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Abstract—By using device-to-device (D2D) communication,
opportunistic networks promise to fill the gaps of the networking
infrastructure in remote areas, to enable communication in
emergency situations, and to inspire new applications. Yet, to
become feasible in practice and accepted by users, it is crucial
that the energy costs of D2D connections are small and shared
fairly. Fairness, in particular, is a major issue with today’s D2D
technologies (Bluetooth, Wi-Fi Direct): since each connected peer
must assume one of two different roles – access point/client,
master/slave, the energy consumption inside a connected group
is very asymmetric. While a large body of research exists
on role assignment and topology control, the above issue of
energy fairness is either not at all addressed (e.g. in the context
of Bluetooth scatternets) or is addressed under fundamentally
different conditions (e.g. in very dense and often static wireless
sensor networks).

In this paper, we tackle the fairness problem of the energy
consumed in a group of D2D-connected nodes, by using role
switching: the two types of roles are alternated among group
members, thus producing a fairer cost sharing. First, we analyze
contact traces for their group topologies and find that four simple
motifs – clique, star, chain and NxM-clique – cover up to 94%
of the aggregated lifetime of all connected groups. We then
determine the optimal role switching strategies for these motifs
by formulating the cycle of role assignments as an optimization
problem. Since deriving the optimal cycle online, in a distributed
manner is hardly possible in practice, we also propose two
role switching heuristics for online use: a randomized switching
scheme tunable for efficiency or fairness, and a deterministic
scheme which additionally guarantees the group’s connectivity.
Finally, we evaluate our solutions on real contact traces and
show that our heuristics find very good points of operation in
the fairness–efficiency tradeoff.

I. INTRODUCTION

Whenever a group of users carrying smartphones move
within transmission range of device-to-device (D2D) commu-
nication technologies (e.g., Bluetooth or Wi-Fi Direct), they
have the opportunity to connect and exchange data without
relying on any networking infrastructure. Such opportunistic
networks [1], [2] are a promising extension to traditional
networks in remote and rural areas [3], in case of broken
or censored infrastructure [4], or to offload traffic from the
frequently overloaded cellular network [5]. Furthermore, op-
portunistic networks are a more natural support for novel
applications, such as highly local communication [6].

Yet, to make opportunistic networking attractive for the
users of resource-constrained devices (e.g. smartphones), it
is crucial to optimize its energy consumption. To this end,
research efforts have mainly focused on reducing the energy
used by background operations, such as neighbor discov-
ery [7], [8]. State-of-the-art neighbor discovery adapts to
the user’s context and minimizes the number of required
scanning operations, while detecting a maximum number of

communication opportunities. Although these are important
contributions towards energy efficiency, we raise a different
issue here: that of energy fairness. Whenever a node pair or a
larger group is connected, the involved devices take different
roles. In Bluetooth, a device is either in master or in slave state,
whereas in Wi-Fi Direct, a device can be access point (AP)
or client. Measuring the energy consumption of these different
roles in Bluetooth, Wi-Fi Direct and WLAN-Opp1 [9], we find
that the two roles differ by up to a factor of 5 in terms of energy
consumption [10], which results in substantial unfairness when
the roles are assigned statically.

To mitigate this unfairness, we propose that the nodes of
a connected group periodically switch their roles. While a
simple round robin scheme solves the problem for groups
of trivial topology (e.g. pairs or larger cliques), we observe
in a detailed analysis of four measured contact traces, that
nodes are routinely connected in more complex topologies:
chains, stars, chained cliques, etc (up to 68% of the aggregated
lifetime of all connected groups). In such topologies, more
than one master (or AP) may be required to enable all pairs
of devices to communicate with each other; further, not all
devices are equally well positioned for such a connection
hosting role. Hence, the choice of the cycle in which devices
switch roles becomes a challenging problem of finding a good
balance between fairness (relieving the best located devices
from always hosting the connections) and efficiency (selecting
the smallest possible number of hosts).

The issue of assigning host/client roles on arbitrary topolo-
gies to form a connected group or network is well investigated
in mobile ad hoc networks. More specifically, while our work
is not technology specific (it is valid for any protocol with
host/client roles), Bluetooth scatternet formation (BSF) [11]
exhibits the most similarity to our context, in terms of the
basic constraints on network formation. The explicit goal of
BSF role assignment schemes varies: most aim merely at
(efficient) connectivity [12], [13], some want to maximize path
diversity [14], few others optimize capacity or throughput.
The means to achieve these goals range from the simple,
centralized solution [12], to more sophisticated algorithms
based on finding (connected) dominating sets [14] or building
trees [13]. However, none of these solutions address the
problem of unequal energy consumption, stemming from static
role assignments.

While BSF research had to work around the pre-specified
roles, in wireless sensor networking (WSN), roles have been
intentionally introduced to improve energy efficiency and
network lifetime [15]. In WSNs, each node transmits the

1WLAN-Opp is a method based on traditional WLAN: a subset of devices
are in access point mode, such that the others can connect.978-1-4244-8953-4/11/$26.00 © 2015 IEEE
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Fig. 1: Battery depletion.

same type of data to a common sink, such that aggregating
the data is most efficient; to this end, node clusters are
created and cluster heads elected, forming a backbone for
the network. However, the energy intensive roles of cluster
heads result in unfair energy usage and premature network
outage. To cope with this, numerous clustering algorithms
rotate the cluster role in a randomized fashion, pioneered by
LEACH [16]. Another load balancing scheme, proposed by
Amis and Prakash [17], works for any clustering algorithm
based on dominating sets (DS). They achieve a round robin
role alternation, by introducing virtual IDs that change in
each round. However, both the randomized LEACH-based
schemes and the ones for DS-based clustering have restrictive
assumptions on the underlying topology (e.g. very dense or
even fully meshed topology), which make them unsuitable
for our arbitrary topologies. Finally, other popular approaches
are based on alternating through various connected dominating
sets (CDS) [18], [19], to provide the network with a backbone
and satisfy all connectivity constraints. However, the fact that
all hosts must be connected in this case is an overconstraint
for our context, putting an unnecessary limit on the achievable
fairness-efficiency energy tradeoff.

Our work fills the gap of these two topics by introducing
three algorithms to achieve any desired fairness-efficiency
tradeoff in host-client-based D2D communication on an ar-
bitrary underlying topology. As a first step, we formulate the
cycle of role assignments as an optimization problem similar to
Ajmone et al. [20]. However, instead of optimizing the load on
the topology, the objective function we maximize is a tunable
linear combination of efficiency (percentage of nodes that have
the hosting role at any given time) and fairness (here we use
equality fairness [21], but the approach is easily generalizable
to other types of fairness). To preserve the group’s topology
regardless of its nodes’ roles, we require that at each time
instance, the nodes in the hosting role form a Neighborhood
Connected Dominating Set (NCDS)2 [22]. To find the NCDSs,
we determine the edge clique cover [23] and require that
each clique has at least one host. Realizing this connection
between the NCDS and edge clique covers allows us to
simplify the constraints of the optimization problem to one
simple condition (instead of eleven [20]). Finally, the optimal
role alternation strategy is given by the cycle of NCDSs which
maximizes the fairness-efficiency tradeoff.

Operating the above optimization scheme online, in a dis-
tributed way is difficult in practice as it requires global coor-
dination. However, based on the gained insights, we propose
two online role switching heuristics (one randomized and one
deterministic), both tunable for efficiency or fairness. For these

2All NCDS are a subset of all DS that contain all CDS, i.e., CDS ⊆ NCDS
⊆ DS.

Abbr. State/Operation Power/Energy STD

PC
BT Bluetooth connected (slave) 58.49 mW 3.29 mW

PH
BT Bluetooth connected (master) 28.53 mW 0.05 mW

PC
O WLAN-Opp associated (station) 60.79 mW 9.74 mW

PH
O WLAN-Opp associated (AP) 210.97 mW 11.72 mW

PC
D Wi-Fi Direct connected (station) 49.75 mW 3.90 mW

PH
D Wi-Fi Direct connected (AP) 231.92 mW 9.14 mW

TABLE I: Power consumption of connection operations.

heuristics we show that they can find near-optimal solutions for
the above four classes of topologies (or motifs): cliques, stars,
chains and NxM-cliques (N-clique connected to M-clique with
x overlapping nodes), which together represent 44 − 94% of
aggregate group lifetime in the contact traces. Finally, we also
evaluate the heuristics’ overall performance by applying them
to contact traces, which also include all kinds of more “exotic”
topologies. We find that one of our heuristics can give us
89 − 98% fairness while being 88 − 97% efficient when using
the most energy imbalanced Wi-Fi Direct protocol.

II. MOTIVATION

In this section, we motivate our work from two viewpoints:
First, we briefly describe each D2D technology, detailing
its required communication roles and their different energy
consumptions. This illustrates well and quantifies the fairness
problem. Second, opportunistic networking studies usually
assume that nodes always connect in pairs, in which case the
fairness problem is easily solved by rotating the communica-
tion roles via a simple round robin. By analyzing four real
contact traces for connectivity of larger groups, we show that
more complex topologies (for which the round robin solution
is insufficient) are present in rather large amounts.

A. The Unequal Roles in D2D Connections

Three technologies are currently available to establish a
high throughput, mid-range, D2D communication opportunity:
Bluetooth, Wi-Fi Direct, and WLAN-Opp, a method based
on traditional WLAN access point and station functionality.
All three technologies define two communication roles: a
connection host and a client.

Bluetooth intends to provide wireless connectivity in en-
ergy constrained personal area networks. In order to enable
communication, one device will become the master of the
connection(s) (host), serving up to seven slaves (clients), to
form a piconet. Slaves may be part of multiple piconets and
the master of one piconet may be a slave to another piconet’s
master, thus bridging the two piconets to form a scatternet.

Wi-Fi Direct is Wi-Fi Alliance’s response to Bluetooth
offering longer range and higher throughput. Two or more
devices communicate by having one device in soft AP mode
(host), while all others connect to it as stations (clients).

WLAN-Opp is a custom protocol, based on traditional
WLAN AP and station functionality [9], which establishes
communication similar to Wi-Fi Direct.

Unsurprisingly, the energy required to be a host is not equal
to that needed to be a client, leading to unfair battery drain.
This is the case both for the connection establishment phase,
and to an even higher degree for connection maintenance
and actual traffic. More precisely, the device that hosts the
connection incurs a much higher energy cost than a client



H06 MIT ETH SF

# contacts 128 979 75 425 22 958 1 339 274
# nodes 78 96 20 536
scanning interval 2min 5min 2 s 30 s

total connection t 671.07h 7921.84h 101.41h 8847.86h

clique 72.75% 72.26% 31.47% 83.37%
chain 9.77% 10.52% 3.37% 6.38%
star 2.23% 1.55% 2.00% 0.06%
NxM-clique 2.56% 4.75% 6.79% 3.71%
other 12.69% 10.92% 56.37% 6.47%

TABLE II: Motif presence (% of total connected time) in
contact traces.

device3. This effect is illustrated in Fig. 1, which reports the
battery usage of two phones (Samsung Galaxy Nexus with
Android 4.2 in airplane mode) connected to each other via
WLAN-Opp for 10 hours without transmitting data. As made
obvious in this figure, the host’s battery drains much faster
than the client’s – an inequitable situation.

More detailed measurements4 of this inequality are pre-
sented in Table I. We measure the power, P, a device continu-
ously consumes while being a host (PH) or a client (PC). The
device’s role impacts energy consumption for all technologies
by a factor varying between 2 and 5.

To put these numbers into the perspective of the 6.48Wh
battery life of a Galaxy Nexus: The Wi-Fi Direct AP state
consumes a whopping 3.58 battery-percent per hour (%/h),
while the station state only consumes 0.77%/h.

B. Connected Groups in Real Traces
While the above fairness problem is easily solved for pairs

of connected nodes (by switching between the two roles via
round robin), finding a solution for larger groups of nodes,
connected in arbitrary ways is much more challenging. In
the following, we investigate whether such larger connected
groups are indeed present in the four following real contact
traces (also summarized in the upper half of Table II):
H06 the Haggle 2006 trace, collected during the three days

of the Infocom conference in 2006 [24];
MIT the MIT reality mining trace, collected from students

and staff on the MIT campus during several months [25];
ETH the ETH trace, collected from iPAQ carrying researchers

at the ETH Zurich campus [26];
SF the San Francisco taxi cab trace recorded GPS position

for over 500 taxicabs over a period of a month [27].
For all of the above traces, we extract the different ways

in which a group of users connects most frequently. We call
the most common topologies motifs [28]. In order to identify
and classify motifs, we sort all topologies found in the traces
by the total time they exist in each trace. A list of the most
dominant topologies is shown in Table III. We quantify the
relative importance of each topology via the fraction of the
total trace time when that topology exists.

Summarizing from Table III, we identify four distinct motifs
which capture the majority of the traces’ topologies. The
motifs – cliques, chains, stars, and NxM-cliques – and their

3The opposite is true for Bluetooth: a master uses less energy than a slave.
However, the unfairness problem remains unchanged.

4We took exact measurements with the Monsoon Power Monitor, which
replaces the battery to record in real-time, the power consumed by the device
at a resolution of 500Hz (or 2ms). Different device models/brands show
qualitatively similar results.

Time [% of total time] Topology Motif Nodes
H06 MIT ETH SF

66.07 59.71 19.97 75.14 Clique 2
5.05 9.46 6.04 6.43 Clique 3
8.46 9.15 2.33 5.43 Chain 3
1.24 2.22 3.60 0.98 Clique 4

0.89 1.87 1.41 1.16 NxM 4

0.86 1.26 1.16 0.73 NxM 4
0.96 1.11 0.72 0.79 Chain 4
1.42 1.01 0.98 0.06 Star 4

0.28 0.55 1.21 0.30 Clique 5

0.22 0.31 1.73 0.24 Unclassified 5

0.12 0.34 1.15 0.20 NxM 5

0.41 0.30 0.14 0.04 Unclassified 5

0.27 0.36 0.43 0.20 NxM 5

0.41 0.26 0.20 0.00 Star 5

0.13 0.26 0.46 0.25 NxM 5

0.22 0.19 1.01 0.19 Unclassified 5
0.31 0.20 0.25 0.13 Chain 5

0.11 0.23 0.36 0.17 Clique 6

0.22 0.22 0.42 0.04 Unclassified 5

0.14 0.17 0.17 0.07 Unclassified 5

87.79 89.18 43.74 92.55 Total %
6.71 79.22 1.01 88.47 1% in h

TABLE III: Top 20 Topologies in terms of time.

statistics are shown in the lower half of Table II. Most other
topologies are a simple combination of these four motifs.

While the topologies of cliques, chains, and stars are well
known, the NxM-cliques require an explanation. As the name
suggests, they are composed of two cliques of sizes N and M
with x overlapping nodes (we generally assume N ⩾ M > x).
The total number of nodes in this motif is N +M − x.

Its interesting to note that the distribution of motifs depends
on the context of the trace. The more static a trace is, the more
stable complex topologies become. For instance, in the ETH
trace, the contacts are strongly influenced by the office layout,
resulting in unclassified topologies in over half of the time.

Considering the energy fairness problem in such complex
groups is clearly more challenging than in the simple case of a
connected node pair. In the next section, we rigorously define
our problem as well as all the concepts needed to solve it.

III. PRELIMINARIES AND DEFINITIONS

In the following, we first illustrate the fundamental chal-
lenges we are faced with in addressing the fairness problem of
D2D group communication, while still keeping overall energy
consumption in check. Then, we formally define measures for
fairness and efficiency in our setting, and discuss their tradeoff.

A. Constraints for an Equalizing Solution
As discussed above, an obvious remedy to the energy

inequality highlighted in Section II-A would be for the con-
nected devices to regularly switch roles and share the duty
of the host. While role switching may be straightforward in
the case of a node pair (the typical opportunistic contact), it
is very challenging for other topologies, such as the ones we
have just discovered in the traces.



Definition 1 (Topology). The topology of a group of connected
nodes is determined solely by their physical proximity: an edge
between two group members denotes the fact that they are
within transmission range of each other.

With today’s D2D technologies, operating an arbitrary,
connected topology, such as the one in Fig. 2, means that
each node must take on one of the two roles (host or client),
forming a configuration.

Definition 2 (Configuration). For a given n-node topology, a
configuration or assignment of roles to nodes is represented
by a binary vector s = (s i)1⩽i⩽n , where s i ∈ {0, 1} is the role
of node i: a client if s i = 0 or a host if s i = 1.

In order for a given configuration to succeed in preserving
the original topology (in the sense of Def. 1), the D2D
technology in use must fulfill several conditions:

(i) multiple devices may take a hosting role;
(ii) every client may connect to multiple hosts;

(iii) every host may also simultaneously be a client (at no
added energy cost), and thus connect to other hosts.

Under these conditions, a topology is preserved if and
only if the set of hosting nodes (masters or APs) forms a
neighborhood connected dominating set (NCDS) [22].

Definition 3 (NCDS). A neighborhood connected dominating
set is a special case of a DS, where the induced subgraph of
the nodes in the set and their neighbors is connected.5

Using the above defined NCDS concept, the task of role
switching is reduced to finding at least two appropriate NCDSs
for a given topology and alternating among them, so as to
ensure an equitable battery depletion for all group members.

Note that, in addition to being an NCDS, the roles con-
figuration must also be efficient in terms of overall energy
consumption. This means that there should be as little hosts
as possible, while still forming an NCDS. In the example of
Fig. 2, the most efficient host configuration is formed by nodes
4 and 5, as any other NCDS requires at least three hosts.
However, achieving fair energy use requires switching among
several NCDSs, some of which might be less efficient. In the
following, we discuss this inherent fairness–efficiency tradeoff.

B. The Fairness–Efficiency Tradeoff
When dealing with arbitrary group topologies, the choice

of which nodes should be configured as a host (master or AP)
confronts us with a tradeoff between efficiency and fairness.
To illustrate this tradeoff, we analyze the extreme case of
a star topology shown in Fig. 3. In this topology, the most
efficient configuration (with respect to overall energy use) is
to set the center node as the host and the rest as clients.
This, however, is not particularly fair. To increase fairness,
each of the outer nodes should eventually also become a host,
as in the alternative NCDS. This, in turn, is not particularly
efficient. Depending on the required tradeoff, the presented
star topology should spend more time in the efficient one host
configuration or in the fairer six host configuration.

In order to be able to rigorously quantify and tune this
tradeoff, in the following, we formally define both fairness
and efficiency in relation to our role switching problem.

5Not every DS is neighborhood connected: in Fig. 2, nodes 3 and 7 form a
dominating set, but the induced subgraph of 3, 7 and their neighbors misses the
edge (4, 5) to be connected. On the other hand, every connected dominating
set is also neighborhood connected; however, the converse is not true.
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7

Fig. 2: Sample topology and its
edge clique cover.

Fig. 3: Star topology
with different host con-
figurations.

Fairness Measure: Fairness, in its simplest form, corre-
sponds to equal consumption of energy. However, in more
formal settings, several measures of fairness are available,
each with different goals. For example, if the group’s interests
are more important than those of individual devices, then
devices with more energy should also contribute more, thus
maximizing the lifetime of the group. Another example is
the existence of special devices in the group, that is devices
providing a service required by all others. In this case, the
special devices should use as little energy as possible, so as
to preserve the availability of the provided service.

For a generic fairness measure, applicable to any scenario,
we set the goal of achieving an arbitrary division of energy
usage among the connected devices. We denote this division
with the vector a = (a i)1⩽i⩽n , for a group of n connected nodes.
Each element a i ∈ (0, 1) denotes node i’s desired fraction out
of the total amount of power, P, and the sum of all a i’s must
be 1. Further, denoting by P = (Pi)1⩽i⩽n the actual power costs
incurred by each device (with P = ∑ Pi), our fairness goal is
to drive the Pi’s as close as possible to the a iP’s.

While there are different ways of quantifying the perception
of fairness, the most generic and intuitive metric was proposed
by Jain et al. [21]. The Jain fairness index has some very
important properties: it is independent of the number of
devices, of the scale, and of the energy consumption measure.
The resulting fairness value is bounded between 0 and 1
and continuous, ensuring that it varies discernibly with every
change of the ratio of the consumed power.

The Jain fairness index J(a,P) for power consumption
among n devices is defined as follows:

J(a,P) =
(

n

∑
i=1

Pi

a i
)
2

n ⋅
n

∑
i=1

(Pi
a i

)
2 . (1)

With the above definition of an allocation metric, the index
measures the deviation of the vector of consumed powers
P = (Pi)1⩽i⩽n from the desired division aP = (a i)1⩽i⩽nP.
The denominator of Eq. (1) is minimal (and thus equal
to the nominator), whenever all the summands are equal.
The denominator increases with the summands’ variations,
reducing the overall fairness.

Efficiency Measure: Conflicting with a fairness objective
is usually an efficiency goal. In our case, some host configu-
rations comprise less hosts than others, thus consuming less
energy overall and being more efficient.

To be able to set a desired tradeoff we need to quantify
efficiency. We measure the efficiency of a configuration as
the ratio of how close this configuration is to the optimally
efficient one. More specifically, for every group of n nodes,
there is a minimal number of hosts hmin that are required to
achieve the connected underlying topology, in the sense of



Def. 1. This host configuration is the minimal NCDS of that
topology, and the power it consumes is given by:

Pmin = hmin ⋅ PH + (n − hmin) ⋅ PC . (2)

Then, the efficiency of an arbitrary configuration s, with
hs = ∑n

i=1 s i hosts can be described as:

e(s) = Pmin

hs ⋅ PH + (n − hs) ⋅ PC
. (3)

The efficiency e(s) is a value in (0, 1], where 1 means perfect
efficiency and 0 the opposite.

Concluding this section, we now have a clear picture of the
problem and are equipped with formal definitions of the tools
needed to solve it.

IV. ROLE SWITCHING ALGORITHMS

Considering the above constraints, as well as our fairness
and efficiency measures, in this section, we propose three
algorithms for role switching in arbitrary node topologies: a
centralized optimal scheme and two distributed heuristics.

Let N be our group of n connected nodes, forming some
arbitrary topology, such as the one in Fig. 2. At any given time
t, the topology is operated (via one of the D2D technologies)
with a role configuration s(t) = (s i)1⩽i⩽n , where a node i is a
host for s i = 1 or a client for s i = 0. To achieve a certain fairness
objective, we need a set M of distinct configurations to cycle
through, with ∣M ∣ = m ⩾ 2. According to the constraint
discussion in the previous section, each of these configurations
must be an NCDS.

To summarize, assuming slotted time t and given:
(i) the set of all NCDS role configurations for N , and

(ii) a fair energy allocation vector a = (a i)1⩽i⩽n ,
our challenge is to find the cycle M of role configurations,
which achieves the desired fair allocation without disregarding
efficiency. To operate the topology, the group of n nodes can
then, at each timeslot, cycle through the configurations in M .

We note that, the problem of finding NCDSs is still new and
not so well investigated. Studying solutions to this problem
is beyond the scope of our work; here, to find a topology’s
NCDSs, we use a simple scheme whereby we first identify
the largest possible cliques that together cover all the edges
of that topology, i.e. an edge clique cover [23]. Then, NCDSs
can be built by ensuring that each clique contains at least
one NCDS member. Applying this to Fig. 2, we obtain three
cliques: {1, 2, 3, 4}, {4, 5}, {5, 6, 7}, and the nodes 4 and 5
form a minimal NCDS.

This connection between the edge clique cover and the
NCDS has two important advantages: (i) In a centralized case,
we can extract all maximal cliques with the Bron-Kerbosch
algorithm [29] and then formulate the configuration constrains
with one simple equation. (ii) In a distributed case, the nodes
do not have to know the whole topology but only the cliques
they belong to. This can be easily calculated by each node
knowing all the 2-hop neighbors [30].

A. Optimal Role Switching (OPT)
To find the optimal solution M for the above role switching

problem, we can formulate the desired fair energy allocation
and the efficiency into an optimization problem. To reconcile
the conflicting goal of maximizing both fairness and efficiency,
we aim at maximizing the following objective function, which

corresponds to exactly one cycle through M , requiring m
timeslots:

fobj(M) = e(M) + γ ⋅ J
⎛
⎝
a,

⎛
⎝∑s∈M

Pi(s)
⎞
⎠
1⩽i⩽n

⎞
⎠
, (4)

where the γ term tunes the fairness–efficiency tradeoff, and
Pi(s) = s iPH + (1− s i)PC is the power consumed by node i in
role configuration s. Assuming equality fairness, for simplicity
of illustration, and substituting the definitions of fairness and
efficiency6, the objective function becomes:

fobj(M) = mPmin

∑
s∈M

hsPH + (n − hs) PC
+ γ ⋅

(
n

∑
i=1
∑
s∈M

Pi(s))
2

n ⋅
n

∑
i=1

( ∑
s∈M

Pi(s))
2

= mPmin
n

∑
i=1
∑
s∈M

Pi(s)
+ γ ⋅

(
n

∑
i=1
∑
s∈M

Pi(s))
2

n ⋅
n

∑
i=1

( ∑
s∈M

Pi(s))
2 (5)

To complete our optimization problem, we add the con-
straint that all elements of M should also be NCDSs. Given
our above method of finding NCDSs based on an edge clique
cover, this means that for all s ∈ M the node states s i must
be such that there is at least one host per clique in the given
topology. Let K = {K1 ,K2 , ...,K l} be the topology’s set of
maximal cliques7. Then our optimization problem is:

max
M

fobj(M) such that

∑
i∈Kk

s i ≥ 1, ∀Kk ∈ K and ∀s ∈M . (6)

This is a mixed integer optimization problem with a non-
convex objective function. As there is no out-of-the-box soft-
ware to solve such problems, we transform our objective
function to make it convex, while maintaining the same
solution space and the same global maxima. Maximizing the
efficiency term defined in Eq. (3) is equivalent to minimizing
its inversion (ignoring the constant terms). For the fairness
term, we proceed as follows. Fairness is maximized when
all nodes use the same amount of energy. We thus minimize
the the sum of all energy differences among all possible
combinations of nodes. This results in the following convex
objective function to be minimized:

gobj(M) =
n

∑
i=1

⎛
⎝∑s∈M

Pi(s) + γ′ ⋅
n

∑
j=i+1

RRRRRRRRRRR
∑
s∈M

(Pi(s) − Pj(s))
RRRRRRRRRRR

⎞
⎠
.

(7)
Finally, minimizing gobj(M), we obtain an optimal set

of role configurations Mopt. When our group of nodes N
cycle through these configurations, they achieve the requested
tradeoff between fairness and efficiency, while preserving a
connected topology.

In addition to finding practically feasible cycles M , it is also
of interest for evaluation purposes to calculate the theoretically

6Note that the efficiency of a set of role configurations is not the sum of
individual efficiencies.

7We use the Bron–Kerbosch algorithm [29] to find these.
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Fig. 4: Disconnection probability for the RAND algorithm with different motifs. (pd = 0.05)

optimal fairness–efficiency tradeoff. This can be done by
relaxing our binary state variables s = (s i)1⩽i⩽n via convex
relaxation [31]. Solving the optimization problem under relax-
ation results in a single (unfeasible) role configuration vector
sopt, with elements in (0, 1) rather than {0, 1}. Then, fobj(sopt)
is the desired optimal theoretical tradeoff. This allows us to
determine the whole space of possible tradeoffs as a reference
for other algorithms.

Summarizing, this section has introduced a scheme for
finding the optimal cycle of role configurations M for a given
topology N , given a desired tradeoff between fairness and effi-
ciency. Obviously, this scheme requires that all n nodes have
global knowledge about the topology which requires O(n2)
messages to be exchanged. It also provides a global cycle M ,
for globally coordinated timeslots. The distribution of the cycle
requires O (n) messages to be exchanged within the topology.
Coordinating globally and propagating global information is
extremely challenging in opportunistic networks, making this
solution impractical. Therefore, we also propose two practical
heuristics for the same problem in the following. We then use
the optimal scheme as a benchmark for the evaluation of these
heuristics in Section V-A.

B. Distributed Randomized Switching (RAND)
One simple way of avoiding the complications of global

coordination and global topology knowledge is for each node
to probabilistically decide, at each timeslot, whether it will be a
host for that timeslot. Naturally, the hosting probability should
depend on the goal of the role switching algorithm. A fair
algorithm selects the same hosting probability for all nodes,
while an efficient algorithm gives higher hosting probabilities
to nodes that connect several cliques, as they are more likely
to be part of a minimal NCDS.

Depending on the topology and the chosen hosting proba-
bilities, there is a chance that the host nodes do not form an
NCDS at a given time, leading to a disconnected topology.
Determining the disconnection probability for an arbitrary
topology is not an easy task. However it is more or less
easily achievable for the most frequently occuring motifs from
Table III. For example, in a clique of size n, all nodes are equal
and should thus have equal hosting probability ph . Then, the
probability that no node is a host is given by:

pd = (1 − ph)n . (8)

To achieve a desired disconnection probability pd , we simply
invert the above equation and find the hosting probability ph
for each node in the clique:

ph = 1 − pd
1
n . (9)

Similar, albeit more complex formulas can be obtained for
the other three common types of topologies from Table III, as
shown in [32]. Since these formulas are not easily invertible as

above, numerical inversion must be performed. This results in
an algorithm that is opaque and difficult to tune and to evaluate
beyond the aspect of disconnection probability. For a more
transparent solution, we use the insight from above to devise
the following two heuristics (one aimed at fairness, the other
at efficiency). Both are based on local topology knowledge,
that is knowledge about all two-hop neighbors.

F-RAND: In the fair variant, each node selects ph acording
to Eq. 9 in its local clique. If a node is part of multiple
cliques, it takes the biggest value of ph in order not to in-
crease the disconnection probability. This results in an overall
disconnection probability that is at least equal to the desired
pd , because chaining or otherwise linking cliques increases
the likelihood of disconnection as can be seen in Fig. 4 for
pd = 0.05. This is especially true for the chain motif, where
a disconnection becomes more probable the longer the chain
is. However, chains of more than five nodes are rare.

E-RAND: In the efficient variant, only nodes that bridge
multiple cliques should be able to become a host, thus all non-
bridging nodes set ph = 0. Bridging nodes behave as follows:

● If a set of bridges connect the same set of cliques, their
probability will be determined by Eq. 9 with n being the
number of bridging nodes.

● If multiple nodes connect multiple cliques: bridges that
serve cliques by themselves set ph = 1, bridges that share
cliques, see above.

Selecting ph with such an efficiency tuned algorithm will give
us overall lower disconnection probabilities than the desired
pd , especially if we have single nodes that connect multiple
cliques with ph = 1. This can be clearly seen in Fig. 4.

Similar to the OPT algorithm, we can tune the fairness-
efficiency ratio of the RAND algorithm. If pF is the probability
a node selects with the fair variant and pE the one selected by
the efficient version, a node may become host with

ph = β ⋅ pF + (1 − β) ⋅ pE (10)

and thus tune the ratio with parameter β.
To summarize, the random heuristic only requires local in-

formation about the 2 hop neighbors which can be exchanged
with one local broadcast per node. Further, RAND does not
require the creation and negotiation of a switching schedule,
but it does come at the risk of a disconnected topology if the
randomly chosen hosts do not form a NCDS.

C. Distributed Intra-Clique Switching (DET)
While the random host configuration is simple and does

not require global knowledge or coordination among nodes,
the possibility for disconnections is undesirable or might
be unacceptable. For this reason, we introduce a distributed
algorithm that guarantees connectedness, while only requiring
local knowledge and little coordination, i.e. the broadcast
of only two messages per node, one with the neighborhood
information, and one with the local schedule.
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(b) Star Topology with n = 5.
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(c) Chain Topology with n = 5.
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(d) NxM Topology with N =4, M=2, x= 1.
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(e) NxM Topology with N =4, M=3, x=2.
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(f) NxM Topology with N =4, M=4, x=3.
Fig. 5: Fairness – Efficiency tradeoff for different topologies for the Wi-Fi Direct energy consumption. Note that the RAND
algorithm may be more efficient then the optimum as it allows for disconnections.

In this algorithm, every clique selects a host independently
of all other cliques and the hosting role is then rotated inside
the clique. This eliminates the need for globally defined times-
lots. However, it comes at a fairness cost: nodes belonging to
multiple cliques might be scheduled to become host by two
or more cliques at different times. In addition, inefficiencies
may also occur: for instance, whenever a node belonging to
multiple cliques is host, there might be a second unnecessary
host in one of its cliques. These inefficiencies can be partly
avoided by allowing neighboring cliques to share their hosting
schedules and not schedule unnecessary hosts. This DET
variant tuned for efficiency (E-DET), comes at the cost of
fairness. In the evaluation, we show that such sporadic fairness
and efficiency reductions are a small price to pay for the
simplicity of this algorithm.

V. FAIRNESS–EFFICIENCY TRADEOFF EVALUATION

We now evaluate the performance of the above described
algorithms, OPT, RAND, and DET, first on the four commonly
observed motifs, then in the traces. For this analysis, we have
implemented OPT by formalizing the optimization problem
described in Section IV-A with yalmip [33] and solving it
with Gurobi8. The number of configurations we allow in the
set M , is the least common multiplier of the sizes of all
the cliques involved. For example, in an NxM-clique with
N = 4 and M = 3, we select 12 configurations. For the
RAND algorithm the chosen probabilities ph are based on
a disconnection probability of pd = 0.05.

In order to determine the fairness and efficiency of each
algorithm we need to calculate the fraction of time each node
is expected to be in host mode which is basically defined by
the probability (or fraction) to be a host ph . For the OPT
algorithm this is derived from the optimal schedule, for the
RAND algorithm it is given by Eq. (10), and for the DET
algorithm its expected value is calculated from the algorithms
specification. Knowing the probability to find a node in the
host role leads to the following expected power consumption:

P = PH ⋅ ph + PC(1 − ph).
Given the power each node consumes, we can compute the
fairness and efficiency from Eq. (1) and Eq. (3) respectively.

8www.gurobi.com

For this evaluation we use the Wi-Fi Direct energy values
shown in Table I. The outcome is similar for the energy
consumption of the other technologies.

A. Per Motif Evaluation
The possible fairness–efficiency tradeoff space can be seen

in Fig. 5 for six topologies with n = 5 nodes.9 The marked
lower bounds (dotted line) of fairness and efficiency are
given by the constraints of the problem (e.g., both host and
client require energy). The upper bound (red dashed line) is
determined by convex ralaxation of the integer optimization
problem. As expected, the integer solutions of OPT are usually
all located on or close to the upper bound (blue squares).

The RAND algorithm can be tuned along the green dashed
line by choosing the parameter β (0 ≤ β ≤ 1). While in the
clique (Fig. 5a), the tradeoff cannot be tweaked, the range of
tradeoffs is especially large for topologies with cliques that
have a single overlapping nodes, such as the star (Fig. 5b),
or the NxM-clique with x = 1 (Fig. 5d). It is less efficient
if there are multiple equally important nodes, such as in the
chain (Fig. 5c), or the NxM-clique with x = 2 (Fig. 5e) or x = 3
(Fig. 5f). This is because the RAND algorithm is unable to
efficiently loadbalance among equally important nodes within
a topology as it has to overprovision to avoid disconnections.

The figure confirms that by introducing a tiny bit of coordi-
nation the DET algorithm generally outperforms RAND. Solu-
tions found by DET are in almost all cases (with the exception
of the chain, where efficiency is hard to achieve without global
coordination) close to the optimal trade-off boundaries, which
shows that the simple deterministic heuristics are effective.

B. Performance on Traces
Now we know how our algorithms perform for the most

common motifs and how they compare to the optimally
achievable tradeoff. However, to understand their performance
in practice, we must take into account realistic traces that
also contain other, more complex topologies. As explained
in Section IV-B the disconnection probability also depend on
the topologies, usually being higher for F-RAND and lower

9Slightly varying n does not change these results much. However, a more
detailed analysis on how the achievable fairness-efficiency tradeoff changes
with the motif size can be found in [32].
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for E-RAND. We can see in Fig. 6 this is the case for the
actual disconnection probabilities in the four traces. The ETH
trace has the most complex topologies resulting in the highest
disconection probability for the F-RAND algorithm.

The resulting tradeoffs for all traces are shown in Fig. 7.
While all algorithms are generally quite fair (0.75 − 1.0), the
efficiency of the RAND algorithms is not very good for all
traces (0.63 − 0.86). This is because it needs to overprovision
to avoid disconnections. At the cost of some local coordi-
nation, the DET algorithm (especially the efficient variant
E-DET) clearly outperforms RAND without suffering from
disconnections, achieving a fairness around 0.91 − 0.99 while
maintaining an efficiency of 0.81−0.98. While DET is slightly
more complex to implement as it requires some schedule
coordination among local nodes, it comes close to the OPT
algorithm in all traces without the need of global coordination
and a costly optimization.

VI. CONCLUSION

A fair distribution of energy usage is a key prerequisite
for user acceptance of opportunistic D2D communication.
Current ad-hoc wireless communication technologies available
for recent mobile phones, i.e., Bluetooth, Wi-Fi Direct, and
WLAN-Opp, require devices to assume different roles, i.e. host
or client, which differ in energy consumption by a factor of
two to five. To improve fairness of the consumed energy, we
propose to regularly switch roles among the members of the
communicating group. However, depending on the topology
of the group arbitrary switching might be inefficient or not
possible. We analyze the group topologies of four contact
traces and extract four motifs cover 44 − 94% of the lifetime
of all connected groups. We then introduce two distributed
role switching heuristics and compare them to the optimal
switching schedule for the four motifs which is determined
by convex optimization with global knowledge. Finally, we
show that our distributed heuristics can give us 89 − 98%
fairness in real world traces while achieving 88 − 97% of the
maximal efficiency when using the most energy imbalanced
Wi-Fi Direct protocol.
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