
Timing Predictability on Multi-Processor Systems with
Shared Resources

Andreas Schranzhofer, Jian-Jia Chen, and Lothar Thiele

Computer Engineering and Networks Laboratory (TIK),
Swiss Federal Institute of Technology (ETH), Zurich, Switzerland
{schranzhofer,jchen,thiele}@tik.ee.ethz.ch

Abstract. Multi-processor systems are becoming increasingly important in con-
sumer electronics as well as in industrial applications, such as automotive soft-
ware. Tasks need to share data across processing unit boundaries, e.g., local vari-
ables, triggering the need for a communication fabric. Therefore, multi-processor
systems are constituted not only by a mere set of processing units, but also by
communication and memory peripherals. These peripherals are shared resources,
i.e., multiple independently executing tasks on multiple processing units compete
for accessing them. Real-time tasks execute periodically on a processing element
and are constituted by sequential superblocks. In this paper, we consider several
models to schedule the superblocks and organize accesses to the shared resources
within the superblocks. First, superblocks can be executed sequentially, i.e., a su-
perblock is activated as soon as its preceding superblock has finished, or they can
be executed according to a static schedule (preassigned time slots). Second, we
consider three models to access shared resources: (1) dedicated access model, in
which accesses happen only at the beginning and the end of a superblock, (2) gen-
eral access model, in which accesses could happen anytime during the execution
of a superblock, and (3) hybrid access model, which combines the dedicated and
general access models. We show the relation between these models with respect
to schedulability and provide experimental results that show that the dedicated
phases model with sequential superblocks performs best.

1 Introduction
Multiprocessor systems on chip (MPSoCs) and multicore platforms have been widely
applied for modern computer systems to reduce production cost without sacrificing per-
formance or significantly increasing power consumption. Multiprocessor and MPSoC
systems are typically designed to improve the average-case performance, while worst-
case timing guarantees are usually not taken into consideration. However, guarantees on
worst-case response/completion times are key requirements when implementing hard
real-time applications, such as avionic and automotive applications.

Consider a platform with multiple processing elements and a single shared main
memory. Executing a task on a processing element requires fetching of program in-
structions and acquisition of data from main memory. Moreover, communication among
tasks on different processing elements also incurs memory access. As a result, con-
tention on shared resources significantly delays the completion of tasks.

For systems with shared resources, Pellizzoni et al. [2], Negrean et al. [1] and
Schliecker et al. [4] have recently proposed methodologies to analyze the worst-case
delay a task suffers due to accesses to a shared bus and shared memory. Another re-
search direction focuses on different arbitration policies for shared resources to elimi-
nate interference. For example, Rosen et al. [3] use TDMA for bus accesses.



We assume that the positions of accesses to the shared resource are not known a
priori and neither is their order. Producing all the feasible traces for such a configuration
would result in an infinite number of possibilities. Furthermore, we assume a hardware
platform where execution time and communication time can be decoupled, e.g., the
fully timing compositional architecture proposed by Wilhelm et al. [5].

Consider a task being allocated on a predefined processing element. Tasks are con-
stituted by superblocks, which are defined by their maximum required computation
time and their maximum number of accesses to the shared resource. We consider differ-
ent models to schedule superblocks on to specify accesses to shared resources therein.
Superblocks execute either (1) sequentially or (2) time-triggered. First, sequentially ex-
ecuting superblocks start executing as soon as their preceding superblock has finished.
The first superblock of a task starts execution as soon as the task is activated. Second,
time triggered superblocks start execution at dedicated time instants statically.

Accesses to shared resources are specified according to three models: (1) dedicated
phases model. (2) general model and (3) hybrid model. Dedicated phases at the be-
ginning and the end of each superblock are employed as acquisition and replication
phase respectively. After acquiring required data from the shared resource, computa-
tions can be performed, i.e., the execution phase starts. This phase is then followed by
the replications phase. The general model allows access to shared resources at any time
during a superblock active time, i.e., the acquisition and replication phases merge with
the execution phase. The hybrid model has an acquisition and an replication phase, but
accesses to the shared resource can also happen during the execution phase. The goal
of this study is to compare the worst-case response time for the above different models.

2 System Model
2.1 Models of Tasks and Processing Elements

A system is composed of multiple processing elements pj ∈ P . The processing ele-
ments in P execute independently, but share a common resource, e.g., an interconnec-
tion fabric (bus) to access a shared memory. We assume a given task partition, in which
task set Tj is assigned to execute on pj ∈ P . A task is constituted by a sequence of
superblocks. Superblocks execute:

sequential a succeeding superblock is not allowed to activate before its preceding su-
perblock has finished or

time triggered a superblock starts execution at a predefined time and therefore does
not depend on its succeeding superblocks’ computation time.

We consider a (given) repeating schedule of length Wj time units, denoted as pro-
cessing cycle, on processing element pj , in which the first superblock starts at time 0.
Superblocks Sj are executed in time interval (0,Wj ], and are then repeated in (Wj , 2Wj ],
(2Wj , 3Wj ], etc. Following that, we define a superblock si,j with an earliest starting
time ρi,j in a time window of length Wj and its relative deadline `i,j .

Superblocks are further structured in phases: acquisition phase, execution phase,
and replication phase. This paper considers three models to specify these phases and
accesses to the shared resource. Each model represents a trade-off between design free-
dom and accuracy of timing analysis.

Dedicated access model Accesses to the shared resource are limited to the acquisition
phase at the beginning of the superblock and to the replication phase at the end of



the superblock. After the activation of a superblock, requests to the shared resource
are issued, in order to receive required data. After results are computed, the repli-
cation phase updates the results. Requests to the shared resource, as well as the
time required for computations, are specified as upper bounds. The parameters for
superblock si,j are:

– µmax,ai,j : max. number of requests in acquisition phase,
– µmax,ri,j : max. number of requests in replication phase, and
– execmaxi,j : max. execution time excluding resource accesses.

General access model Accesses to the shared resource are not limited to specific phases
and can happen at any time and in any order. Conclusively, µmax,ai,j and µmax,ri,j are
both 0. However, requests are defined as an upper bound, as is the required time
to compute results, see Fig. 1a. In addition to the definition of execmaxi,j in a su-
perblock si,j , we also have

– µmax,ei,j : max. number of requests during the superblocks active time
Hybrid access model Accesses to the shared resource can happen in the acquisition,

the execution, and the replication phases. This model allows to access the shared
resource outside the dedicated acquisition and replication phases. See Fig. 1e as an
example. As a result, the parameters are µmax,ai,j , µmax,ri,j , µmax,ei,j , and execmaxi,j .

2.2 Model of the Shared Resource
This paper considers systems with a TDMA arbiter for arbitrating the access to the
share resource. A TDMA schedule Θ is defined as sequence of time slots, such that
σm ∈ Θ is the starting time of the m-th time slot (a.k.a. time slot m) and its duration
is δm = σm+1 − σm. For notational brevity, we define MΘ as the number of slots in
schedule Θ and L(Θ) as its length. As a result, the TDMA schedule is repeated after
every L(Θ) time units. For notational brevity, we set σ1 as 0 and σMΘ+1 as L(Θ).

Any request to the shared resource has to wait until it is granted by the resource ar-
biter. After a request is granted, the shared resource starts to serve the request. A TDMA
schedule for the shared resource is said to be schedulable if all the superblocks/tasks
in all processing elements can finish before their respective deadlines, i.e., the response
time of a superblock is no more than the relative deadline.

3 Schedulability Analysis
3.1 Access Models
sequential general model - GS Superblocks execute sequentially, and accesses to the

shared resource can happen anytime and in any order, see Fig. 1a.
sequential dedicated model - DS Superblocks execute sequentially, and accesses to

the shared resource are in the acquisition and replication phases, see Fig. 1c.
sequential hybrid model - HS Superblocks execute sequentially, and accesses to the

shared resource are issued in dedicated acquisition and replication phases. Addi-
tionally, in the execution phase, accesses to the shared resource can be issued at
any time, see Fig. 1e.

time-triggered superblocks general model - GTS Superblocks start execution at ded-
icated points in time and accesses to the shared resource can happen at any time and
in any order, see Fig. 1b.

time-triggered superblocks hybrid model - HTS Superblocks start execution at ded-
icated points in time and accesses to the shared resource are issued in dedicated ac-
quisition and replication phases. Additionally, in the execution phase, accesses to



S1

a/e/r a/e/r

s1,1 s1,2

�1,2�1,1

ρ1,1 + W1 ρ1,1 + 2W1ρ1,1 ρ1,1 + �1,1

S1

a/e/r a/e/r

s1,1 s1,2

�1,2�1,1

ρ1,1 + �1,1 + W1

a/e/r

(a) Model: GS

a/e/r

S1

a/e/r a/e/r a/e/r a/e/r

s1,1 s1,2

�1,2�1,1

S1

s1,1 s1,2

�1,2�1,1

ρ1,1 + W1 ρ1,1 + 2W1ρ1,2 + W1ρ1,1 ρ1,2

(b) Model: GTS

a e r a e r

S1

s1,1 s1,2

ρ1,1 + W1 ρ1,1 + 2W1

a
ρ1,1

�1,1 �1,2

a e r a e r

S1

s1,1 s1,2

�1,1 �1,2

ρ1,1 + �1,1 ρ1,1 + �1,1 + W1

(c) Model: DS

a r a r

S1

s1,1 s1,2

ρ1,1 + W1 ρ1,1 + 2W1

a r a r

S1

s1,1 s1,2

a

�1,2

ρ1,2 + W1

�1,1 �1,2

ρ1,1

a/e/r a/e/r a/e/r a/e/r

ρ1,2

�1,1

(d) Model: HTS

a r a r

S1

s1,1 s1,2

ρ1,1 + W1 ρ1,1 + 2W1

a
ρ1,1

�1,1 �1,2

a r a r

S1

s1,1 s1,2

�1,1 �1,2

ρ1,1 + �1,1 ρ1,1 + �1,1 + W1

a/e/r a/e/r a/e/r a/e/r

(e) Model: HS

a a/e/r r a a/e/r ra/r/w a a/e/r r a

s1,3

S1

s1,1 s1,2

�1,2�1,1 �1,3

S1

s1,1

�1,1

ρ
1,1,a

ρ
1,1,e

ρ
1,1,r

ρ
1,2,a

ρ
1,3,r

ρ
1,2,e

ρ
1,3,e

ρ
1,1,a +

W
1

ρ
1,1,e +

W
1

ρ
1,1,r +

W
1

(f) Model: HTT
Fig. 1: The access models considered in this paper.

the shared resource can be issued at any time, see Fig. 1d. Phases of a superblock
execute sequentially. As an example, the execution phase of superblock s1,1 in
Fig. 1d, starts after the acquisition phase has finished.

time-triggered phases hybrid model - HTT Superblocks are specified according to
the hybrid model, i.e., there is an acquisition, an execution and a replication phase
and each phase starts at a statically defined point in time. Accesses to the shared re-
source are issued in the acquisition, replication, and execution phases. In the latter,
accesses are issued at any time and in any order, see Fig. 1f.

3.2 Schedulability Relationship

Assume a set of superblocks with defined maximum execution time and maximum num-
ber of access to the shared resource in each of its phases. Furthermore, assume this set of
superblocks to be specified according to each of the six previously introduced models.
We then test the schedulability of the set of superblocks, for each of the six specification
models. Schedulability for some of the models can be derived from schedulability of
other models, see Fig. 2:

– If the set of superblocks is schedulable for the sequential general model, then it is
also schedulable for the sequential hybrid model. This is because the hybrid model
is a specialization of the general model. In other words, each concrete execution
trace that can be realized by the hybrid model can as well be realized by the general
model.

– If the set of superblocks is schedulable for the sequential hybrid model, then it
is also schedulable for the sequential dedicated model. The dedicated model is
a special case of the hybrid model. Similarly to the previous relation, each trace
produced by a set of superblock specified according to the dedicated model, can as
well be produced by a set of superblock specified according to the hybrid model.

– If the set of superblocks is schedulable for the time-triggered superblocks general
model, then it is also schedulable for the time-triggered phases hybrid model. First,
the hybrid model is a special case of the general model. Second, time-triggered
phases inside a superblock are a special case of the time-triggered superblocks
models. The activation time of the phases in the time-triggered phases model has to



sequential
time-triggered

GS

GTS HTS

DSHS

HTT

schedulability relation

Fig. 2: Schedulability Relationship between different models.

be chosen, such that the preceding phase can finish in any case (worst-case). There-
fore, each execution trace that can be produced by the time-triggered phases model,
can as well be produced by the time-triggered superblocks model, by assuming the
worst case completion time for each phase.

– If the set of superblocks is schedulable for the time-triggered phases hybrid model,
then it is also schedulable for the time-triggered superblocks hybrid model. It is easy
to see, that the time-triggered phases model is a special case of the time-triggered
superblocks models. Furthermore, the model to access the shared resource is the
same - namely the hybrid model. Consequently, this schedulability relation is valid.

– If the set of superblocks is schedulable for the time-triggered superblocks general
model then it is also schedulable for the sequential general model. Similarly to
previous relations, the time-triggered model is a special case of the sequential case.

– If the set of superblocks is schedulable for the time-triggered phases hybrid model
or for the time-triggered superblocks hybrid model, then it is also schedulable for
the sequential hybrid model. The time-triggered models are special cases of the se-
quential model and the model to access the shared resource is the same. Therefore,
the schedulability relation is valid.

As a conclusion, if any of the six models results as schedulable, the sequential
dedicated model is schedulable as well.

4 Experimental Results
In this section, we present the results for the sequential models, since the time-triggered
models are a special case of them. We analyze two set of superblocks, specified ac-
cording to the three different models to access the shared resource. The first sequence
represents a small task, with only 8 subsequent superblocks. The second sequence is
constituted by 82 superblocks. The superblocks’ parameters are generated using ran-
dom number generators, following specifications provided by an industrial partner.

Two superblock sequences are analyzed, in 4 different access models. The most left
pair of bars in Fig. 3a represents the naive worst-case execution time, considering only
a constant amount of time consumed by each access to the shared resource, i.e., when
the shared resource is always available. The next three pairs of bars show the results for
different memory access models. The dedicated access model outperforms the others
with respect to worst-case response time. This is due to the limited variability inherent
to the dedicated access model. This effect is very apparent in Fig. 3a.

In order to derive the worst-case response time for superblocks, different traces of
requests to the shared resource have to be examined. In Fig. 3b, we analyze a sample
superblock with earliest release time ρ = 0.5ms. We show one trace that leads to the
worst case response time (WCRT) (feasible Trace 1) and one that does not.



0

5

10

15

20

25

30

35

W
or

st
 C

as
e 

R
es

po
nc

e 
Ti

m
e 

[m
s]

Different access models, regular TDMA arbiter

82 sequential superblocks
8 sequential superblocks

ex
ec

ut
io

n 
tim

e

ge
ne

ra
l a

cc
es

s 
m

od
el

hy
br

id
 a

cc
es

s 
m

od
el

de
di

ca
te

d 
ph

as
es

 m
od

el

(a) A task

e

execmax
i,j,k = 4

µmax
i,j,k = 3

Slot Slot Slot

C = 0.05

1 2 3 4 5 6 7 8 98.25

5.7

TDMA Bus

feasible Trace 1

feasible Trace 2

superblock

0.5 4.27 
(buffered access model)

8.25

computation stall / blocking

access issued computed worst case completion time 

2.45 + � 1.55− �

1.90 + � 0.2− 2�1.90 + �

WCRT = 7.75

(b) A sample superblock.
Fig. 3: Experimental results for a regular TDMA arbiter

Trace 1 (feasible Trace 1) starts with performing computations at time 0.5 ms while
Trace 2 (feasible Trace 2) issues an access to the shared resource and therefore stalls un-
til the next time slot becomes available, at time 2.0 ms. Eventually, Trace 1 finishes its
computations and the remaining accesses to the shared resource have to be issued. Since
the slot is currently active, these accesses are completed and the superblock finishes at
5.7ms. Trace 2, on the other hand, computes until the end of the second slot before issu-
ing another access. After a long stall block, the system continues to do computations for
0.2ms before finishing at 8.25ms, which results in a worst-case response time (WCRT)
of 7.75ms. This shows, that very small deviations can result in large variances on the
resulting worst-case response time.

5 Conclusion
We consider different models to access shared resources on multiprocessor systems and
define schedules for tasks/superblocks on a processing element. The sequential dedi-
cated hybrid model is shown to be schedulable as soon as any of the other models is
schedulable. Experimental results demonstrate the superiority of the this with respect to
worst case completion time. We conclude that resource sharing in multiprocessor sys-
tems should be designed according to the sequential dedicated phases model. In other
words, accesses to the shared resource and computation should be separated carefully.
References

1. M. Negrean, S. Schliecker, and R. Ernst. Response-time analysis of arbitrarily activated tasks
in multiprocessor systems with shared resources. In Design, Automation & Test in Europe
Conference & Exhibition, 2009. DATE ’09., pages 524–529, April 2009.

2. R. Pellizzoni, B. D. Bui, M. Caccamo, and L. Sha. Coscheduling of CPU and I/O transactions
in COTS-based embedded systems. In Proc. of the 29th IEEE Real-Time System Symposium,
Dec 2008.

3. J. Rosen, A. Andrei, P. Eles, and Z. Peng. Bus access optimization for predictable implemen-
tation of real-time applications on multiprocessor systems-on-chip. In RTSS ’07: Proceedings
of the 28th IEEE International Real-Time Systems Symposium, pages 49–60, Washington, DC,
USA, 2007. IEEE Computer Society.

4. S. Schliecker, M. Negrean, G. Nicolescu, P. Paulin, and R. Ernst. Reliable performance anal-
ysis of a multicore multithreaded system-on-chip. In CODES/ISSS ’08: Proceedings of the
6th IEEE/ACM/IFIP International Conference on Hardware/Software Codesign and System
Synthesis, pages 161–166, New York, NY, USA, 2008. ACM.

5. Reinhard Wilhelm, Daniel Grund, Jan Reineke, Marc Schlickling, Markus Pister, and Chris-
tian Ferdinand. Memory Hierarchies, Pipelines, and Buses for Future Architectures in Time-
critical Embedded Systems. IEEE Transactions on CAD of Integrated Circuits and Systems,
28(7):966–978, July 2009.


