
Cyclic Dependencies in Modular Performance Analysis ∗

Bengt Jonsson
Dept. Information Technology

Uppsala University
Sweden

bengt@it.uu.se

Simon Perathoner
Computer Engineering and

Networks Lab.
ETH Zurich, Switzerland

perathoner@tik.ee.ethz.ch

Lothar Thiele
Computer Engineering and

Networks Lab.
ETH Zurich, Switzerland
thiele@tik.ee.ethz.ch

Wang Yi
Dept. Information Technology

Uppsala University
Sweden

yi@it.uu.se

ABSTRACT
The Modular Performance Analysis based on Real-Time Cal-
culus (MPA-RTC), developed by Thiele et al., is an abstrac-
tion for the analysis of component-based real-time systems.
The formalism uses an abstract stream model to character-
ize both workload and availability of computation and com-
munication resources. Components can then be viewed as
stream transformers. The Real-Time Calculus has been used
successfully on systems where dependencies between compo-
nents, via either workload or resource streams, are acyclic.
For systems with cyclic dependencies the foundations and
performance of the formalism are less well understood.

In this paper, we develop a general operational semantics
underlying the Real-Time Calculus, and use this to show
that the behavior of systems with cyclic dependencies can be
analyzed by fixpoint iterations. We characterize conditions
under which such iterations give safe results, and also show
how precise the results can be.

Categories and Subject Descriptors
C.3 [Computer Systems Organization]: Special-
Purpose and Application-Based Systems—Real-time and
Embedded Systems; C.4 [Computer Systems Organiza-
tion]: Performance of Systems—Modeling techniques

General Terms
Performance, Design, Theory

Keywords
Performance Analysis, Real-Time Calculus, Fixpoint Itera-
tion

∗Work supported in part by the ARTIST2 Network of Ex-
cellence and by the projects COMBEST and CREDO.

c© ACM, 2008. This is the author’s version of the work. It is posted
here by permission of ACM for your personal use. Not for redistribution.
The definitive version was published in Proceedings of the 8th ACM Inter-
national Conference on Embedded Software (EMSOFT), October 19–24,
2008, Atlanta, GA, USA. http://doi.acm.org/10.1145/1450058.1450083

1. INTRODUCTION
Complex embedded systems very often consist of parallel

or distributed computing elements that are exchanging data
via some communication system. In addition, the applica-
tions that are running on these platforms can be described as
communicating processes. In the case of real-time require-
ments, it is necessary to investigate the interaction of the
processes and the communication tasks with the resources
they are using. Because of the interference caused by the
concurrent use of resources the evaluation of the timing be-
havior of the whole embedded system is a challenging task.

One approach to handling the associated computational
complexity is to adopt a component-based approach where
the verification and validation can be done in an incremen-
tal process. Based on appropriate abstractions, the inter-
action of each individual component with its environment
and the available resources is analyzed and abstracted into
a corresponding interface representation. The overall system
behavior is then determined by an appropriate composition
mechanism.

For example this approach can be successfully applied in
a situation with static scheduling, in which each task is
allocated pre-determined timing slots of CPU time. This
approach, however, suffers problems of inflexibility. The
paradigm of static fixed-priority scheduling offers more flex-
ibility. In this case, the classical schedulability analysis uses
maximal blocking time as a measure of available computa-
tion resources. In its standard form, however, it has prob-
lems to handle variabilities in task parameters, e.g., highly
varying computation times and jitter.

The approach of Real-Time Calculus [9] provides a frame-
work for a compositional analysis. Composition is possible in
terms of processes (functional composition), scheduling poli-
cies (interaction) and resources (distributed operation). The
underlying abstraction is able to handle complex event and
resource patterns and therefore, can handle situations with
a high degree of non-determinism. The approach character-
izes each component by a time-invariant transfer function,
which operates on upper and lower bounds on the number of
events and computation resources available in all time inter-
vals. Despite of the fact that the approach has been proven
to be useful in case studies and investigations on benchmark
applications, fundamental issues in linking the abstractions
to an operational approach are not yet investigated.

A particular problem of great practical relevance is the
handling of cyclic networks of components. The natural ap-
proach would be to compute the system characteristics cap-
tured in the Real-Time Calculus by means of a fixpoint com-
putation, starting from some initial approximation. How-
ever, it is not known to what extent the resulting fixpoint is
faithful to an underlying operational behavior of the system,
or how to best choose initial approximations.

In this paper, we propose a simple operational model of
distributed systems of processes and relate it to character-
istics in the Real-Time Calculus. On this basis, we prove
central properties about the faithfulness of fixpoints com-
puted using the abstractions in Real-Time Calculus. The
main result is a method that leads to the optimal fixpoint,
i.e., makes best usage of the underlying abstraction. In ad-
dition, the approach presented in this paper is not restricted
to Real-Time Calculus. The results can easily be transferred
to related abstractions of streams, resources, and their in-
teraction.

The paper is organized as follows. In the next section, we
introduce the basics of the framework for Modular Perfor-
mance Analysis with Real-Time Calculus, accompanied by a
motivating simple example. In Section 3, we present a gen-
eral operational model of components and systems, and of
specifications in some formalism for analyzing resource and
timing properties, and prove correctness results for fixpoints.
In Section 4, we specialize these results to the Real-Time
Calculus, and discuss two techniques for obtaining initial
approximations for iterations. Section 5 contains a simple
example to illustrate sensitivity of fixpoints on parameters
in boundary cases. Thereafter, we show the practical use-
fulness of our models on a simple case study and present
concluding remarks.

Related Work. Jersak et al. [2] have considered a special
case of cyclic dependencies in their periodic-with-jitter event
model, in which there are functional cycles of events for task
activation. The approach is limited in terms of the underly-
ing abstraction and only informally makes statements about
convergence properties. The work does not provide results
on the dependence of the fixpoint on initial conditions.

The general problem of analyzing cycles in the RTC has
also been considered by Schiøler et al. [5]. Their treatment
assumes that the time has an initial point 0, and hence must
use weaker equations than usually considered in the RTC
(such as in [7]), in order to establish correct results. They
show that, under some assumptions, an optimal fixpoint can
be obtained by iteration from an initial approximation of
long-term rates, which can be derived analytically (see Sec-
tion 4.1). They do not provide an explicitly defined oper-
ational model of system behaviors. Their statement about
correctness of fixpoints appears to rely on unstated assump-
tions about causality or absence of zero-delay cycles. In
our paper, we give an explicitly defined operational system
model, and state explicit conditions under which fixpoints
are correct, also for the case where time goes unboundedly
into the past. Our results are stated in a general setting
of any specification formalism, in which system components
are viewed as stream transformers.

The general topic of modeling and specifying systems spec-
ified as stream transformers goes back to Kahn networks [3]
(extension to real-time, e.g., in [11]) and recurs in many
works, e.g., on synchronous languages. We consider behav-

iors where the time domain is the set of real numbers. Fur-
thermore, we do not compute fixpoints in order to obtain
some actual behavior of the system, as e.g., in [3], where
the ordering used reflects how much of a behavior is de-
fined. Rather, we consider fixpoints of equations over con-
straints on such behaviors, for which the ordering reflects
the strength of the obtained constraints.

2. REAL-TIME CALCULUS
In this section, we describe the framework of Modular Per-

formance Analysis based on Real-Time Calculus. In order to
introduce the problem, we also describe a simple system ar-
chitecture for which the performance analysis is complicated
by a cyclic dependency.

MPA-RTC is a compositional abstraction for the modeling
and analysis of distributed real-time systems. The formal-
ism has its roots in Network Calculus [4] developed to rea-
son about timing properties of event and resource streams
that flow through a network of computation and communi-
cation components. The MPA-RTC abstraction has shown
to provide valuable analysis results in several industrial case
studies [6, 10].

There are slightly different treatments of Real-Time Cal-
culus, depending on whether the time domain has an initial
point (taken to be 0) or whether it goes unboundedly into
the past. The presentation in this section will cover both
cases.

2.1 Event Stream Model
A stream of events can be characterized by a differential

arrival function R : R × R 7→ N, where R[s, t) for s ≤ t
denotes the sum of events that arrive in the time interval
[s, t) (including s but not t), with R[s, s) = 0. If the time
domain has an initial point 0, then of course 0 ≤ s.

The Real-Time Calculus abstracts from concrete execu-
tion traces described by arrival functions R and bounds
all possible traces of an event stream with a pair of ar-
rival curves α(∆) = [αl(∆), αu(∆)] where αl(∆) denotes the
lower arrival curve and αu(∆) the upper arrival curve of the
event stream. Informally, a lower arrival curve αl : R≥0 7→ N
is a monotone superadditive function with αl(0) = 0, which
states that in any half-open time interval of length ∆ at least
αl(∆) events will arrive. An upper arrival curve αu : R≥0 7→
N is a monotone subadditive function, with αu(0) = 0, which
states that in any half-open time interval of length ∆ at most
αu(∆) events will arrive.

We introduce the notation R |= [αl, αu] to denote that
αl(∆) ≤ R[s, s + ∆) ≤ αu(∆) for all s ∈ R and ∆ ∈ R≥0.
For a given event stream described by an arrival function R,
the tightest arrival curves αl

R, αu
R that model the stream are

given by

αl
R(∆) = inf

s∈R
R[s, s + ∆)

αu
R(∆) = sup

s∈R
R[s, s + ∆)

(1)

2.2 Resource Model
In analogy with differential arrival functions, the avail-

ability of a computation or communication resource is rep-
resented by a resource stream, which can be described by a
differential service function C : R× R 7→ R≥0, where C[s, t)
denotes the sum of available resource units in the time in-
terval [s, t) with C[s, s) = 0. Continuing the analogy, the

Real-Time Calculus abstracts from concrete service func-
tions C and uses a pair of lower and upper service curves
β(∆) = [βl(∆), βu(∆)] to model the availability of a re-
source. Informally, a lower service curve βl : R≥0 7→ R≥0

is a monotone superadditive function with βl(0) = 0, which
gives a lower bound βl(∆) on the number of available com-
putation units in any interval of length ∆. An upper service
curve βu : R≥0 7→ R≥0 is a monotone subadditive function
with βu(0) = 0, which gives an upper bound βu(∆) on the
number of available resource units in any interval of length
∆. Again we use the notation C |= [βl, βu] to denote that
βl(∆) ≤ C[s, s+∆) ≤ βu(∆) for all s ∈ R and ∆ ∈ R≥0. For
a given concrete resource availability described by a service
function C, the tightest service curves βl

C , βu
C that model

the resource availability are given by

βl
C(∆) = inf

s∈R
C[s, s + ∆)

βu
C(∆) = sup

s∈R
C[s, s + ∆)

(2)

2.3 Component Model
Components are the basic building blocks of a system.

They are the implementation of tasks that process event
streams and run on shared resources, e.g., a computing or
communication subsystem. An external view of a compo-
nent is that it receives a stream of input events, and a stream
of available resources, from which it produces a stream of
outgoing events and a stream of remaining resources. We
assume that component behavior is deterministic. The in-
coming and outgoing event streams can be modeled by dif-
ferential arrival functions, R and R′, respectively, and the
available and remaining resource by differential service func-
tions, C and C′, respectively. This view is illustrated in
Figure 1(a).

ϕ- -
?

?

R

C

R′

C′

(a)

Φ- -
?

?

α

β

α′

β′

(b)

Figure 1: Concrete and abstract component

In the figure, we use ϕ to denote the transformation which
represents the behavior of the component. We can view ϕ
as a transfer function from input to output, i.e., (R′, C′) =
ϕ(R, C). In the MPA-RTC framework such a concrete com-
ponent is modeled by an abstract component in the domain
of arrival and service curves. When doing so, we use an ar-
rival curve α and a service curve β to denote constraints on R
and C. For any R and C with R |= α and C |= β, the compo-
nent produces outputs R′ and C′ with R′ |= α′ and C′ |= β′.
The abstract component is illustrated in Figure 1(b). In
the figure, we use a function Φ to denote the transforma-
tion which represents the abstract component. This func-
tion provides, for each input arrival and service curves α, β,
the output arrival and service curves α′, β′. The function Φ
is different for different types of components with different
behaviors.

A typical example for an abstract component in the con-
text of the MPA-RTC modeling framework is a so-called

Greedy Processing Component (GPC). It models a task that
is triggered by the events of the incoming event stream which
queue up in a FIFO buffer. The task processes the events in
a greedy fashion, while being restricted by the availability
of resources. The processing is performed within some spec-
ified execution time. For simplicity, we assume that it takes
exactly one computational unit to process one event. This
assumption can be relaxed by appropriate rescalings, which
we will not consider further.

For a GPC component, the following internal relations be-
tween the incoming arrival curves [αl, αu] and service curves

[βl, βu] and the outgoing arrival curves [αl′ , αu′] and service

curves [βl′ , βu′] are stated and proven in [8]1:

α′u = min
{
(αu ⊗ βu)® βl, βu

}
α′l = min

{
(αl ® βu)⊗ βl, βl

}
β′u(∆) = max{inf∆≤λ{βu(λ)− αl(λ)}, 0}
β′l(∆) = sup0≤λ≤∆{βl(λ)− αu(λ)}

(3)

An important observation here is that these relations are
correct for RTC with unbounded past (under the assumption
of bounded buffer occupancy), but they are not correct for
RTC with an initial time point. In particular, the equations
for β′u and α′l are too tight. In this case, the relations
derived in [7] must be used: α′l = αl ⊗ βl and β′u(∆) =
sup0≤λ≤∆{βu(λ)− αl(λ)}.

2.4 System Performance Model
In order to analyze the performance of a distributed sys-

tem, we need to build a system performance model. This
model has to reflect the flow of data in the system and also
needs to represent its hardware architecture. In particular,
it has to model the mapping of tasks to computation or
communication resources, as well as the scheduling policies
adopted on shared resources.

In the MPA-RTC framework such a performance model
is constructed by composing abstract components to a net-
work. The performance model depicted in Figure 2 shows
a simple example of component composition. It represents
a system consisting of two tasks T1 and T2 which serially
process an incoming event stream, and share a processing re-
source according to a preemptive fixed priority policy, with
task T2 having higher priority than task T1. Task T1 is
triggered by input events from the environment. It pro-
duces output events which trigger task T2. Task T2 outputs
events to the environment. In the performance model we
represent the two tasks with two abstract Greedy Process-
ing Components. We reflect the dataflow described above by
connecting the abstract event stream output of component
T1 with the abstract event stream input of component T2.
Similarly, we connect the abstract resource stream output
of component T2 with the abstract resource stream input
of component T1 in order to model the scheduling policy
for the shared processing resource; task T2 has full access
to the processor, while task T1 receives only the processing
resources left over by task T2.

In general, scheduling policies for shared resources are
modeled by the way the abstract resources β are distributed
among the different abstract components. For some schedul-
ing policies, such as EDF or TDMA abstract components
with appropriate transfer functions have been introduced.

1See appendix for the definition of the operators ⊗ and ®.

2.5 A Simple Example
We use the system represented in Figure 2 as simple mo-

tivating example for our work, since it contains a cyclic de-
pendency which inhibits the modular performance analysis.

T1 T2- - -
?

½ ¼

¾ »
?

?

[αl
I , αu

I]

[βl
I , βu

I]

[αl, αu]

[βl, βu]

Figure 2: Performance model for example system

For simplicity, we assume that both T1 and T2 need ex-
actly 1 unit of resources to service an event. Further we
assume that the incoming stream of events from the environ-
ment to T1 is constrained by the arrival curves [αl

I , αu
I], and

that the incoming stream of resources to T2 is constrained
by the service curves [βl

I , βu
I]. We do not consider any over-

head for the context switching between the two tasks.
We want to compute bounds for the event streams from T1

to T2 and the resource stream from T2 to T1. However, the
characterization of this streams is not straightforward since
there is a cyclic dependency between them (T1 triggers T2
while T2 preempts T1). Let us denote a particular charac-
terization of these streams by a quadruple (αl, αu, βl, βu).
The transfer functions in equation (3) imply the following re-
lationships between the curves (assuming unbounded past):

αu = min
{
(αu

I ⊗ βu)® βl, βu
}

αl = min
{
(αl

I ® βu)⊗ βl, βl
}

βu(∆) = max{inf∆≤λ{βu
I (λ)− αl(λ)}, 0}

βl(∆) = sup0≤λ≤∆{βl
I(λ)− αu(λ)}

(4)

Let us denote the quantities (αl
I , αu

I , βl
I , βu

I) by ΣI , and
the quantities (αl, αu, βl, βu) by Σh; let us ignore the speci-
fication of the output streams. We denote the pair (ΣI , Σh)
with Σ and we use Ψ to represent the mapping from one
specification Σ to another Σ′ by means of the equations (4).

It is then natural to expect that a specification of the be-
havior of the system can be obtained as a fixpoint of Ψ, i.e.
as a solution of the equation Σ = Ψ(Σ). A natural way to
compute such a fixpoint is to start from some initial appoxi-
mation, i.e. by starting from some tuple Σ0, and computing
the sequence Σ0, Σ1, Σ2, . . . where Σk+1 = Ψ(Σk), in the
hope that the sequence will converge to a limit Σ∗.

However, the correctness of such a fixpoint iteration in the
context of MPA-RTC has not been formally justified so far.
In particular several questions need to be answered:

• Will any fixpoint of Ψ correctly characterize all possi-
ble behaviors of the system?

• Can there be several fixpoints?

• If so, is there an optimal fixpoint (i.e. one that provides
tighter bounds than all others)?

• Can an (optimal) fixpoint be computed as the limit of
a sequence Σ0, Σ1, Σ2, . . . of approximations?

• Will the iteration always converge to a limit Σ∗?

• If so, how does Σ∗ correspond to the behavior of the
system?

• How to choose the initial approximation Σ0?

To illustrate that fixpoints are not in general unique, con-
sider again the above system. Let βl

I(∆) = βu
I (∆) = ∆, i.e.,

giving T2 full access to the resource, and let an event arrive
every second time unit, i.e.,

αl
I(∆) = b∆

2
c and αu

I (∆) = d∆
2
e .

The optimal (and correct) fixpoint is the one which forces
the same behavior on the internal event stream as on the
input event stream, i.e., [αl, αu] = [αl

I , αu
I]. However, a

much worse fixpoint is one which gives no information at
all, given by a specification of the event stream [αl, αu] such
that

αl(∆) = 0 and αu(∆) = d∆e ,

and a specification of the resource stream [βl, βu] such that

βl(∆) = 0 and βu(∆) = ∆ .

To investigate these questions, in the next section we provide
a more general framework for specifying quantitative prop-
erties in component-based systems, in which we prove results
about the above questions under certain assumptions.

3. STREAMS AND FIXPOINTS
In this section, we prove results about correctness of fix-

point calculations, which are valid for a class of formalisms
that specify quantitative properties of component-based sys-
tems, such as MPA or Symta/S, see [2]. We provide an ab-
stract description of such a formalism, and thereafter define
conditions under which fixpoints are correct. We here give
a treatment which considers both the case where system be-
havior starts at an initial time point, taken to be 0, and
when it has no initial time point, i.e., the time domain is
the set R of all real numbers.

Streams. We assume that the behavior of a system or a
component is observed at a set of streams, which are the ob-
servable connections between components and between com-
ponents and the environment. A trace on a set V of streams
is a function σ : V 7→ ((R × R) 7→ R≥0), which for each
stream v ∈ V provides a function σ(v) from time-intervals
to observations. We take R≥0 as the range of observations,
since we intend to model accumulation of some resource or
observable. For instance σ(v)(s, t) could denote the number
of events that have passed or the amount of CPU resources
that have been available in the interval [s, t). We assume
σ(v)(s, t) + σ(v)(t, u) = σ(v)(s, u) for s ≤ t ≤ u. If time
starts at 0, we assume 0 ≤ s of course. We let Tr (V) denote
the set of traces on a set V of streams. The restriction of a
trace σ on V to a subset V ′ ⊆ V is denoted σ|V ′

Component Behavior. A component is equipped with a
set of input streams VI and a set VO of output streams.
We let its behavior be characterized by a behavior mapping
ϕ : Tr (VI) 7→ Tr (VO), which maps any input trace σI on
the input streams VI to an output trace ϕ(σI) on the output
streams VO.

System Behavior. A system of components has a set VI of
external input streams, and a set VO of internal streams and
external output streams. Each stream in VO is an output
stream of some components. Some output streams go to
other components (they can be thought of as internal), and
some to the environment. By putting together all compo-
nent behavior transformers, we get a system behavior trans-
former ψ : Tr (VI ∪ VO) 7→ Tr (VI ∪ VO) which maps any
trace on the streams of the system to another trace on sys-
tem streams. The mapping ψ will preserve the traces on in-
put streams, and will generate traces on internal and output
streams according to the behavior mappings of components.

When forming a system from deterministic components, it
is reasonable to expect that any trace σI on input streams VI

induces a unique trace on the output streams. To establish
this formally, some form of causality between inputs and
outputs of the system must be assumed. We will define a
property, called simulatability, which roughly means that
the system has no zero-delay cycles. We first consider the
case when time starts at 0, thereafter indicate how to adapt
the results to an unbounded past.

Let a time vector on a set V of streams be a mapping
τ : V 7→ R from streams in V to time values. For a value
t ∈ R, let t denote the time vector which maps all streams
in its domain to t. For two time vectors τ , τ ′ on V , let
τ ≤ τ ′ denote that τ(v) ≤ τ ′(v) for all streams v ∈ V . For a
time vector τ on V and set of streams V ′ with V ⊆ V ′, we
say that two traces σ and σ′ on V ′ agree upto τ , denoted
σ 'τ σ′, if σ(v)(s, t) = σ′(v)(s, t) whenever s ≤ t ≤ τ(v) for
all streams v ∈ V and σ(v) = σ′(v) for all streams v ∈ V ′\V .
Intuitively, time vectors will be used to denote how much of
a system trace has been constructed in a simulation. A time
vector need not map all streams to the same time value,
since it may be possible to know the state of some streams
further in time than other streams.

Definition 1. A system, represented by behavior trans-
former ψ, is simulatable if for each input trace σI ∈ Tr (VI)
there is an increasing sequence τ0, τ1, . . . of time vectors on
VO, called the simulation sequence for σI , with τ0 = 0 and
lim

i→∞
τi(v) = ∞ for all v ∈ VO, such that for all traces

σ, σ′ ∈ Tr (VI ∪ VO) with σ|VI = σ′|VI = σI we have

for all i ≥ 0: σ 'τi σ′ implies ψ(σ) 'τi+1 ψ(σ′)

Note that σ 'τi σ′ implies that σ and σ′ agree on VI . In-
tuitively, a system is simulatable if one can advance time
vectors stepwise, at each step compute new outputs from
previously known inputs for some longer time, and such that
the whole trace can be obtained in ω steps.

For a simulatable system, with behavior transformer ψ,
with given input trace σI , we can construct the resulting
system trace as the limit of a sequence of traces, as follows.
Let τ0, τ1, τ2, . . . be the simulation sequence for σI . Define
the sequence of traces σ0, σ1, σ2, . . ., where σ0 is any trace
with σ0|VI = σI and σi+1 = ψ(σi). By simulatability, the
sequence σ0, σ1, σ2, . . . converges, since σi 'τi σi+j for any
i, j ≥ 0. The limit σ, which we can denote by ψω(σI), is
defined to be the actual trace on input σI .

Let us consider how to adapt this to the situation when
time goes unboundedly into the past. Then there is no initial
time point for defining traces. For a time vector τ , say that
σ0 is a possible system trace up to τ if σ0 'τ ψ(σ0). Let
τ be an arbitrary real-valued time vector on VO. We say

that the system is simulatable from τ if whenever σ0 is a
possible system trace up to τ with σ0|VI = σI , there is an
increasing sequence τ0, τ1, . . . of time vectors on VO, starting
with τ0 = τ , called the simulation sequence for σ0 from τ ,
with lim

i→∞
τi(v) = ∞ for all v ∈ VO, such that for all traces

σ, σ′ ∈ Tr (VI ∪ VO) with σ|VI = σ′|VI = σI we have that
σ 'τi σ′ implies ψ(σ) 'τi+1 ψ(σ′) for all i ≥ 0. We say
that the system is simulatable if it is simulatable from any
real-valued time vector.

If the system is now simulatable from τ , we can construct
an actual system trace ψω(σ0) in the same way as above,
starting from σ0. We say that ψω(σ0) is the (uniquely de-
fined) actual system trace on input σI , which agrees with σ0

upto τ .

Component Specifications. Let us now consider specifica-
tions of traces and behaviors. Abstractly, a specification Σ

on a set V of streams is a mapping V 7→ 2((R×R) 7→R≥0), which
maps each stream v ∈ V to a set Σ(v) of traces on stream v
(of course, it should satisfy some properties of being “well-
behaved”). As one of many possibilities, a specification can
prescribe bounds on the number of events transmitted over
a stream in certain time intervals. For a set V of streams,
let Spec (V) denote the set of specifications on streams V .
If both σ and Σ use the set V of streams, we use σ |= Σ to
denote ∀v ∈ V. σ(v) ∈ Σ(v).

A component with input streams VI and output streams
VO, characterized by the behavior mapping ϕ, can be spec-
ified by a specification mapping Φ : Spec (VI) 7→ Spec (VO)
from specifications on the set VI of input streams to spec-
ifications on the set VO of output streams. This mapping
should be correct wrp. to ϕ, i.e., have the property that
whenever σI(vi) |= ΣI(vi) for all input streams vI ∈ VI , then
ϕ(σI)(vO) |= Φ(ΣI)(vO) for all output streams vO ∈ VO.

System Specifications. Just as for system behaviors, we
can put together all component specification mappings into
a system specification transformer Ψ : Spec (VI ∪ VO) 7→
Spec (VI ∪VO). From correctness of component specification
mappings, it follows that Ψ is correct wrp. to the system
behavior transformer ψ, i.e., whenever σ |= Σ, then ϕ(σ) |=
Φ(Σ) for σ ∈ Tr (VI ∪ VO) and Σ ∈ Spec (VI ∪ VO). The
question we want to study is the following: Assume Ψ, and
a specification ΣI on VI , let σI be any trace on VI with σI |=
ΣI . Will the actual trace ψω(σI) of the system on input σI

satisfy the “limit” of a sequence Σ0, Ψ(Σ0), Ψ(Ψ(Σ0)), . . .?
Questions include:

• How can we choose Σ0?

• When will it converge?

• If it converges, does it specify ψω(σI)?

Let us make some definitions. For a time vector τ on
V , we say that a trace σ satisfies a specification Σ upto τ ,
denoted σ |=≤τ Σ if there is a trace σ′ with σ 'τ σ′ such
that σ′ |= Σ.

In the rest of this section, we assume a simulatable system
with input streams VI and output streams VO, represented
by system behavior transformer ψ. We let Ψ be a system
specification transformer which is correct wrp. to ψ. We
assume a specification ΣI on VI and a trace σI on VI with

σI |= ΣI . Let τ0, τ1, τ2, . . . be the simulation sequence for
σI , and let ψω(σI) be the actual system trace on input σI .

We shall assume that for an actual system trace σ with
σ|VI |= ΣI , there is a strongest specification Σ which agrees
with ΣI on VI , such that σ |= Σ. We denote this specifica-
tion by Σσ. In MPA-RTC, this strongest specification can
be obtained from Equations (1) and (2).

Theorem 1. If the specification Σ0 is satisfiable and also
agrees with ΣI on VI , then

ψω(σI) |=≤τi Ψi(Σ0)

for all i ≥ 0.

Proof. Let τ0, τ1, τ2, . . . be the simulation sequence for
σI . Let ψω(σI) be the actual system trace given σI , obtained
as the limit of the sequence σ0, σ1, σ2, . . ., where σ0 is any
trace with σ0|VI = σI , and where σi+1 = ψ(σi). We shall
prove by induction over i that σi |=≤τi Ψi(Σ0). The base
case σ0 |=≤0 Σ0 follows from the assumption that σ0|VI = σI

and that Σ0 agrees with ΣI on VI and is satisfiable. For the
inductive step, assume σi |=≤τi Ψi(Σ0), i.e., that there is a
trace σ′ with σi 'τi σ′ such that σ′ |= Ψi(Σ0). By correct-
ness of Ψ with respect to ψ, we get that ψ(σ′) |= Ψi+1(Σ0).
Since the system represented by ψ is simulatable, we get
ψ(σi) 'τi+1 ψ(σ′). Hence ψ(σi) |=≤τi+1 Ψi+1(Σ0). The
conclusion of the theorem follows by noting that ψω(σI) 'τi

σi for all i.

Convergence. Theorem 1 does not say anything about con-
vergence of the sequence Σ0, Ψ(Σ0), Ψ2(Σ0), Let us for-
malize conditions under which this can be attained.

For a set V of streams, the relation |= introduces a natural
partial order v on the set Spec (V) of specifications over
V , by defining Σ v Σ′ iff σ |= Σ implies σ |= Σ′ for any
σ ∈ Tr (V). We shall assume that Spec (V) with the partial
order v constitutes a cpo, i.e., that any chain Σ0 v Σ1 v
Σ2 v · · · has a least upper bound t

i≥0
Σi. We finally assume

that any specification Σ is a safety property, which means
that if ∀τ. σ |=≤τ Σ, then also σ |= Σ.

We shall assume that for any trace σ ∈ Tr (V) there is a
least (strongest) specification which is satisfied by σ.

A specification mapping Φ is monotone if Σ v Σ′ implies
Φ(Σ) v Φ(Σ′). It is continuous if

Φ(t
i≥0

Σi) = t
i≥0

Φ(Σi)

for any chain Σ0 v Σ1 v · · · .
We can now strengthen Theorem 1, so that it also guar-

antees convergence.

Theorem 2. Assume, in addition to previous assump-
tions, that Ψ is monotone and continuous. Then, among
all specifications which agree with ΣI on VI , and are satis-
fied by at least one actual system trace σ with σ|VI |= ΣI ,
Ψ has a unique smallest fixpoint Σ∗ which is satisfied by all
such traces. Furthermore Σ∗ can be obtained as the limit of
the sequence Σ0, Ψ(Σ0), Ψ2(Σ0), . . . of approximations if Σ0

is a specification which agrees with ΣI on VI , and is satisfied
by at least one actual system trace σ with σ|VI |= ΣI , and is
such that Σ0 v Σ∗.

Proof. We continue using the previously introduced no-
tation. Let σ be some trace of the system such that σ|VI |=

ΣI . Let Σσ be the strongest specification, which agrees
with ΣI on VI , such that σ |= Σσ. By correctness of Ψ
we have Σσ v Ψ(Σσ). By monotonicity of Ψ we then get
Ψk(Σσ) v Ψk+1(Σσ) for all k ≥ 0. This means that the
sequence Σσ, Ψ(Σσ), Ψ2(Σσ), . . . converges to a fixpoint Σ∗.
By Theorem 1, and the assumption that all properties are
safety properties, σ′′ |= Σ∗ for any trace σ′′ of the system
such that σ′′|VI |= ΣI . Since σ was an arbitrary initial trace,
we get the same fixpoint Σ∗ if we repeat the above procedure
with any other trace σ′ with σ′|VI |= ΣI .

We have proven the theorem for initial approximations of
form Σσ for some system trace. It remains to consider the
case where Σσ v Σ0 v Σ∗ for some σ. The theorem then
follows by noting that by monotonicity Ψk(Σσ) v Ψk(Σ0) v
Σ∗ for all k ≥ 0, implying that also Σ0, Ψ(Σ0), Ψ2(Σ0), . . .
converges to Σ∗.

Intuitively, Theorem 2 states that among all specifications
which agree with ΣI on VI , and are satisfied by at least one
actual system trace σ with σ|VI |= ΣI , there is a unique least
fixpoint which is satisfied by all such traces. The theorem
furthermore states that this fixpoint can be obtained by iter-
ation from an initial approximation, which characterizes one
possible system trace. Thus, if we can construct one system
trace, we can get a specification of all possible system traces
by iterating from a strongest specification of this trace to a
fixpoint.

The case where time starts at −∞. Let us indicate how
the results in this section work out when time has no initial
point, and how Theorems 1 and 2 adapt.

We use the notation introduced previously. Let τ be a
timevector. Let σ0 be a possible system trace up to τ with
σ0|VI |= ΣI , and let τ0, τ1, τ2, . . . be the simulation sequence
for σ0 from τ . Define Cont(σ0, τ) as the set of traces σ
such that σ 'τ σ0. We can now derive the following two
theorems.

Theorem 3. If the specification Σ0 is satisfied by σ0,
then

ψω(σ0) |=≤τi Ψi(Σ0)

for all i ≥ 0.

Proof. Analogous to that for Theorem 1.

Theorem 4. Assume that Ψ is monotone and continu-
ous. Then, among all specifications which agree with ΣI on
VI , and are satisfied by at least one actual system trace in
Cont(σ0, τ), the transformer Ψ has a unique smallest fix-
point Σ∗ which is satisfied by all traces σ ∈ Cont(σ0, τ) with
σ|VI |= ΣI . Furthermore Σ∗ can be obtained as the limit
of the sequence Σ0, Ψ(Σ0), . . . of approximations if Σ0 is a
specification which agrees with ΣI on VI , and is satisfied by
at least one actual system trace in Cont(σ0, τ), and satisfies
Σ0 v Σ∗.

Proof. Analogous to that for Theorem 2.

4. FIXPOINTS IN RTC
In this section, we transfer the results of the preceding

section to RTC. We must then first show that the general
assumptions introduced in Section 3 hold for RTC. This will
concern both the version of RTC with 0 as initial time point
and the version where time starts at −∞.

Consider a system with set V of streams. In RTC, a trace
σ of the system maps each event stream v ∈ V to an arrival
function R, and maps each resource stream v ∈ V to a
service function C. To transfer results from Section 3, we
should check that the system is simulatable. Not all systems
need to be simulatable, but sufficient conditions are given in
the following proposition.

Proposition 1. If there is a nonzero lower bound on the
time needed to process an event by a component, then a sys-
tem which does not have any cycle of resource streams is
simulatable.

Proof. (Sketch) For any component, its future output
can be foreseen until the next point in time when it receives
an event, or the status of its resource input is changed.
These points in time form an increasing sequence of time
points that converges to ∞. Furthermore, the next such
time point is always coinciding with the arrival of an event
at some component (either from the environment or from
another component). These arrivals happen at an increas-
ing sequence of time points, which can be uniquely inferred
from the current time point and the given trace on input
streams.

Concerning specifications, we should check that, for a set
V of streams the set of specifications Spec (V) on V forms
a cpo. Recall that a specification Σ ∈ Spec (V) maps each
event stream v ∈ V to a pair of arrival curves [αl, αu], and
maps each resource stream v ∈ V to a pair of service curves
[βl, βu]. In order to make Spec (V) a cpo, we augment the
set of arrival curves by curves [αl, αu] in which αu(∆) = ∞
for all ∆ with ∆ ≥ ∆0 for some ∆0 > 0. Upper service
curves are bounded by the constraint βu(∆) ≤ ∆, so we
need not to make this extension for service curves. With
this augmentation (Spec (V),v) forms a cpo. It is also easy
to see that all specifications in Spec (V) are safety properties.

We should also check that specification transformers are
correct, monotone and continuous: this is checked for each
case. For instance, the equations (3) are monotone and
continuous. Finally, for each trace σ, there is a strongest
specification which is satisfied by σ: this is obtained as in
Equations (1) and (2) in Section 2.

We can now transfer the results from the previous section.
Assume a system with input streams VI and output streams
VO, which has no cycle formed by only resource streams.
Assume a nonzero lower bound on the time needed to process
an event by a component. Let Ψ be the established RTC
equations for the streams V of the system: there are correct
versions of these both for the case where time starts at 0,
and where it starts at −∞. Let ΣI be a specification of
input streams VI . Then Theorem 2 holds for RTC where
time starts at 0. For RTC where time starts at 0, we can
even prove a slightly stronger version, namely the following.

Theorem 5. Assume that ΣI allows at least one system
trace which is eventually periodic; this happens, e.g., if the
system is not fully loaded. Then, among all satisfiable speci-
fications which agree with ΣI on VI , Ψ has a unique smallest
fixpoint Σ∗. The fixpoint Σ∗ is satisfied by all actual system
traces σ with σ|VI |= ΣI . Furthermore Σ∗ can be obtained as
the limit of the sequence Σ0, Ψ(Σ0), Ψ2(Σ0), . . . of approx-
imations if Σ0 is any satisfiable specification which agrees
with ΣI on VI , and satisfies Σ0 v Σ∗.

Proof. The difference, in comparison with Theorem 2, is
that it is enough to start the iteration with a satisfiable spec-
ification Σ0; it needs not to be satisfied by any actual system
trace. To prove this extension, let σp be an eventually peri-
odic actual system trace. We note that by Theorem 1, using
that σp is eventually periodic, there is for each ∆ an integer
k such that σp satisfies Ψi(Σ0) on all intervals smaller than
∆ whenever i ≥ k. By further considering the structure of
RTC equations, we conclude that

lim
i→∞

Ψi(Σ0)(∆) ≥ lim
i→∞

Ψi(Σσp)(∆)

for all ∆. The theorem follows.

For RTC in which the time domain goes to −∞, we can
prove a stronger analogue of Theorem 4.

Theorem 6. Let τ be a time vector, and let σ0 be a
trace with σ0|VI |= ΣI such that σ0 'τ ψ(σ0). Assume
that ΣI is satisfied by at least one system trace σp which
is eventually periodic with σ0 'τ σp. Then, among all
specifications Σ which agree with ΣI on VI , and satisfies
σ0 |=≤τ Σ, there is a unique smallest fixpoint Σ∗ of Ψ. This
fixpoint Σ∗ is satisfied by all system traces σ ∈ Cont(σ0, τ)
with σ|VI |= ΣI . Furthermore Σ∗ can be obtained as the
limit of the sequence Σ0, Ψ(Σ0), . . . of approximations if Σ0

is a specification which agrees with ΣI on VI , and satisfy
σ0 |=≤τ Σ and Σ0 v Σ∗.

Proof. Analogous to the previous theorem.

Theorems 5 and 6 suggest a methodology for finding the
optimal fixpoint of Ψ.

1. Construct some trace σ of the system, such that σ|VI |=
ΣI , and such that σ satisfies the optimal fixpoint of Ψ.
Such a trace could be found, by constructing a sim-
ulation which is an actual system trace. The task is
made easier by the observation that we need to find
only one trace, and can choose one which is as regu-
lar as possible, e.g., as an infinitely repeating periodic
trace.

2. Let Σσ be a tightest specification of the trace σ, and
use Σσ as an initial approximation Σ0.

3. An alternative way to construct an initial approxima-
tion Σ0 is by analytic techniques using long-term rates,
as described in the next section.

4. Perform fixpoint iteration by computing the sequence
Σ0, Ψ(Σ0), This sequence converges to a limit Σ∗

which is the optimal fixpoint of Ψ.

To summarize: the recommended way to compute fixpoints
by iteration is to start from a strong initial approximation,
which is included in the sought optimal fixpoint and there-
after iterate towards a fixpoint. We observe that the dual
approach - starting from a weak initial approximation and
iterating towards a stronger solution - will in many cases
yield quite poor precision, as illustrated by the example at
the end of Section 2.5.

4.1 Obtaining an Initial Approximation
Theorem 5 provides a guarantee that a fixpoint solution

will exist in RTC, provided that there is some solution to
the equations. An initial approximation can be constructed

by simulation. In this section, we will further develop an-
other technique for constructing an initial approximation,
presented by Schiøler et al. [5].

We consider the example system from Section 2.5, and
assume that the externally provided streams of events and
resources are constrained by monotone curves [αl

I , αu
I] and

[βl
I , βu

I] which are superadditive and subadditive, respec-
tively. We assume that these curves are consistent, i.e., that
they allow at least one system trace. We go on to deduce
some properties.

By a lemma of Michael Fekete [1], if a monotone function

f is subadditive or superadditive, then the limit lim
t→∞

f(t)

t
exists. So, define

Al = lim
t→∞

αl
I(t)

t
Au = lim

t→∞
αu

I (t)

t

Bl = lim
t→∞

βl
I(t)

t
Bu = lim

t→∞
βu

I (t)

t

(5)

Intuitively, these are bounds on long-term rates. 2

We conclude that Al ≤ Au and Bl ≤ Bu, otherwise the
curves would be inconsistent. Continuing the particular ex-
ample in Section 2.5, it follows that the specification al-
lows traces which do not generate overflow if and only if
2Al ≤ Bu. If so, then the specification Σ0, which on the
internal event stream has the arrival curve [αl, αu] with

αl(∆) = bAl∆c and αu(∆) = dAl∆e
and on the internal resource stream has the service curve
[βl, βu] with

βl(∆) = βu(∆) = ∆(Bu −Al)

is satisfiable. It is not difficult to show that Σ0 is stronger
than the tightest possible specification of a trace which does
not generate overflow. Thus, Σ0 satisfies the conditions for
an initial approximation in Theorem 5, so that we can use
it in iterative generation of the optimal fixpoint.

For systems with many components and a more compli-
cated interconnection structure, the initial approximation
can be obtained by solving a system of linear equations to
get a long-term rate for each stream, as detailed by Schiøler
et al. [5]. The essential principle is the same as we just
described for this small system.

5. ON PRECISION OF FIXPOINTS
The results in Sections 3 and 4 show that fixpoints of

equations in RTC are satisfied by system traces. However, so
far we have not considered to analyze preciseness of obtained
fixpoints.

In this subsection, we consider a very simple example to
illustrate that the difference in precision between equations
correct for time starting at 0, and for time starting at −∞
can in some cases make a big difference.

Consider the example system in Section 2.5. Let βl
I(∆) =

βu
I (∆) = ∆, and let an event arrive every nth time unit with

no jitter, i.e.,

αl
I(∆) = b∆

n
c and αu

I (∆) = d∆
n
e

2Schiøler et al. do not prove the existence of these limits like
we do, but rather assume that they exist, and remark that
they do so in several common situations

We assume that n ≥ 2. If n = 2, the system is fully loaded,
and if n > 2, the system is (more or less) underloaded. We
know that the actual system trace will quickly stabilize to a
situation where each event is processed first by T1, then by
T2, so that end-to-end latency is 2.

As a measure of the “precision” of fixpoints, let us focus
on two quantities characterized by specifications of events
from T1 to T2, i.e., arrival curves [αl, αu]:

• maxburst, which is the maximum possible number of
consecutive events that are allowed to be emitted with
exactly one time unit distance, i.e., without any pause
in the processing activity of T1.

The quantity maxburst can be obtained as

sup {∆ ∈ R : αu(∆) ≥ ∆} .

• maxgap, which is the maximum time interval during
which no processing actitivity is required from T2.
In RTC which starts at time 0, this quantity is rep-
resented as sup {∆ ∈ R : αl(∆) = 0}, but with un-
bounded past, the quantity is

sup {∆ ∈ R : αl(∆ + 1) = 0} ,

since there is always a previous event, which makes T2
occupied for one time unit.

Let us now calculate lower bounds on maxburst and maxgap
for a given value of n. We first consider the case where time
starts at time 0. We obtain the following relations between
maxburst and maxgap.

• maxgap ≥ maxburst + 1. This is since T2 can be
continuously busy for maxburst time units, meaning
that T1 initially can be without processing resources
for maxburst time units, implying that the first event
is emitted by T1 after maxburst + 1 time units. In
the case where time starts at −∞, this relation should
rather be maxgap ≥ maxburst.

• maxburst is at least the largest value k that satisfies

k ≤ maxgap
n(k − 1) ≤ maxburst + k − 1
n(k − 1) ≤ maxburst + maxgap− 1

(6)

To see this, note that T1 can be without processing
resources for maxburst time units, thereafter it can
obtain maxgap consecutive time units of processing
resource. To emit k consecutive events, T1 needs to
have first a queueing phase, which can have length
maxburst, followed by k units of processing time.

Thus, we need to have

– k ≤ maxgap, to process the k events,

– that the kth event arrives before the k − 1 first
events have been processed; the kth even arrives
at time n(k−1) after start of the queueing phase,
and the k−1 first events have arrived maxburst+
k − 1 units after start of the queueing phase,

– that the kth event, which can be output at time
n(k − 1) + 1 after queueing start, does so before
end of processing phase, i.e., before maxburst +
maxgap.

Let us now consider the case n = 2. Then the largest values
of maxgap and maxburst converge towards ∞. To see this,
assume that there are largest values b, g for them. Then
g ≤ b + 1 from first relation. thereafter, we also see that
the second relation allows k = b + 1 For the case n > 2, the
above equations give no such growth.

We thereafter consider the case where time starts at −∞.
In this case, the optimal fixpoint of the RTC equations will
be the tightest characterization of an actual system trace, i.e.
the fixpoint is as precise as possible. We have confirmed this
by calculating the fixpoint in our MPA tool. In particular,
we do not obtain the same growth in maxburst and maxgap
as in the case where time starts at 0, since the equations that
mutually bound b and g in terms of each other are slightly
different (see above).

This example illustrates a system, where under full load
we get perfect precision if we use the RTC equations that
are correct for unbounded past, but no precision at all if we
use RTC equations that are correct from time 0.

6. EXPERIMENTAL ILLUSTRATION
In this section, we show with a concrete example how the

fixpoint iteration described in the previous sections succeeds
in the analysis of a distributed system with a cyclic depen-
dency. Consider the system depicted in Figure 3. It consists
of a sequence of three tasks T1, T2 and T3 that process a
periodic event stream αI . The system has two computation
resources with availability βI(∆) = βII(∆) = ∆. The first
resource is shared by T1 and T3 according to a fixed priority
scheduling policy with T3 having higher priority than T1.
The system contains a cyclic dependency since T1 indirectly
triggers T3 while T3 preempts T1.

T3 T2

T1

¾

?

?
¾

-

¾
?

?

?

αI α′

α′′

β′

βI βII

Figure 3: Performance model for experiment

We assume that the input event stream αI is strictly pe-
riodic with a period P of 10 time units, i.e.

αl
I(∆) = b∆

10
c and αu

I (∆) = d∆

10
e

Further we assume that T1, T2 and T3 have constant pro-
cessing times of 4, 7 and 5 time units, respectively. We want
to compute bounds for the event streams denoted with α′,
α′′ and for the service stream denoted with β′.

In order to find an appropriate initial value for the fix-
point iteration we first simulate the system execution. For
this simulation we use the PESIMDES simulaton environ-
ment3. Since the system architecture is simple, the simula-
tion could also be performed by hand without much effort.
We observe that after an initial transitory phase, the task

3available at http://www.mpa.ethz.ch/PESIMDES/

T1 produces outputs events for the task T2 with a recur-
ring timing pattern. In particular it produces events with
consecutive distances of 4 time units, 16 time units, 4 time
units, 16 time units etc. This makes it easy to character-
ize the behavior σ of the event stream T1-T2 and find the
tightest specification Σσ of this behavior in terms of upper
and lower arrival curves. The corresponding arrival curves
are depicted in Figure 4.

0 20 40 60 80 100
0

1

2

3

4

5

6

7

8

9

10

α'(0)
u

α'
(0)

l

Figure 4: Tightest specification of the simulated
trace T1-T2

We then use this arrival curves as initial values for the
fixpoint iteration. In particular we model the tasks T1, T2
and T3 with three Greedy Processing Components GPC1,
GPC2 and GPC3 and repeatedly compute their outgoing
arrival and service curves in the following order: GPC2,
GPC3, GPC1. After 4 iterations we reach a fixpoint, i.e.
all the arrival curves and service curves in the performance
model are stable. The obtained characterizations of α′, α′′

and β′ are depicted in the Figures 5, 6 and 7, respectively.

0 20 40 60 80 100
0

2

4

6

8

10

12

α'
* u

α'
* l

Figure 5: Bounds for the event stream T1-T2

7. CONCLUSION
We have performed a detailed study of correctness and

preciseness of fixpoints obtained by solving the RTC equa-
tions for systems with cyclic dependencies. This has been
performed by developing an operational semantics. Under
mild assumptions (“no zero-delay cycles”), we have proven
that any satisfiable fixpoint correctly characterizes all al-
lowed system behaviors. The results indicate that the rec-
ommended way to compute fixpoints by iteration is to start
from a strong initial approximation, which is included in

0 20 40 60 80 100
0

2

4

6

8

10

12

α''
* u

α''
l*

Figure 6: Bounds for the event stream T2-T3

0 20 40 60 80 100
0

10

20

30

40

50

60

β'
* l

β'
* u

Figure 7: Bounds for the resource stream T3-T1

the sought optimal fixpoint and thereafter iterate towards a
fixpoint, obtaining successively weaker and weaker approxi-
mations as the iteration progresses.

A major problem is to find a good initial approximation
for the iteration. We consider two ways to find this approx-
imation: one is to construct a simple periodic simulation
of the system, from which the initial approximation is de-
rived, another (previously suggested by Schiøler et al. [5]) is
to calculate the long-term rates of input streams, use them
to calculate stable long-term rates at internal channels, and
thereafter extract a strongest initial approximation.

We considered the precision obtainable by the optimal fix-
point. One example illustrated that in boundary cases (full
load), small variations in the setup can have large effects on
precision. An experiment indicated an often typical effect:
that the jitter is often overapproximated to some extent by
the optimal fixpoint: this is an inherent consequence of the
fact that RTC does not model phase correlations between
different components. Future work includes to understand
better how the obtained precision depends on parameters in
the input specification.

Appendix: Min-Max Algebra
The min-plus convolution ⊗ and min-plus deconvolution ®
of f and g are defined as:

(f ⊗ g)(∆) = inf
0≤λ≤∆

{f(∆− λ) + g(λ)}
(f ® g)(∆) = sup

λ≥0
{f(∆ + λ)− g(λ)}

A curve f is sub-additive, if

f(a) + f(b) ≥ f(a + b) ∀a, b ≥ 0

and super-additive, if

f(a) + f(b) ≤ f(a + b) ∀a, b ≥ 0

8. REFERENCES
[1] M. Fekete. Über die Verteilung der Wurzeln bei

gewissen algebraischen Gleichungen mit ganzzahligen
Koeffizienten. Mathematische Zeitschrift, 17:228–249,
1923.

[2] M. Jersak, K. Richter, and R. Ernst. Performance
analysis for complex embedded applications. Int. J. of
Embedded Systems, 1(1/2):33–49, 2005.

[3] G. Kahn. The semantics of a simple language for
parallel programming. In IFIP 74, pages 471–475.
North-Holland, 1974.

[4] J. Y. Le Boudec and P. Thiran. Network Calculus: A
Theory of Deterministic Queuing Systems for the
Internet. Springer-Verlag New York, Inc., 2001.

[5] H. Schiøler, J. Jessen, J. Dalsgaard, and K. Larsen.
Network calculus for real time analysis of embedded
systems with cyclic task dependencies. In G. Hu,
editor, Proc. 20th International Conference on
Computers and Their Applications, CATA 2005,
March 16-18, 2005, Louisiana, pages 326–332. ISCA,
2005.

[6] L. Thiele, S. Chakraborty, M. Gries, and S. Künzli.
Design space exploration of network processor
architectures. In Network Processor Design: Issues
and Practices, Volume 1, pages 55–89. 2002.

[7] L. Thiele, S. Chakraborty, M. Gries, and S. Künzli. A
framework for evaluating design tradeoffs in packet
processing architectures. In 39th Design Automation
Conference (DAC 2002), pages 880–885, New Orleans
LA, USA, June 2002. ACM Press.

[8] E. Wandeler. Modular Performance Analysis and
Interface-Based Design for Embedded RealTime
Systems. PhD thesis, ETH Zürich, 2006.

[9] E. Wandeler, A. Maxiaguine, and L. Thiele.
Quantitative characterization of event streams in
analysis of hard real-time applications. In IEEE
Real-Time and Embedded Technology and
Applications Symposium, pages 450–461, 2004.

[10] E. Wandeler, L. Thiele, M. Verhoef, and P. Lieverse.
System architecture evaluation using modular
performance analysis - a case study. Software Tools for
Technology Transfer (STTT), 8(6):649–667, Oct. 2006.

[11] R. Yates. Networks of real-time processes. In Best,
editor, Proc. CONCUR ’93, Theories of Concurrency:
Unification and Extension, volume 715 of Lecture
Notes in Computer Science, pages 384–397. Springer
Verlag, 1993.

