Is Network Science a Science?

Roger Wattenhofer
Confession
I don’t have a Facebook account.
... but I always loved networks*

*Computer Networks
Wireless Networks
Social Networks
Mobile Networks
Biological Networks
Economic Networks
IS NETWORK SCIENCE...

...A SCIENCE?
Some Success Stories of Network Science

Milgram, Watts-Strogatz, & Kleinberg

Markov Chains, Stationary Distribution, & PageRank

Spectral Graph Theory
CHECKLIST

- it's cool to be in network science
- success stories
- workshop established
But...
Real Science has (Open) Problems

Lists of unsolved problems

From Wikipedia, the free encyclopedia

A list of unsolved problems may refer to several conjectures or open problems in various fields:

- Unsolved problems in artificial intelligence
- Unsolved problems in biology
- Unsolved problems in chemistry
- Unsolved problems in computer science
- Unsolved problems in economics
- Unsolved problems in Earth science
- Unsolved problems in linguistics
- Unsolved problems in mathematics
- Unsolved problems in medicine
- Unsolved problems in neuroscience
- Unsolved problems in philosophy
- Unsolved problems in physics
- Unsolved problems in statistics
Science: Still Interesting in 100 Years

Either

OR

Engineering: Interesting Right Now!
Complexity Theory

Can a Computer Solve Problem P in Time t?
Distributed

\downarrow

Complexity Theory

Network

Can a Computer Solve Problem P in Time t?
Complexity Theory

Can a Computer Solve Problem P in Time t?

Distributed Network

Network Complexity Theory
Distributed (Message-Passing) Algorithms

- Nodes are agents with unique ID’s that can communicate with neighbors by sending messages. In each synchronous round, every node can send a (different) message to each neighbor.
Distributed (Message-Passing) Algorithms

- Nodes are agents with unique ID’s that can communicate with neighbors by sending messages. In each synchronous round, every node can send a (different) message to each neighbor.

- Distributed (Time) Complexity: How many rounds does problem take?

Each round:
1. send msgs
2. rcv msgs
3. compute
An Example

each round:
every node:
1. send msgs
2. rcv msgs
3. compute
How Many Nodes in Network?

each round:
every node:
1. send msgs
2. rcv msgs
3. compute
How Many Nodes in Network?

- each round:
 1. send msgs
 2. rcv msgs
 3. compute
How Many Nodes in Network?

each round:
every node:
1. send msgs
2. rcv msgs
3. compute
How Many Nodes in Network?

With a simple flooding/echo process, a network can find the number of nodes in time $O(D)$, where D is the diameter (size) of the network.
Diameter of Network?

- **Distance** between two nodes = Number of hops of shortest path
Diameter of Network?

- Distance between two nodes = Number of hops of shortest path
Diameter of Network?

- **Distance** between two nodes = Number of hops of shortest path
- **Diameter** of network = Maximum distance, between any two nodes
Diameter of Network?
Networks Cannot Compute Their Diameter in Sublinear Time!

(even if diameter is just a small constant)

Pair of rows connected neither left nor right? Communication complexity: Transmit $\Theta(n^2)$ information over $O(n)$ edges $\Rightarrow \Omega(n)$ time!

[Frischknecht, Holzer, W, 2012]
Distributed Complexity Classification

1 \quad \log^* n \quad \text{polylog } n \quad D \quad \text{poly } n

e.g., dominating set approximation in planar graphs

MIS, approx. of dominating set, vertex cover, ...

diameter, MST, verification of e.g. spanning tree, ...

various problems in growth-bounded graphs

count, sum, spanning tree, ...

e.g., [Kuhn, Moscibroda, W, 2014]
Sublinear Algorithms
Self-Stabilization
Distributed Complexity
Applications e.g. Multi-Core
Dynamic Networks
Self-Assembly

Applications e.g. Multi-Core
Dynamic Networks
Sublinear Algorithms
Distributed Complexity
Self-Stabilization
Sublinear Algorithms
Self-Stabilization
Self-Assembly
Applications e.g. Multi-Core
Distributed Complexity
Dynamic Networks
Sublinear Algorithms
Science: Still Interesting in 100 Years

Engineering: Interesting Right Now!
Bitcoin
Spending Money
Moving Money

Transaction

Source | Destination | Amount
Distributing the Bank
Double-spending

TX

Source

Destination Amount

TX'

Source

Destination Amount
Double-spending in the Network
Distributing the Bank

I am the leader
Double-spending in the Real World

[Bamert, Decker, Elsen, W, Welten, 2013]
Where would you inject your transaction?
Double-spending, the Theory

Player 1: Where to inject original transaction?
Player 2: Where to inject copy?
Really?
Sometimes, being second is better!
Another Example: Nontransitive Dice
Transaction Malleability

February 10, 2014: “Addressing Transaction Malleability: MtGox has detected unusual activity on its Bitcoin wallets and performed investigations during the past weeks.”
Transaction Malleability
Transaction Malleability in Real Life

[Decker, W, Arxiv, in submission]
WHERE ARE THE $500M, DUDE?
Summary

IS NETWORK SCIENCE...

...A SCIENCE?

EITHER OR
Thank You!
Questions & Comments?

Thanks to my co-authors, mostly
Christian Decker
Silvio Frischknecht
Stephan Holzer

www.disco.ethz.ch