource-based arrival curves that are transformed into event-based arrival curves,
floor and ceil operators can be applied additionally:

ᾱu(Δ) = ⌈
αu/d

⌉
, (11)

ᾱl(Δ) = ⌊
αl/d

⌋
. (12)

In a more general case, this transformation is not as simple anymore, and we need more powerful methods to
capture the relation between the number of events and the created resource demand in a task. Workload Curves, that
were first introduced in [12] provide the required expressiveness:

Definition 3 (Workload Curves). Let W(u) denote the total resource demand created in a task by u consecutive events
of an incoming event stream. For every event sequence s, the lower workload curve γ l and the upper workload curve
γ u satisfy the relation:

γ l(v − u) � W [u,v) � γ u(v − u), ∀u < v. (13)

Therefore, any sequence of e consecutive events, will create a total resource demand of at least γ l(e) and at most
γ u(e) on an architectural element.
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Example 3. We know nothing about possible correlations or arriving patterns of the different event types on the event
streams triggering the MpSoC in Fig. 1. Therefore, the resource demand that e consecutive events could create, is
only bounded by the worst (best) case, where all e events create the maximum (minimum) possible resource demand.
This leads to the following workload curves for the different tasks in Fig. 1: γ l

T1(e) = e · 5000 cycles, γ u
T1(e) =

e · 20,000 cycles, γ l
T2(e) = e · 5000 cycles, γ u

T2(e) = e · 15,000, and γ l
T3(e) = γ u

T3(e) = e · 5000 cycles.

Using workload curves and their pseudo-inverse, arrival and service curves can be transformed from event-based
to resource-based quantities and vice versa as follows:

αl(Δ) = γ l
(
ᾱl(Δ)

)
, βl(Δ) = γ l

(
β̄l(Δ)

)
, (14)

αu(Δ) = γ u
(
ᾱu(Δ)

)
, βu(Δ) = γ u

(
β̄u(Δ)

)
, (15)

ᾱl(Δ) = γ u−1(
αl(Δ)

)
, β̄l(Δ) = γ u−1(

βl(Δ)
)
, (16)

ᾱu(Δ) = γ l−1(
αu(Δ)

)
, β̄u(Δ) = γ l−1(

βu(Δ)
)
. (17)

3.5. Abstract components and workload transformations

We mentioned before that all workload transformations must be conservative in order to guarantee hard bounded
analysis results. Mathematically expressed, the following relations (and similar relations for all other arrival and
service curves) must hold with all workload curves:

ᾱu(Δ) � γ l−1(
γ u

(
ᾱu(Δ)

))
, (18)

ᾱl(Δ) � γ u−1(
γ l

(
ᾱl(Δ)

))
. (19)

And for general workload curves, where the upper curve γ u does not equal the lower curve γ l (i.e. the worst-case
execution demand of all possible events does not equal the best-case execution demand), the right-hand side of (18)
and (19) will normally be substantially larger than the left-hand side. This means, that while the application of one
workload transformation (i.e. transforming from event-based to resource-based quantities, or the other way around)
in general leads to realistic hard bounds (depending of course on the accuracy of the workload curves), a two-way
workload transformation (from event based to resource-based quantities and back again to event-based quantities, or
the other way around) often leads to overly pessimistic, yet still valid bounds.

As a consequence, we must take care to use as few workload transformations as possible during performance
analysis, and in particular we should omit two-way workload transformations whenever possible. Figure 6 shows a
schema how to use a minimal number of workload transformations in the analysis of an abstract component. The
bright shaded data flows are resource based quantities, while the dark shaded data flows are event-based quantities. In

Fig. 6. Resource-based (bright) and event-based (dark) data flows in the analysis of an abstract component.
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Fig. 7. The event-based (left) and resource-based (right) output curves of Task 1 in the MpSoC in Fig. 1.

the two blocks labeled WLT, the workload transformations are applied according to (14)–(17), and in the two blocks
labeled RTC, (5)–(8) are used to compute outgoing arrival and service curves in the respective base unit.

In the analysis schema shown in Fig. 6, (14)–(17) are applied to the resource-based curves α and β (in the bright
block labeled RTC) as well as to their event-based counterparts ᾱ and β̄ (in the dark block labeled RTC). Both sets
of curves, α and β as well as ᾱ and β̄ , model the same properties of a system, but both use a different method of
abstraction (resource units vs. events), and both may therefore capture different aspects of the same system properties
(see Example 4). However, in the analysis schema shown in Fig. 6, the outgoing resource-based arrival curve α′ as
well as the outgoing event-based service curve β̄ ′ are discarded after the analysis, together with the different aspects
of system properties modeled by them. It would of course be possible to obtain an event-based outgoing arrival curve
ᾱ′ from a workload transformation of the outgoing arrival curve α′ (and similar we could obtain a β ′ from β̄ ′). But due
to the two-way transformation step that would be introduced by this, this curve will normally be overly pessimistic,
as we will see in the following example.

Example 4. Figure 7 shows the event-based (left graph) and resource-based (right graph) outgoing arrival and service
curves of Task 1 in the MpSoC in Fig. 1. The event-based arrival curves ᾱT1 = ᾱS1 (see Example 1) and the resource-
based service curves βT1 = βPI (see Example 2) served as initial input for the computation. With this input, all
event-based and resource-based outgoing arrival and service curves were computed according to the analysis schema
described above and depicted in Fig. 6. Additionally, the back-transformations of α′

T1 and β̄ ′
T1 were computed by

applying (14)–(17): β ′ ∗
T1 = γT1(β̄

′
T1) and ᾱ′ ∗

T1 = γ −1
T1 (α′

T1).

Let us first discuss the event-based upper outgoing arrival curve ᾱu′
T1. Intuitively, we can say that the maximum

possible event stream output (restricted by ᾱu′
) will occur when the maximum possible event stream input (restricted

by ᾱu) occurs together with the maximum possible resource availability (restricted by βu). According to (6), the
minimum possible resource availability (restricted by βl) also plays a role (it restricts the maximum initial buffer fill
level), but we will not consider it for the discussion here. From βu

T1 we know that in the best case there are 6000 cycles
available per millisecond to process incoming events on Processor I. And since the less resource demanding event B
on Stream 1 only requires 5000 cycles to be processed by Task 1, we know that we could in the best case process 1.2
events per millisecond. This is expressed in β̄u

T1. Because of this high event-based processing capacity (based on the
case where all arriving events are of the less resource demanding type B), the maximum possible event stream output
(ᾱu′

T1) is only restricted by the availability of triggering input events (ᾱu
T1), as we see in Fig. 7.

Let us now concentrate on the resource-based upper outgoing arrival curve αu′
T1. The worst possible resource de-

mand is created by the input event stream when all arriving events are of the more resource demanding type A. In
this case, a total execution demand of 6 · 20,000 cycles = 120,000 cycles is created during a burst of only little more
than 5 ms. But in the same time, a maximum of only 6 · 6000 cycles = 36,000 cycles are available for processing,
and therefore most of the arriving events will be buffered in the input buffer to Task 1. In this phase, the output event
stream rate is restricted by the availability of resources. However, after a burst, the events on the input event stream
will again arrive periodically, creating a maximum resource demand of 20,000 cycles every 4 ms. And since in the
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same period a maximum of 24,000 cycles are available for processing, the input buffer of Task 1 will eventually be
emptied again after a burst, leading into a phase where the maximum output event stream rate is restricted only by the
availability of triggering input events. From the change of slopes of αu′

T1 (and βl′
T1) at Δ ≈ 77 ms in Fig. 7, we know

that the first phase, where the output event stream is restricted by the availability of resources, is upper-bounded by
77 ms.

When we are using (17) to transform αu′
T1 back to ᾱ′ ∗

T1, we must assume that with every investment of 5000 cycles
we could in the best case generate an event of type B on the output event stream. But by taking this assumption, we
neglect the fact that for the computation of αu′

T1, we assumed that all events are of type A. This decoupling of worst-
case and best-case events leads to the very pessimistic upper bound ᾱ′ ∗

T1. Similar thoughts can explain the pessimism
of all other back-transformed curves in Fig. 7.

From the results shown and discussed in Example 4, we clearly see that the resource-based outgoing arrival curve
α′ of an abstract component may carry valuable information (as for example the presence of a phase where the
maximum available resources restrict the output event stream rate in Example 4) that may not be present in the event
based outgoing arrival curve ᾱ′, or in the back-transformed curve ᾱ′ ∗.

But we also see that back-transforming the resource-based outgoing arrival curve α′ into an event-based curve ᾱ′ ∗
is overly pessimistic, such that ᾱ′ ∗ does not contain much or any information of interest anymore. In the existing
framework, α′ is therefore typically discarded, as depicted in Fig. 6.

In the following section, we present a new method, that allows to consider the information contained in α′ in the
analysis of succeeding performance components.

4. Workload correlations and performance analysis of multi-processor systems

As we have seen in Section 3.3, we may interconnect abstract components to a network, to build the performance
model of a complete multi-processor system. In the existing framework, we may however only use event-based arrival
curves ᾱ and resource-based service curves β to interconnect abstract components. The reason for this restriction is
that outgoing resource-based arrival curves of one component are not directly related to ingoing resource-based arrival
curves of another component, since the same event causes in general a different resource demand in two components,
when it is processed by two different tasks. Similar thoughts can be made for event-based service curves.

As a direct consequence of this restriction, existing methods have no means to use the information captured by the
outgoing resource based arrival curve α′ of one component in the analysis of a succeeding component. To overcome
this problem, we will now present a new method that will allows to directly transform the outgoing resource-based
arrival curve α′ of one abstract component into an ingoing resource-based arrival curve of another abstract component,
by exploiting the knowledge of workload correlations existing between these components. No two-way transformation
step will be needed for this, and therefore much of the information captured in α′ will be preserved.

Figure 8 shows the performance model of the MpSoC of Fig. 1, where the outgoing resource-based arrival curve of
Task 1 is directly connected to the ingoing resource-based arrival curve of Task 2, using the new workload correlation
based interconnection method.

The central part of this interconnection path is the box labeled WCC, where the resource-based arrival curves are
transformed, by the use of what we will call Workload Correlation Curves (WCC). Workload Correlation Curves
allow to analytically characterize and capture existing workload correlations between two components:

Definition 4 (Workload Correlation Curves). Suppose rT1 resource units are invested in a task T1 to process incoming
events and generate outgoing events. Further, let WT1→T2(rT1) denote the total execution demand that is created in a
task T2 by the arrival of the events that were generated on the output of the preceding task T1 by the investment of rT1

resource units. Then, for any number of invested resources rT1 in T1, the lower workload correlation curve δl
T1→T2(r)

and the upper workload correlation curve δu
T1→T2(r) satisfy the relation:

δl
T1→T2(v − u) � WT1→T2[u,v) � δu

T1→T2(v − u), ∀u < v. (20)
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Fig. 8. The performance model of the MpSoC of Fig. 1, with the new component interconnection method highlighted.

Fig. 9. The workload correlation curves between Task 1 and Task 2 in the MpSoC in Fig. 1.

Therefore, whenever rT1 resources are invested in a task T1, the outgoing events that are generated by this resource
investment will create a total resource demand of at least δl

T1→T2(rT1) and at most δu
T1→T2(rT1) resource units in a

succeeding task T2.

Example 5. Figure 9 shows the workload correlation curves between Task 1 and Task 2 of the MpSoC in Fig. 1.
With the availability of a single cycle (the 20,000th), Task 1 can generate an event of type A on its output event
stream, leading to an execution demand of 15,000 cycles in Task 2. But after this initial event of type A, the constant
processing of events of type B (assuming that the input buffer of Task 1 never underflows) leads to the maximum
workload on Task 2. This is because with events of type B, every cycle invested in Task 1 generates in average a
demand of 1 cycle in Task 2, while with events of type A, every invested cycle in Task 1 only generates an average



218 E. Wandeler, L. Thiele / Journal of Computer and System Sciences 73 (2007) 207–224
demand of 15,000/20,000 = 0.75 cycles in Task 2. On the other hand, the constant processing of events of type A
leads to the minimum workload on Task 2. Section 6 describes in detail how to compute the curves shown in Fig. 9.

Using workload correlation curves, outgoing resource-based arrival curves of a task T1 can be transformed directly
into ingoing resource-based arrival curves of a task T2:

αl
WCC,T2(Δ) = δl

T1→T2

(
αl′

T1(Δ)
)
, (21)

αu
WCC,T2(Δ) = δu

T1→T2

(
αu′

T1(Δ)
)
. (22)

In parallel, as we see in Fig. 8, we can still obtain the ingoing resource-based arrival curves αl
WLT,T2 and αu

WLT,T2

from a workload transformation of the ingoing event-based arrival curves, by applying (14) and (15) to ᾱl
T2 and

ᾱu
T2. And since all so obtained ingoing resource-based arrival curves, αl

WLT,T2 and αu
WLT,T2 as well as αl

WCC,T2 and
αu

WCC,T2, are hard bounds, we can combine the curves by taking the pairwise maximum and minimum, respectively:

αl
T2(Δ) = max

(
αl

WLT,T2(Δ),αl
WCC,T2(Δ)

)
, (23)

αu
T2(Δ) = min

(
αu

WLT,T2(Δ),αu
WCC,T2(Δ)

)
. (24)

5. Case study

In this section we analyze the MpSoC presented in Section 2. We will in particular compute upper bounds to the
maximum delay that events of Stream 2 experience during processing on the MpSoC, as a function of the processor
frequency fPII of Processor II. Note that in the system analysis presented in this section, we neglect the delay that
events experience by the I/O-interfaces and by the on-chip communication network.

For the system performance analysis, we use the performance model of the MpSoC, shown in Fig. 8. To model
the processing capacity of the initially unloaded Processor II, we use βT2 ≡ βPII = fPII · Δ. The event-based arrival
curves ᾱT1 ≡ ᾱS1 and ᾱT3 ≡ ᾱS2 (see Example 1) and the resource-based service curves βT1 ≡ βPI (see Example 2)
serve as further system inputs.

5.1. Analytic bound on the maximum delay

According to (9), we need αu
T3 and βl

T3 to compute an upper bound to the maximum delay that an event will
experience during processing by Task 3 on Processor II of the MpSoC.

We can immediately compute αu
T3 by applying (15) to ᾱu

T3.

To obtain βl
T3, we need in a first step to compute the outgoing arrival curves αu′

T1 and ᾱu′
T1 of Task 1. We compute

these curves according to the analysis schema described in Section 3.5, using (5)–(8) and (14)–(17). The resulting
outgoing curves are shown in Fig. 7 and are discussed in Example 4.

According to the performance model shown in Fig. 8, the event-based upper outgoing arrival curve of Task 1 can
directly be interconnected to the event-based upper ingoing arrival curve of Task 2: ᾱu

T2 = ᾱu′
T1.

To compute the resource-based upper ingoing arrival curve of Task 2, we first conventionally apply (15) to ᾱu
T2,

leading to αu
WLT,T2. Applying (22) to αu′

T1 will in turn lead to αu
WCC,T2, and computing the minimum of αu

WLT,T2
and αu

WCC,T2 will according to (24) finally lead to αu
T2. Similarly, the resource-based lower ingoing arrival curve of

Task 2 can according to (23) be computed as the maximum of αl
WLT,T2 and αl

WCC,T2, where αl
WLT,T2 and αl

WCC,T2 are

obtained by applying (14) to ᾱl
T2 and (21) to αl′

T1, respectively. All these variants of resource-based ingoing arrival
curves of Task 2 are shown in Fig. 10.

Then, to compute the resource-based lower outgoing service curve of Task 2, we apply (7) to αu
T2 and βl

T2, leading

to βl′
T2, that can be interconnected to βl

T3. This allows finally to use (9) to compute an upper bound to the maximum
delay that an event will experience during processing by Task 3 on Processor II:

dT3 � sup
t�0

{
inf

{
τ � 0: αu

T3(t) � βl
T3(t + τ)

}}
.

To see the impact of the new presented methods to the obtained analysis results, we do the same performance
analysis using the conventional analysis methods. There, we apply (7) directly to αu and βl , leading to
WLT,T2 T2
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Fig. 10. All variants of resource-based input arrival curves of Task 2 in the MpSoC in Fig. 1.

Fig. 11. The resource-based upper ingoing arrival curve together with both, the conventional and the new variant of the resource-based lower
ingoing service curves of Task 3 in the MpSoC in Fig. 1. (For fPII = 8 MHz.)

βl′
WLT,T2 ≡ βl

WLT,T3. We then use again (9) to compute an upper bound to the maximum delay that an event will
experience during processing by Task 3 on Processor II:

dWLT,T3 � sup
t�0

{
inf

{
τ � 0: αu

T3(t) � βl
WLT,T3(t + τ)

}}
.

In Fig. 11, the resource-based upper ingoing arrival curve αu
T3 is shown together with the resource-based lower

ingoing arrival curve βl
WLT,T3 that was obtained using conventional analysis methods, and the resource-based lower

ingoing arrival curve βl
T3 that was obtained using the new presented methods that allow to incorporate existing work-

load correlations into performance analysis.

5.2. Experimental results

We used the above described analysis to compute the upper bound to the maximum delay that an event will expe-
rience during processing by Task 3 on Processor II, for processor frequencies fPII ranging from 6 to 25 MHz, in steps
of 1 MHz. The obtained results for the analysis using the conventional methods as well as for the analysis with the
new presented methods are visualized in the graph in Fig. 12.

As a reference, Fig. 12 also depicts the maximum delays that were observed in a SystemC simulation, as well as
the exact worst-case delays that an event will experience during processing by Task 3. The exact worst-case delays
were computed manually by identifying and analyzing the worst-case traces for Stream 1 and Stream 2.
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Fig. 12. Comparison of the analytic upper bound to the maximal delay experienced by an event during processing by Task 3 in the MpSoC in Fig. 1,
when analyzed using conventional methods (upper curve), and when analyzed using the new presented methods that consider workload correlations
(lower curve).

From the results shown in Fig. 12, we see that the use of the new presented analysis methods lead to considerably
tighter analytic bounds for the investigated design problem. The obtained results clearly point out the performance
reserves that often exist in complex systems due to workload correlations, and that are usually not considered by
existing performance analysis methods. For example, while we need to run Processor II at a processor speed of
14 MHz to guarantee an upper bound to the maximum delay of 8 ms with existing performance analysis methods, we
can guarantee the same bound already at a processor speed of 8 MHz with the new presented analysis methods. This
corresponds to a processor speed reduction of more than 42%. Or similarly, when we look at the delay guarantee for
a processor speed of 8 MHz, we see that we can guarantee a maximum delay of 17.05 ms with existing performance
analysis methods, while we can guarantee a maximum delay of only 7.5 ms with the new presented analysis methods.
This corresponds to a delay guarantee improvement of 56%.

Looking at the results in Fig. 12, one might wonder why the analysis with WCCs does not lead to improved results
for low processor speeds (e.g. 6 MHz). When we look at Fig. 10, we see that without the use of WCCs, αu

WLT,T2
would limit the input to Task 2, consisting of a steep burst at the beginning and a less steep long-term load afterwards.
With WCCs however, αu

WCC,T2 reduces the burst load on Task 2 within short time intervals. In the long term however
(Δ � 30 ms) the load on Task 2 is still limited by the long-term slope of αu

WLT,T2. If we now reduce the speed of
Processor II, it eventually gets so slow that the available cycles per time interval are less than the arriving resource
demand of the reduced burst that is specified by αu

WCC,T2, i.e. the processor gets too slow to even process the reduced
burst without buffering. In this case, remaining resources to process Task 3 only exist in time intervals that are longer
than the interval length when αu

WCC,T2 and αu
WLT,T2 cross for the last time in Fig. 10, i.e. for Δ � 30 ms. Then however

the remaining resources only depend on the long term slope of αu
WLT,T2, and hence WCCs do not have any influence

on the remaining resources anymore.

6. Computing workload correlation curves

In this section, we present a method to analytically compute the workload correlation curves between two compo-
nents. The presented method is based on a slightly reduced version of a task model that was first introduced in [18].
While we use this reduced version for the sake of simplicity, the method could also easily be extended to work with
the full version of the task model introduced in [18].

6.1. Task model

We model the execution demand behavior of a task by a state-transition graph that relates incoming events to
best-case and worst-case resource demands as well as to outgoing events.
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Fig. 13. The task models of Task 1 (left) and Task 2 (right) of the multi-processor system on chip in Fig. 1.

Definition 5 (Task Automaton). A task automaton FT is a tuple (S,S0,ΣI ,ΣO,D,T ), where S is a set of states,
S0 ⊆ S is a set of initial states, ΣI is the set of accepted incoming event types and ΣO is the set of generated outgoing
event types. Further, D is a demand function D :S × Σ∗

I × Σ∗
O × S → [Z�0,Z�0]. This function determines the

upper and lower bound of the resources needed by a task in order to process an incoming event, generate an outgoing
event and change its internal state. Finally, T ⊆ S × ΣI × Z�0 × Z�0 × ΣO × S is a set of transitions.

For the following discussion, we use the notation s
σI /[dl ,du]/σO−−−−−−−−→ s′ do denote a transition with σI ∈ ΣI , dl ∈ Z�0,

du ∈ Z�0 and σO ∈ ΣO , that starts at s and ends at s′.
A task always starts in an initial state, and if s

σI /[dl ,du]/σO−−−−−−−−→ s′ and if the task is triggered by the incoming event
σI , the task has a resource demand of at least dl and at most du cycles to emit an event σO and change its state from s

to s′.
We can get the needed information to model a task from a formal specification of the task or from data sheets.

Moreover, it may also be possible to obtain this information from program analysis of the task code.

Example 6. Figure 13 shows the task models of the two simple tasks Task 1 and Task 2 running on Processor I and
Processor II of the multi processor system on chip shown in Fig. 1.

Both tasks are modeled using only a single state. Upon arrival of an event A, Task 1 has an execution demand of
20,000 cycles to process the event and to generate again an event A on its output. But the processing of an event B
only requires 5000 cycles and leads again to an event B on the output of Task 1.

In Task 2 on the other hand, the processing of an event A only requires 15,000 cycles, while the processing of an
event B again requires 5000 cycles.

The task models shown in Fig. 1 are of the most simple type of task automata we could think of, where FT consists
of only a single state with a self-loop for every accepted event type. The presented task model however also allows to
model much more complex task behaviors including for example the modeling of caching effects from deterministic
caches, see [18]. And with the full version of the task model introduced in [18], it is even possible to model for
example arbitrary up- and down-sampling of event rates in tasks. An example of such a more complex task automaton
is provided in [18].

To reduce the size of the different intermediate automata that will be needed to compute the workload correlation
curve of two task automata, we may divide the various resource demands denoted on the transitions by the greatest
common divisor (GCD) of all resource demands. The resulting task automata are depicted in Fig. 14.

Fig. 14. The task models of Task 1 (left) and Task 2 (right) of the multi-processor system on chip in Fig. 1, after dividing the resource demands by
the GCD.
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Fig. 15. The workload correlation automaton of the two task models shown in Fig. 13.

6.2. Workload correlation automaton

The first step towards computing the workload correlation curve of two task automata, is to build a so-called
workload correlation automaton FWC. This workload correlation automaton is built from the product automaton of
the two task automata, where we have a transition between two states if and only if two transitions existed in the initial
task automata, with the output event type of the first task automaton transition equaling the input event type of the
second task automaton transition (we say that the first task automaton and the second task automaton synchronize on
such transitions):

SWC = ST1 ⊗ ST2,

S0
WC = S0

T1 ⊗ S0
T2,

TWC = {(
(u, v), [dl,T1, du,T1], [dl,T2, du,T2], (u′, v′)

) ∣∣(
u,σI,T1, [dl,T1, du,T1], σO,T1, u

′) ∈ TT1

∧ (
v,σI,T2, [dl,T2, du,T2], σO,T2, v

′) ∈ TT2

∧ σO,T1 = σI,T2
}
.

After building all transitions, we can remove all states and state trajectories that are not reachable from an ini-
tial state anymore. This finally leads to the workload correlation automaton FWC that is described by the tuple
(SWC, S0

WC, TWC).

Example 7. Figure 15 shows the workload correlation automaton of the two task models shown in Fig. 13.

6.3. Workload correlation curve

From the workload correlation automaton FWC, we can compute the upper workload correlation curve δu
T1→T2

following a four-step procedure.

Step 1. On the transitions of the workload correlation automaton FWC, we retain the lower resource demand of the
first task T1 and the upper resource demand of the second task T2, and discard the other information:

s
[dl,T1,du,T1]/[dl,T2,du,T2]−−−−−−−−−−−−−−→ s′ ⇒ s

dl,T1/du,T2−−−−−−→ s′.

Step 2. We then transform the so obtained automaton into an automaton where every transition corresponds to a
created demand of one resource unit on the first task T1 and where the weights on the transition correspond to the

created demand on the second task T2. For this, we first replace every transition s
dl,T1/du,T2−−−−−−→ s′ with dl,T1 > 0 with a

state trajectory according the following rule:

s
dl,T1/du,T2−−−−−−→ s′ ⇒ s

0−→ s(1)
0−→ · · · 0−→ s(dl,T1−1)

du,T2−−−→︸ ︷︷ ︸
dl,T1 transitions

s′.

After this, we replace all transitions s′ dl,T1/du,T2−−−−−−→ s′′ with dl,T1 = 0 as follows:

s
w−→ s′ 0/du,T2−−−−→ s′′ ⇒ s

w+du,T2−−−−−→ s′′.
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Fig. 16. The four-step procedure to compute the workload correlation curve for the workload correlation automaton of Fig. 15.

Step 3. In this automaton, we interpret the execution demand d as the weight of a transition. The weight wu(e) of
the maximum-weight path with length e then equals the value of the upper workload correlation curve δu

T1→T2(e).
Techniques to efficiently find maximum-weight paths of any length in a weighted graph are described in [4] and [8]
and an efficient algorithm with a computational complexity of O(e|S||T |) was presented in [17].

Step 4. We now define the workload correlation curve δu
T1→T2(x) for all values x ∈ R�0 as:

δu
T1→T2(x) = min

e�x, e∈N+
{
δu

T1→T2(e)
}
. (25)

And finally, we need to multiply all values on both, the x- and the y-axis by the GCD of the initial workload
demands, by which we initially divided the demands in the task automata.

To compute the lower workload correlation curve δl
T1→T2(e), we must follow the same four-step procedure as

described above, but in Step 1 we need to retain the upper resource demand du,T1 of the first task T1 and the lower
resource demand dl,T2 of the second task T2. In Step 3, the value of the lower transfer curve δl

T1→T2(e) then equals
the weight wl(e) of the minimum-weight path with length e in the automaton obtained in Step 2. In Step 4, the lower
workload correlation curve δu

T1→T2(x) is defined for all values x ∈ R�0 as:

δl
T1→T2(x) = max

e�x, e∈N+
{
δl

T1→T2(e)
}
. (26)

And finally, all values need to be multiplied by the GCD of the initial workload demands.

Example 8. Figure 16 depicts the above-defined four-step procedure for the workload correlation automaton of
Fig. 15.

7. Conclusions

We introduced a new abstract model that allows to characterize and capture existing workload correlations between
different components in a system architecture, and we presented an analytic method to extract this abstract workload
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correlation model from a typical system specification. We further presented the needed methods to incorporate the
new model, and the system information captured by it, into an existing framework for modular performance analysis
of embedded systems. We have shown the applicability of the presented model and methods in a detailed case study
of a multi-processor system on chip, where a considerable improvement of certain analytic worst-case bounds was
achieved compared to conventional analysis methods. The improved analysis results clearly point out the performance
reserves that often exist in complex embedded systems due to workload correlations that are usually not considered
by existing analysis methods.
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