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Abstract. Interface-based design relies on the idea that different com-
ponents of a system may be developed independently and a system de-
signer can connect them together only if their interfaces match, without
knowing the details of their internals. In this paper we propose an inter-
face algebra for analyzing networks of embedded systems components.
The goal is to be able to compute worst-case traversal times and verify
their compliance to provided deadlines in such component networks in
an incremental manner, i.e., as and when new components are added or
removed from the network. We lay the basic groundwork for this algebra
and show its utility through an illustrative example.

1 Introduction

Today most embedded systems consist of a collection of computation and com-
munication components that are supplied by different vendors and assembled by
a system manufacturer. Such a component-based design methodology is followed
in several domains such as automotive, avionics, and consumer electronics. The
system manufacturer responsible for component assembly has to take design de-
cisions (related to the choice of components and how they are to be connected,
e.g., using a bus or a network-on-chip) and perform system analysis. One such
important analysis is related to the computation of end-to-end delays or worst-
case traversal times (WCTTs) of data through the component network.

To carry out such an analysis, it is important to model the internals of each
component, which is often difficult because of the complexity of the components
and their proprietary nature. To get around this problem, an interface-based
design methodology may be appropriate. Here, components may be connected if
and only if their interfaces match. Further, the timing behavior of the network
may be computed in an incremental manner – i.e., as and when new components
are added or existing ones are modified – without always having to analyze the
entire system from scratch. In this paper, we develop an interface algebra for es-
timating the worst-case traversal times and verify their compliance to provided
upper bounds, where the different components exchange data through first-in
first-out (FIFO) buffers. Such architectures are common for streaming applica-
tions, e.g., audio/video processing and distributed controllers where data flows
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from sensors to actuators while getting processed on multiple processors. Our
proposed interface algebra is an extension of [4, 8] and is motivated by the con-
cept of assume/guarantee interfaces from [1]. In particular, we cast the Real-Time
Calculus framework from [3] within the assume/guarantee interface setting. At
a high level, two interfaces match when the guarantees associated with one of
them comply with the assumptions associated with the other. Our main tech-
nical result is Theorem 1 which describes how to compute the assumptions and
guarantees associated with components based on a monotonicity property. This
result is then used to compute the WCTT in a component network incremen-
tally, and validate that it complies to a given deadline. Our approach may be
summarized in the following three steps:

1. Define an abstract component that describes the real-time properties of a
concrete system component. This involves defining proper abstractions for
component inputs and outputs, and internal component relations that mean-
ingfully relate abstract inputs to abstract outputs.

2. To derive the interface of an abstract component, we need to define interface
variables as well as input and output predicates on these interface variables.

3. Derive the internal interface relations that relate incoming guarantees and
assumptions to outgoing guarantees and assumptions of a component’s in-
terfaces.

In the setting we study here, event streams are processed on a sequence of
components. An event or data stream described by the cumulative function R(t)
enters the input buffer of the component and is processed by the component
whose availability is described by the cumulative function C(t). Formally, the
cumulative functions R(t) ∈ IR≥0 and C(t) ∈ IR≥0 for t ≥ 0 denote the number
of events/data items that have been received or could be processed within the
time interval [0, t), respectively. After being processed, events are emitted on the
component’s output, resulting in an outgoing event stream R′(t). The remaining
resources that were not consumed are available for use and are described by
an outgoing resource availability trace C ′(t). The relations between R(t), C(t),
R′(t) and C ′(t) depend on the component’s processing semantics. For example,
Greedy Processing (GP) denotes that events are always processed when there
are resources available. Typically, the outgoing event stream R′(t) will not equal
the incoming event stream R(t) as it may, for example, exhibit more or less jitter.

While cumulative functions such as R(t) or C(t) describe one concrete trace
of an event stream or a resource availability, variability characterization curves
(VCCs) capture all possible traces using upper and lower bounds on their timing
properties. The arrival and service curves from Network Calculus [5] are specific
instances of VCCs and are more expressive than traditional event stream models
such the periodic, periodic with jitter, sporadic, etc. Arrival curves αl(Δ) and
αu(Δ) denote the minimum and the maximum number of events that can arrive
in any time interval of length Δ, i.e., αl(t − s) ≤ R(t) − R(s) ≤ αu(t − s) for
all t > s ≥ 0. In addition, αl(0) = αu(0) = 0. We also denote the tuple (αl, αu)
with α. Service curves characterize the variability in the service provided by a



resource. The curves βl(Δ) and βu(Δ) denote the minimum and the maximum
number of events that can be processed within any time interval of length Δ,
i.e., βl(t − s) ≤ C(t) − C(s) ≤ βu(t − s) for all t > s ≥ 0. In addition, βl(0) =
βu(0) = 0. We also denote the tuple (βl, βu) with β. An event stream modeled
by α(Δ) enters a component and is processed using the resource modeled as
βl(Δ). The output is again an event stream α′(Δ), and the remaining resource
is expressed as β′l(Δ). Note that the domain of the arrival and service curves
are events, i.e., they describe the number of arriving events and the capability
to process a certain number of events, respectively. The generalization towards
physical quantities such as processing cycles or communication bits can be done
by means of workload curves which is another instance of a VCC (see [6]).

2 Timing Analysis of Component Networks

In this section, we describe a timing analysis framework (in particular, for com-
puting worst-case traversal times) for component networks that is based on
Real-Time Calculus [3, 7]. This calculus is an adaptation of Network Calculus
[5] that was designed to analyze communication networks. Here, we consider
three basic types of abstract components: Processing Element (PE), Playout
Buffer (PB), and Earliest Deadline First (EDF) component. For the component
models of Greedy Shapers, Time Division Multiple Access, servers, and hierar-
chical scheduling, please refer to [9–11]. In Sect.3 we lift this framework to an
interface-theoretic setting and present our main technical result.

2.1 Processing Element

The PE component can be used to model a single processing element which
processes one input stream. However, it can also be composed with other com-
ponents of the same type, and model components processing more than one
input stream using a fixed priority (FP) scheduling. Consider a concrete GP
component that is triggered by the events of an incoming event stream. A fully
preemptive task is instantiated at every event arrival to process the incoming
event, and active tasks are processed in a FIFO order, while being restricted
by the availability of resources. The completion of each task execution results
in the corresponding event being removed from the input buffer and an event
being emitted on the outgoing event stream.

Following results from Real-Time and Network Calculus [3, 5], such a compo-
nent can be modeled by an abstract component PE with the following internal
component relations3:

α′u = αu � βl, α′l = αl ⊗ βl, (1)

β′l(Δ) = sup
0≤λ≤Δ

{
βl(λ)− αu(λ)

}
:= RT (βl, αu) , (2)

3 See the Appendix for definitions of ⊗ and �.



and the backlog of the input buffer is bounded by sup0≤λ≤Δ

{
αu(λ)− βl(λ)

}
. If

the available buffer space in the input buffer is constrained by bmax, the backlog
should never become bigger than the buffer size, i.e., we have a buffer overflow
constraint. In this case, we can obtain the following component-based constraint
on the admissible arrival and service curves:

αu(Δ) ≤ βl(Δ) + bmax, ∀Δ ∈ IR≥0 . (3)

If the input arrival and service curves satisfy the above constraint, the backlog
will never be bigger than bmax. Before continuing with the computation of the
WCTT for a PE component, we need to define the following shift function:

r(α, c,Δ) =

{
α(Δ− c) if (Δ > c) ∧ (Δ 	= 0)
0 if (Δ ≤ c) ∨ (Δ = 0)

(4)

which simply shifts a given curve α(Δ) by the amount c to ’the right’. The
WCTT experienced by an event in the component, defined as its finishing time
minus its arrival time, can be computed as:

Del(αu, βl) := sup
λ≥0

{
inf{τ ≥ 0 : αu(λ) ≤ βl(λ+ τ)}

}
.

It is also possible to have systems with processing elements that process more
than one data stream. For this purpose, the remaining service output of a higher
priority PE component, computed with (2), can be connected to the service
input of a lower priority PE component. This way we can model an FP resource
sharing between PE components.

2.2 Playout Buffer

The PB component models a playout buffer. It receives data and stores it in
a buffer which is read at a constant (usually periodic) rate. The buffer has a
maximum size Bmax. We make the assumption that at the start of the system,
there are already B0 initial data items in the playout buffer, e.g., due to a
playback delay. Data items in the playout buffer are removed at a constant
rate. In particular, P (t) data items are removed within the time interval [0, t).
This behavior can be described by the readout VCC ρ(Δ) = (ρl(Δ), ρu(Δ)),
i.e., ρl(t − s) ≤ P (t) − P (s) ≤ ρu(t − s) for all t > s ≥ 0. What needs to be
guaranteed is that the playout buffer never overflows or underflows. Following
results on Real-Time and Rate Interfaces [4], for a PB component with input
and readout event streams characterized by the VCCs α and ρ, respectively, and
B0 initial events, the playout buffer size B(t) is constrained by 0 ≤ B(t) ≤ Bmax

at all times if

αl(Δ) ≥ ρu(Δ)−B0, and αu(Δ) ≤ ρl(Δ) +Bmax −B0, ∀Δ ∈ IR≥0 . (5)

The WCTT experienced by an event in the component can be computed as
Del(αu, ρlτ ) where

ρlτ (Δ) = r(ρl, τ,Δ) (6)



is the lower readout curve ’shifted to the right’ by the initial playback delay
τ ≥ 0 necessary to accumulate B0 events.

2.3 Earliest Deadline First Component

The EDF component is similar to PE but it models processing of several data
streams with a resource shared using the earliest deadline first scheduling policy.
This requires a new abstract component with different internal relations [10].
Such a component processes N input event streams and emits N output event
streams. Each input event stream i, 1 ≤ i ≤ N , is associated with a fully
preemptive task which is activated repeatedly by incoming events. Each input
event stream i has an associated FIFO buffer with maximum size bi max where
events are backlogged. Tasks process the head events in these buffers and are
scheduled in an EDF order. Each task has a best-case execution time of BCETi,
a worst-case execution time WCETi, and a relative deadline Di where 0 ≤
BCETi ≤ WCETi ≤ Di. The completion of a task execution results in the
corresponding input event being removed from the associated buffer and an
output event being emitted on the associated output event stream.

For an EDF component with a service curve β and event streams character-
ized by arrival curves αi, all tasks are processed within their deadlines if and
only if N∑

i=1

r(αu
i , Di, Δ) ≤ βl(Δ), ∀Δ ∈ IR≥0 , (7)

using the shift function r from (4). The output streams can be characterized by
arrival curves computed for all streams i as:

α′u
i (Δ) = r(αu

i ,−(Di − BCETi), Δ), α′l
i (Δ) = r(αl

i, (Di − BCETi), Δ) , (8)

and the number of events in input buffers do not exceed their capacity bi max if

αu
i (Di) ≤ bi max, ∀i . (9)

The EDF component schedulability condition (7) can be related to the de-
mand bound functions described in [2]. Given that the condition is satisfied,
the service curve provided to each stream can be modeled with a burst-delay
function [5] defined for each stream i as:

βl
Di

(Δ) =

{
+∞ if Δ > Di

0 otherwise
(10)

The WCTT experienced by an event from a stream can be computed as
Del(αu

i , β
l
Di

) which is bounded by Di for each stream.

2.4 Worst-Case Traversal Times of Component Networks

The worst-case traversal time of an event from an input stream which is processed
by a sequence of components can be computed as the sum of the worst-case



traversal times of the individual components. However, this would lead to a
very pessimistic and unrealistic result as it would assume that the worst-case
traversal times occur in all components for the same event. A better bound on
the worst-case traversal time can be achieved by considering a concatenation
of the components. This is a phenomenon known as “pay bursts only once” [5].
Following results from Network Calculus, this leads to the following computation
for the WCTT.

For an input event stream α traversing a sequence of components which
consists of a set of PEs, a set of PBs, and a set of EDF components denoted
as PE , PB and EDF , respectively, the worst-case traversal time that an event
can experience can be computed as Del(αu, βPE ⊗ ρPB ⊗ βEDF ) with βPE =⊗

c∈PE β
l
c, ρPB =

⊗
c∈PB ρlτ c, βEDF =

⊗
c∈EDF βl

Di c
, and βl

c is the service

availability of PE component c, ρlτ c is the lower readout curve for PB component
c as defined with (6), and βl

Di c
is the service availability provided to the stream

served with relative deadline Di by EDF component c as defined with (10). A
WCTT constraint on the sequence of components Del(αu, βPE ⊗ ρPB ⊗ βEDF ⊗
σGS) ≤ D can be written as follows:

βPE ⊗ ρPB ⊗ βEDF ≥ r(αu, D,Δ), ∀Δ ∈ IR≥0 , (11)

using the shift function r from (4).

3 Interface Algebra

In this section, we develop an interface-based design approach which will allow us
by only inspecting the interfaces of two components to check whether WCTT and
buffer underflow/overflow constraints would be satisfied if the components are
composed together. The proposed interface algebra includes concepts from Real-
Time Calculus, Assume/Guarantee Interfaces [1], and constraints propagation.

In our setup each component has two disjoint sets of input and output ports
I and O. The actual input and output values of an abstract component are
VCC curves. A connection from output j of one component to the input i of
some other component will be denoted by (j, i). The interface of a component
makes certain assumptions on I, which are specified using the predicate φI(I).
Provided this predicate is satisfied, the interface guarantees that the component
works correctly and its outputs will satisfy a predicate φO(O).

In order to simplify the presentation, we introduce the complies to relation
� between two VCC curves a(Δ) and b(Δ) as follows:

a � b = (∀Δ : (al(Δ) ≥ b l(Δ)) ∧ (au(Δ) ≤ bu(Δ))) .

In other words, a complies to b (a � b) if for all values of Δ the interval
[al(Δ), au(Δ)] is enclosed by [b l(Δ), bu(Δ)].

Following the introduced notation, for any VCC α, we can define the input
and output predicates for some component input i and output j as φI

i (αi) =



(αi � αA
i ) and φO

j (αj) = (αj � αG
j ), respectively, where αA and αG are assume

and guarantee curves provided by the component interface.
We would like to have that if the input predicates of a component are all

satisfied, then it works correctly and all output predicates are satisfied. In other
words the condition

∧
∀i∈I φ

I
i (αi) ⇒

∧
∀j∈J φO

j (αj) must be satisfied by the
interfaces of all components.

If we now connect several components, we want to be able to check if the
whole system can work correctly by just checking whether their interfaces are
compatible. This can be done by testing whether the relation

∧
∀ (j,i) φ

O
j (αj) ⇒∧

∀ (j,i) φ
I
i (αi) is satisfiable. In other words, we must check if there exists some

environment in which the components can be composed. The relation is hence
the weakest precondition on the environment of the system.

We also need to propagate information about the predicates between the
interfaces, see also [8]. This way, we combine interface theory with constraints
propagation, which enables parameterized design of component-based systems.
We propagate the assume and guarantee curves of the input and output predi-
cates through the interfaces. Each interface connection would have both assume
and guarantee curves propagated in opposite directions. We connect the inter-
faces, i.e., the corresponding guarantee and assume curves, as ∀ (j, i) : (αG(i) =
αG(j)) ∧ (αA(j) = αA(i)).

Now, we can determine whether two abstract components are compatible by
checking the compatibility of their interfaces. Let us suppose that the assume
and guarantee variables of an interface of any component and their relation to
the input and output values of the corresponding abstract component satisfy

(∀i ∈ I : αi � αG
i � αA

i ) ⇒ (∀j ∈ J : αj � αG
j � αA

j ) , (12)

where the component has inputs I and outputs J . Then if for a network of
components, the relation αG

i � αA
i is satisfied for all inputs i, we can conclude

that the system works correctly.
Now we need to develop the relations between guarantees and assumptions

in order to satisfy (12) for every component. We will first describe a general
method how these relations can be determined and then apply it to the abstract
components described so far.

To this end, as we are dealing with stateless interfaces, I and O can be
related by a transfer function, e.g., O = F (I). The actual function depends on
the processing semantics of the modeled component.

We need to define the concept of a monotone abstract component. Note that
the ’complies to’ relation � has been generalized to tuples, i.e., (ai : i ∈ I) � (bi :
i ∈ I) equals ∀i ∈ I : ai � bi.

Definition 1. An abstract component with a set of input and output ports, I
and J , respectively, and a transfer function F that maps input curves to output
curves, is monotone if ((α̃i : i ∈ I) � (αi : i ∈ I)) ⇒ ((α̃j : j ∈ J) � (αj : j ∈ J))
where (αj : j ∈ J) = F (αi : i ∈ I) and (α̃j : j ∈ J) = F (α̃i : i ∈ I).

In other words, if we replace the input curves of an abstract component with
curves that are compliant, then the new output curves are also compliant to the



previous ones. Note that all components we look at in this paper satisfy this
monotonicity condition, see for example (1), (2), and (8).

The following theorem leads to a constructive way to compute the input
assumes and output guarantees from the given input guarantees and output
assumes. We make use of the individual components of the transfer function
F , i.e., αj = Fj(αi : i ∈ I) for all j ∈ J where I and J denote the input
and output ports of the corresponding abstract component, respectively. The
theorem establishes that we can simply determine the output guarantees using
the components of a given transfer function of an abstract component. For the
input assumes we need to determine inverses of the transfer function Fj with
respect to at least one of its arguments. All arguments of some Fj are determined
by the input guarantees but one, say for example αG

i∗ . This one we replace by
αA
i∗ and try to determine this curve such that the result of the transfer function

still complies to the given output assumes. If we choose the same i∗ for several
components of the output function, then the resulting αA

i∗ needs to comply to
all partial ’inverses’.

Theorem 1. Given a monotone component with input ports I, output ports
J , and a transfer function F that maps input curves to output curves, i.e.,
(αj : j ∈ J) = F (αi : i ∈ I). Let us suppose that we determine the output
guarantees using:

αG
j = Fj(α

G
i : i ∈ I) ∀j ∈ J , (13)

and the input assumes are computed such that

∀j ∈ J ∃ i∗ ∈ I :

(
Fj(α

G
i : i ∈ I)

∣∣∣
αG

i∗←αA
i∗

� αA
j

)
, (14)

where αG
i∗ ← αA

i∗ denotes that in the preceding term αG
i∗ is replaced by αA

i∗ .
Then (12) holds.

Proof. Let us assume that for all input ports i ∈ I we have αi � αG
i , see (12).

Using the monotonicity of F , we can now see that (∀i ∈ I : αi � αG
i ) ⇒ F (αi :

i ∈ I) � F (αG
i : i ∈ I) ⇒ (∀j ∈ J : αj � αG

j ).

We still need to show that (∀i ∈ I : αG
i � αA

i ) ⇒ (∀j ∈ J : αG
j � αA

j )
using the construction in (13). At first note that this expression is equivalent to
∀j ∈ J ∃i∗ ∈ I :

(
(αG

i∗ � αA
i∗) ⇒ (αG

j � αA
j )

)
. We also know that for any i∗ ∈ I

we have (αG
i∗ � αA

i∗) ⇒ ((αG
i : i ∈ I) � (αG

i : i ∈ I) |αG
i∗←αA

i∗
).

Because of the monotonicity of F we can derive that for any i∗ ∈ I we have
(αG

i∗ � αA
i∗) ⇒ (F (αG

i : i ∈ I) � F (αG
i : i ∈ I) |αG

i∗←αA
i∗
), and using (13) we

find ∀j ∈ J ∃i∗ ∈ I such that ((αG
i∗ � αA

i∗) ⇒ (Fj(α
G
i : i ∈ I) � Fj(α

G
i : i ∈

I) |αG
i∗←αA

i∗
) ⇒ (αG

j � αA
j )). ��

Next, we show how to compute the largest upper curve and smallest lower
curve for which the respective relations still hold. This leads to the weakest pos-
sible input assumptions. We do this for the three types of components introduced
so far.
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Fig. 1. Interface models for: a) two PE components processing two streams with FP
scheduling b) PB component c) EDF component processing N streams.

3.1 Processing Element

Now, using the relation between interface values, assumptions and guarantees in
(12), and following the results from Theorem 1, we can deduce that the equa-
tions describing the output guarantees are equivalent to those for the abstract
component, i.e., (1), just using interface guarantees instead of values. Therefore,
we have:

α′uG = αuG � βlG, α′lG = αlG ⊗ βlG .

In order to calculate the input assumptions of the PE abstract component,
we need to determine inverse relations corresponding to (1) and (3). Following
results from Network Calculus [5], we can do this by determining the pseudo-
inverse functions which have the following definition f−1(x) = inf{t : f(t) ≥ x}.

In order to guarantee that all relations hold if the input and output predicates
are satisfied, we then need to use the minimum (in case of the upper curves) or
the maximum (in case of the lower curves) of all the determined pseudo-inverses.

From the pseudo-inverses of (1), we get the inequalities αlA ≥ α′lA � βlG

and βlA ≥ α′lA � αlG. Here we use the duality relation between the � and ⊗
operators (see the Appendix). Similarly, we get the inequalities βlA ≥ αuG�α′uA

and αuA ≤ βlG ⊗α′uA. Inverting the buffer overflow constraint (3) is trivial and
we get the inequalities αuA ≤ βlG + b and βlA ≥ αuG − bmax.

If a PE component shares the service it receives with other lower priority
PE components, the remaining service is bounded by (2). In terms of output
guaranteed values, this can be expressed as β′lG(Δ) = RT (βlG, αuG) where the
RT operator is defined in (2). In order to obtain the input assumptions of a
component using FP scheduling, we need to use the inverses of the RT operator
(see the Appendix).



After combining all inverses, the assumptions related to component PE can
be determined as follows:

αuA = min{βlG ⊗ α′uA, βlG + bmax, RT−α(β′lA, βlG)}, αlA = α′lA � βlG,

βlA = max{α′lA � αlG, αuG � α′uA, αuG − bmax, RT−β(β′lA, αuG)} . (15)

The interface connections for two PE components are illustrated in Fig.1a.

3.2 Playout Buffer

For a PB component, the relations are simpler. We only need to determine the
inverse relations for the buffer constraints (5), which directly yield the following
relations:

αuA = ρlG +Bmax −B0, αlA = ρuG −B0,

ρuA = αlG +B0, ρlA = αuG − (Bmax −B0) . (16)

The interface connections for a single PB component are illustrated in Fig.1b.

3.3 Earliest Deadline First Component

Similarly to the PE component, equations describing the output guarantees are
again equivalent to those for the abstract component, i.e., (8). They only need
to be expressed in terms of interface variables instead of values for all streams i:

α′uG
i (Δ) = r(αuG

i ,−(Di − BCETi), Δ), α′lG
i (Δ) = r(αlG

i , (Di − BCETi), Δ) ,

using the definition of the shift function r in (4).
Similarly, for the resource and buffer constraints, (7) and (9), we obtain:

N∑
i=1

r(αuG
i , Di, Δ) ≤ βlG(Δ), ∀Δ ∈ IR≥0,

αuG
i (Di) ≤ bi max, ∀i .

Determining the input assumptions of the EDF component also involves find-
ing the pseudo-inverse functions of the relations. Finding the input assumes for
the upper arrival curves involves inverting (7) and (9). Again, we need to com-
pute the largest upper curves for which the relations still hold. Finding the
inverses and combing them, we find for all streams i:

αuA
i (Δ) = min

{
βlG(Δ+Di)−

N∑
j=1
j 	=i

r(αuG
j , (Dj −Di), Δ),

s(α′uA
i , (Di − BCETi), Δ), t(Di, bi max, Δ)

}
,



using functions s(α, c,Δ) and t(d, b,Δ) defined as:

s(α, c,Δ) =

⎧⎨
⎩

α(Δ− c) if Δ > c
limε→0{α(ε)} if 0 < Δ ≤ c
0 if Δ = 0

t(d, b,Δ) =

⎧⎨
⎩

∞ if Δ > d
b if 0 < Δ ≤ d
0 if Δ = 0

Calculating the input assumption for the lower curve is much simpler as it
involves finding the smallest lower curve solution to the pseudo-inverse of (8)
or αlA

i (Δ) ≥ α′lA
i (Δ + (Di − BCETi)) for all i. Therefore, we can determine

the following assume interface function for the lower curve of each input data
stream:

αlA
i (Δ) = r(α′lA

i ,−(Di − BCETi), Δ), ∀i ,

using the shift function r as defined in (4).

Similarly, for the assume of the lower service curve we invert (7) which yields

the inequality βlA(Δ) ≥
∑N

i=1 r(α
uG
i , Di, Δ). Therefore, the input assume for

the lower service curve of an EDF component can be determined as:

βlA(Δ) =
N∑
i=1

r(αuG
i , Di, Δ) . (17)

The interface model for the EDF component is illustrated in Fig.1c.

3.4 Worst-Case Traversal Time Interface

We develop an additional type of interface to alleviate design of systems with
WCTT constraints. It is an interface-based interpretation of the analytical com-
putation of WCTT with (11).

The ’complies to’ relation � for this interface connection is defined asΠG(Δ) �
ΠA(Δ) = (∀Δ : ΠG(Δ) ≥ ΠA(Δ)), where ΠA expresses the minimum service
requested from all subsequent components such that the WCTT constraint is
satisfied, and ΠG expresses the minimum service guaranteed by all subsequent
components.

Computing the guarantee for a sequence of components follows directly from
(11) and can be done withΠG = βG

PE⊗ρGPB⊗βG
EDF . Connecting a PE component

to the sequence would change the combined service toΠ ′G = βlG⊗ΠG where βlG

is the lower service guaranteed by the PE. Similarly, connecting a PB component
we would have Π ′G = ρlGτ ⊗ΠG, where ρlτ (Δ) is the lower guaranteed shifted
readout curve as defined with (6). For an EDF component, we have Π ′G =
βlG
Di

⊗ΠG where βlG
Di

is the service curve for the stream with relative deadline Di

as defined in (10).

Inverting (11), we can compute the assume on the combined service of a
sequence of components as ΠA = r(αuG, D,Δ) which expresses the minimum
necessary service in order to meet a WCTT constraint of D for the input αuG.
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Fig. 2. Interface model of an example stream processing system.

Propagating the assume value through a sequence of components can be done
for the three types of components by inverting (11) as follows:

PE: ΠA = Π ′A�βlG, PB: ΠA = Π ′A�ρlGτ , EDF: ΠA = Π ′A�βlG
Di

.

We can also compute component-wise constraints on the resources provided
by each component given the resource assumption from preceding components
Π ′A, and the resource guarantee from subsequent components ΠG:

PE: βlA ≥ Π ′A�ΠG, PB: ρlAτ ≥ Π ′A�ΠG, EDF: βlA
Di

≥ Π ′A�ΠG .

The above constraints can be combined with the previously computed input
assumes for the resources of the three components with (15), (16), and (17).
By doing this, satisfying all interface relations of components composed in a
sequence will guarantee that the WCTT constraint on the sequence of compo-
nents is satisfied. The WCTT interfaces for the PE, PB, and EDF components
are shown in Fig.1.

4 Illustrative Example

In this section we show how our proposed theory can be applied to an example
system shown in Fig.2. Towards this, each PE, PB, and EDF component is
considered to be an independent component, and our objective is to connect
them together to realize the architecture shown in the figure. In order to decide
whether two components can be connected together, we would only inspect their
interfaces. Two compatible interfaces implicitly guarantee that the buffers inside
their respective components will never overflow or underflow, and in addition,
the WCTT constraints are satisfied.

The main message in this section is an illustration of how the internal de-
tails of a component (e.g., its buffer size, scheduling policy, processor frequency,
deadline) are reflected (or summarized) through its interfaces. We show that if
these internal details are changed then the component’s interfaces also change
and two previously compatible components may become incompatible (or vice
versa).



Experimental Setup.We consider the system illustrated in Fig.2. It consists of
a multiprocessor platform with four CPUs. A distributed application is mapped
to the platform. It processes two data streams, a high priority one denoted as
HP , and a low priority one denoted as LP . The application consists of six tasks.
Streams are preprocessed by the tasks modeled with components PE1 and PE2
which are mapped separately to CPU1 and CPU2, respectively. Afterwards,
they are processed by components PE3 and PE4 which are mapped to CPU3.
The tasks share the resource using FP scheduling where stream HP is given
higher priority. Additionally, streams are processed by two tasks mapped to
CPU4 which they share with the EDF policy. This is modeled with the EDF
component. The fully processed streams are written to playout buffers which
are read by an I/O interface at a constant rate. The buffers are modeled with
components PB1 and PB2. For simplicity, the communication is not modeled
here. If necessary, it can be taken into account by additional components in the
model.

Data packets from the streams have bursty arrivals described with period p,
jitter j, and minimum inter-arrival distance d. For theHP stream the parameters
are p = 25ms, j = 40ms, d = 0.1ms, and for LP stream they are p = 25ms,
j = 30ms, d = 0.1ms. Each data packet from the two streams has a constant
processing demand of 1 cycle. CPU1 is fully available with service availability of
0.3 cycles/ms. For CPU2, CPU3, and CPU4, the respective service availabilities
are 0.3, 0.4, and 0.4 cycles/ms. Components PE3 and PE4 have internal buffer
sizes of 2 and 3 packets, respectively. The buffers should never overflow. The
EDF component schedules tasks processing streams HP and LP with relative
deadlines of 8ms and 10ms, respectively, with both buffers being limited to 3
packets. These buffers should also never overflow. Components PB1 and PB2 are
read at a constant rate of 25 packets/ms. Both components have maximum buffer
sizes of 8 data packets, and initially they contain 4 data packets. Both buffers
should not underflow and overflow. Additionally, we have a WCTT constraint
on the LP stream of 200ms.

Results. We consider three different scenarios of the system’s parameters. In
each of them, we check the compatibility of component PE1 with the partially
designed system when all other components are already connected. Compatibility
is checked by only inspecting the interface connection between PE1 and the
system which is marked with ’?’ in Fig.2. Compatibility meaning that the output
guarantee is fully “enclosed” by the input assumption.

Case I: The system is considered with the specified parameters. The components
turn out to be compatible. The interface connection is illustrated in Fig.3a. It
shows that the guarantee on the output stream rate αG

PE1 expressed by PE1s
interface is compatible with the assumption on the input rate αA

PE3 expressed
by PE3s interface.

Case II: The WCTT constraint on the LP stream is decreased to 192ms. This
leads to incompatibility between components PE1 and PE3 which reveals in
the interface connection as shown in Fig.3b.
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Fig. 3. Interface connection between the output guarantee of component PE1 and the
input assumption of component PE3 shows: a) compatibility b) incompatibility when
WCTT for stream LP is reduced to 192ms c) incompatibility when buffer of component
PB2 is decreased to 5 packets.

Case III: The maximum buffer size of component PB2 is decreased to 5 packets
which leads to incompatibility as shown in Fig.3c.

In summary, we have shown through a concrete example how incremental
compatibility checking can be done using the proposed interfaces. Clearly, such
interfaces can also be used in a straightforward manner for resource dimension-
ing and component-level design space exploration. Typical questions that one
would ask are: What is the minimum buffer size of a component such that its
interface is compatible with a partially existing design? What is the minimum
processing frequency such that the interface is still compatible? Or what are the
feasible relative deadlines in an EDF component? In this paper, we are concerned
with buffer and WCTT constraints however, one can imagine developing similar
interfaces for power, energy, and temperature constraints.

5 Concluding Remarks
In this paper we proposed an interface algebra for checking whether multiple
components of an embedded system may be composed together while satisfying
their worst-case traversal time (WCTT) constraints. The main advantage of such
an interface-based formulation is that component composition only requires a
compatibility checking of the interfaces of the components involved, without
having to compute the WCTT of the entire component network from scratch,
each time a new component is added or an existing component is modified. This
has a number of advantages. It significantly reduces design complexity, it does
not require components to expose the details of their internals, and it allows a
correct-by-construction design flow.

The interfaces studied here were purely functional in nature, i.e., they do not
contain any state information. This might be restrictive in a number of settings,
e.g., when the components implement complex protocols. As an example, the
processing rate of a component might depend on the “state” or the fill level of an
internal buffer. As a part of future work, we plan to extend our interface algebra
to accommodate such “stateful” components. This may be done by describing
an automaton to represent an interface, with language inclusion or equivalence
to denote the notion of compatibility between components.



Appendix: Min-Max Algebra
The min-plus algebra convolution and deconvolution operators are defined as:

(f ⊗ g)(Δ) = inf
0≤λ≤Δ

{f(Δ− λ) + g(λ)}, (f � g)(Δ) = sup
λ≥0

{f(Δ+ λ)− g(λ)}.

The duality between ⊗ and � states that: f � g ≤ h ⇐⇒ f ≤ g ⊗ h .
The inverses of the RT (β, α) are defined as:

α = RT−α(β′, β) ⇒ β′ ≤ RT (β, α), β = RT−β(β′, α) ⇒ β′ ≤ RT (β, α),

with solutions:

RT−α(β′, β)(Δ) = β(Δ+ λ)− β′(Δ+ λ) for λ = sup {τ : β′(Δ+ τ) = β′(Δ)} ,
RT−β(β′, α)(Δ) = β′(Δ− λ) + α(Δ− λ) for λ = sup {τ : β′(Δ− τ) = β′(Δ)} .
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