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Abstract—The sensing range of a sensor is spatially limited.
Thus, achieving a good coverage of a large area of interest
requires installation of a huge number of sensors which is cost
and labor intensive. For example, monitoring air pollution in
a city needs a high density of measurement stations installed
throughout streets and courtyards. An alternative is to install
a smaller number of mobile stations which traverse the city.
The public transport network builds a perfect backbone for this
purpose as public transport vehicles follow fixed and regular
mobility patterns. In this paper, we consider the problem of
selecting a subnetwork of a city’s public transport network to
achieve a good coverage in the area. Since we are working
with low-cost sensors which exhibit failures and drift over time,
vehicles selected for sensor installation have to be in each
other’s vicinity from time to time to allow comparing sensor
readings. We refer to such meeting points as checkpoints. Due to
high computational complexity of the route selection problem,
both with and without checkpointing support, we adapt an
evolutionary algorithm solution and evaluate its output based
on the tram network of Zurich.

I. INTRODUCTION

Today’s big cities suffer from high concentrations of traffic
and industrial facilities that heavily impact ecological sus-
tainability and quality of living in the area. Monitoring air
pollution, limiting the amount of transit traffic, and emission
reduction has been addressed at many levels, but mostly
through legislative decisions and standards. Due to high cost,
weight, and size of traditional air pollution measurement
instruments, there are still no precise maps of air pollutant
distribution in cities.

In the last several years low-cost gas sensors have become
available on the market. We work on combining this technol-
ogy with wireless sensor networks for air pollution monitoring
applications. In particular, we install sensing stations on top
of several public transport vehicles to be able to achieve
better coverage than in case of static deployment of the same
stations. Public transport networks, referred to as timetable
networks [11] in the research community, form an attractive
backbone for performing periodic measurements due to (1) a
large number of spatially spread predefined routes, (2) a fixed
timetable, and (3) a usually good reliability.

The first problem we face is how to choose a subnetwork of
the public transport network to cover the city well given a route
plan and a timetable. Additionally, since our measurement
stations are mainly equipped with low-cost gas sensors, we
demand that the final subset of selected vehicles allows com-

paring measured sensor values across different sensors, i.e., we
require that different sensors periodically take measurements
at the same time and location. In this paper, the problem is
referred to as sensor checkpointing.

Sensor checkpointing is an important property of a dis-
tributed sensing system and contributes to the system’s fault
tolerance. In particular, it allows recognizing sensor failures
and provides necessary support for sensor calibration. Infor-
mally, a pair of measurements performed by two separate
sensors makes a checkpoint if these measurements are taken
in each other’s temporal and spatial vicinity. This naturally
implies the simultaneous presence of the corresponding mobile
vehicles at the same place. Thus, throughout this work we
talk about two vehicles making a checkpoint, since this is
a necessary condition to obtain two measurements taken at
the same point in time and space. Timetable networks are
generally periodic and thus checkpoints also occur periodically
when considering them on an infinite timeline.

Related approaches that solve coverage problem do not
consider an additional checkpointing support as required by
our scenario. The problem of efficient checkpoint design
arises when solving route planning problems atop a timetable
network. However, the focus here is to provide good coverage
of the region rather than to find optimal paths in the timetable
network.

When choosing a timetable subnetwork to provide both
maximum coverage of the region and to fulfill sensor check-
pointing requirements, the solution space is huge even for
moderate-sized cities for the following reasons: (1) in an
average-sized city, several hundreds to a few thousands of
mobile vehicles compose a public transport network; and (2)
transportation lines have different route lengths. Therefore,
the problem must be considered for the time period equal to
the least common multiple of the round trips of all mobile
vehicles.

We investigate the problem of pre-deployment route selec-
tion based on air pollution monitoring scenario in the city of
Zurich, Switzerland as part of the OpenSense project [1]. The
long-term goal of OpenSense is (1) to raise community interest
in air pollution and (2) to encourage public involvement in the
measurement campaign using enhanced cell phones or pocket
sensors [4]. To establish an initial coverage of the city, we
deploy sensors on top of several public transport vehicles, such
as buses and trams. By doing so, we hope to foster community



interest and its active involvement in data gathering.
In this paper, we concentrate on the following two types

of sensor checkpointing: X-checkpointing and R-checkpointing
that we introduce in Sec. II. X-checkpointing requires that any
two vehicles are able to compare their measurements (possibly
in a multi-hop fashion). Given a set of reference stations,
R-checkpointing ensures that each vehicle can compare its
sensor readings to one of the reference stations. We investigate
the conditions necessary for both types of checkpointing and
propose in Sec. III an algorithm for solving the following
pre-deployment optimization problem: Select a subnetwork
of a timetable network which consists of K mobile vehicles
to maximize coverage of the area of interest and enable
sensor checkpointing. We consider the above problem under
the assumption that a mobile vehicle is uniquely defined by its
track and its timetable. The proposed algorithm is evaluated
based on the tram network of the city of Zurich in Sec. IV.
Related work in the area is summarized in Sec. V and Sec. VI
concludes this paper and discusses future research directions.

II. MODEL & PROBLEM STATEMENT

This section introduces the required terminology and the
model which are used throughout this work to formally state
and solve the problem of pre-deployment route selection with
sensor checkpointing support, i.e., before the sensors are
mounted on top of the vehicles.

A. Timetable Network

Let Ω ⊂ R3 represent an area and a time period of interest.
A timetable network N = (H,S,C) consists of a set of
mobile vehicles H , a set of stations S, and a set of elementary
connections C. An elementary connection is modeled as a 5-
tuple c = (h, s1, s2, t1, t2) which is interpreted as a vehicle
h ∈ H departing from station s1 ∈ S at time t1 and arriving
at the next immediate station s2 ∈ S at time t2. Throughout
this work we assume that in most cases mobile vehicles
follow their designated tracks. Another assumption is that each
vehicle usually follows its timetable with no delays or arrivals
ahead of time. The same schedule repeats on a daily basis. All
exceptions to these general rules are infrequent and, therefore,
negligible. A timetable subnetwork L ⊂ N is a timetable
network induced by a subset of vehicles HL ⊂ H of N .
The size of a timetable network is defined as the number of
vehicles |HL| the network comprises.

B. Area Coverage

Consider a mobile vehicle h ∈ H with a sensing station
installed on top of it. Measurements can be taken by h while it
is moving and at the stops with no restrictions. A measurement
z ∈ Ω consists of a location and a timestamp. We consider
that a measurement is a point measurement, that is, it has no
duration. If a measurement z is taken by a vehicle h ∈ H ,
we use the notation z ∈ h to express that z belongs to the
space-time movement curve of h. A measurement z ∈ h is
valid in a certain area and for a certain time within Ω. Let
w : Ω×Ω→ [0, 1] denote the validity of a measurement at a

point in its vicinity. For a point x ∈ Ω, w(z, x) represents
the level of coverage at x provided by a measurement z.
Naturally, w monotonically decreases with increasing distance
from z. We define the validity of a measurement as a strictly
monotonically decreasing symmetric function independent of
the actual measurement position or measurement time:

1) w(z, z) = 1;
2) w(z, z + x) = w(z, z − x) (point-symmetric);
3) w(z, x) > w(z, y)⇔ ‖z − x‖ < ‖z − y‖ (decreasing);
4) w(z, x) = w(z − y, x− y) (shift independent).

where x, y ∈ Ω.
Let a density requirement function ρ : Ω→ (0, 1] represent

the measurement density demand in the area Ω. We use ρ to
express the fact that some areas might require greater coverage
than others. For a timetable subnetwork L ⊆ N , the coverage
of Ω achieved by L is given by

C(L) =

∫
Ω

ρ(x) max
z∈h,∀h∈HL

w(z, x) dx (1)

In this paper we are interested in finding a timetable
subnetwork L that maximize the area coverage.

C. Sensor Checkpointing

Let h1 and h2 be two mobile vehicles equipped with air
quality measurement stations. Let two measurements z1 ∈ h1

and z2 ∈ h2 be performed by h1 and h2, respectively. Consider
a point p = z1+z2

2 ∈ Ω, which represents the middle point
between z1 and z2. Due to point-symmetry of the validity
function w, the joint validity of measurements z1 and z2

is achieved at p and equals to w(z1, p) = w(z2, p). Let α
express the minimum level of joint validity required in order
to compare two measurements. A point p is called a checkpoint
if w(z1, p) > α. Since timetables are regularly executed,
there can be many sequential periodic checkpoints between
two mobile vehicles operating on nearby lines. A sequence of
checkpoints Pij = {p} is a time-ordered set of points p ∈ Ω
in which pollution measurements performed by hi and hj can
be compared.

Checkpoints are essential in distributed sensing systems,
since they allow implementing mechanisms to detect failures
of low-cost sensing hardware, identify sensor errors, and
provide necessary support for automatic sensor calibration.
Leveraging the properties of timetable networks that two
vehicles come closer to each other at the stations than during
the drive and there are no parallel lines with negligible distance
in-between, we reasonably assume that all checkpoints occur
at the stations. Compared to the notion of a transfer [11],
introduced in timetable networks, checkpoints are direction-
independent and have no transfer time.

D. Problem Statement

Having a sequence of checkpoints for each pair of mo-
bile vehicles, it is possible to construct a checkpoint graph
G = (HL, EL) where the set of nodes corresponds to the set
of mobile vehicles HL equipped with sensing stations. There is



an edge e ∈ EL between any two vehicles hi, hj ∈ HL if the
sequence of checkpoints between them is not empty Pij 6= ∅.

Connectivity of a checkpoint graph G can also take into
account information on quality and frequency of individual
checkpoints. If all sensing stations are of the same kind, i.e.,
all sensors have the same precision, the quality of a checkpoint
depends on: the spatial and temporal distance between the
measurements which form a checkpoint and the frequency at
which the checkpoint occurs. Consider fp is the frequency of
a checkpoint p ∈ Pij . An edge e ∈ E in the checkpoint graph
exists if ∑

p∈Pij ,i6=j fp maxz∈hi
w(z, p)∑

p∈Pij ,i6=j fp
> β (2)

and represents the joint quality of all checkpoints between a
pair of mobile vehicles hi and hj . The constant β denotes the
minimum level of joint synchronization in terms of the product
of frequency and validity of the checkpoints.

To enable sensor checkpointing we need to ensure that
the checkpoint graph G is connected or k-vertex-connected,
meaning that any two sensors can be compared over at
least k vertex-independent paths. We refer to this type of
checkpointing as X-checkpointing (cross checkpointing). In
this paper we consider only 1-vertex-connectivity, although
requesting k-vertex-connectivity would improve the system’s
resistance to traffic artifacts such as delays.
X-Checkpointing: Given a timetable network N . Choose
a timetable subnetwork L of size K to ensure maximum
coverage of the area of interest Ω under the condition that
the checkpoint graph G is k-vertex-connected.

The possibility to synchronize the sensors enabled by check-
pointing allows detecting faulty sensors in a similar fashion as
majority voting. The quality of checkpointing can be further
improved if the sensors can regularly synchronize with a set of
reference stationsR. Reference stations can be static or mobile
and are usually capable of performing high-quality sensing.
We assume that all reference stations reflect the ground truth
and can be used to calibrate low-cost sensors from time to
time over one or several hops. This problem is referred to as
R-checkpointing (reference checkpointing).
R-Checkpointing: Given a timetable network N and a set
of reference nodes R. Choose a subnetwork L of size K to
ensure maximum coverage of the area of interest Ω under the
condition that each node in the checkpoint graph G is k-vertex-
connected to the set of reference stations R.

Many big cities have a very sparse network of highly precise
fixed stations, which can be used as references. For example,
in Zurich, Switzerland there is one station of the national air
quality monitoring network NABEL1 and four smaller stations
part of the cantonal measurement network OstLuft2. The avail-
ability of this infrastructure allows to considerably improve the
system’s reliability by selecting a timetable subnetwork which
has R-checkpointing property. In contrast, many smaller cities

1www.bafu.admin.ch/luft/luftbelastung
2www.ostluft.ch
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Fig. 1. Structure of the proposed evolutionary algorithm.

City Network Routes Vehicles Stops Source
Zurich tram 13 260 187 zvv.ch’11
Canton Zurich bus 283 732 2’543 zvv.ch’11
Berlin bus 149 1’300 2’634 bvg.de’11
Chicago bus 152 2’000 12’000 wikipedia
NY City bus 324 5’908 15’226 mta.info’09
Long Island bus 48 389 n/a mta.info’10

TABLE I
NUMBER OF ROUTES, VEHICLES, AND STOPS OF PUBLIC TRANSPORT

NETWORKS IN DIFFERENT CITIES.

have no reference station installed. In this case, pairwise cross-
tests among low-cost sensors are essential for being able to
identify sensor faults and recalibration needs.

In the next section we describe our solution approach to
the defined pre-deployment timetable subnetwork selection
problem with sensor checkpointing.

III. ROUTE SELECTION WITH EVOLUTIONARY
ALGORITHM

The formulated problem of pre-deployment route selection
involves high computational complexity even for moderate-
sized cities. The brute force approach would require to go
through

(|H|
K

)
combinations of transport vehicles to compute

the optimum timetable subnetwork of size K. In Table I we
present the relevant network characteristics of several cities
world wide. In case of Zurich, the smallest among the listed
cities, the solution space for K = 10 is approximately 2508.
Note, neither X- nor R-checkpointing constraints reduce the
size of the worst case solution space of the problem. In the
worst case all mobile vehicles follow the same track with
different speeds and thus any selected subnetwork fulfills
checkpointing constraints. However, finding the subnetwork
which gives the best coverage requires consideration of all
combinations.

For the reason above, we use an evolutionary algorithm to
solve the problem. The working principle is schematically
depicted in Fig. 1. In the remaining part of this section
we describe the representation of a chromosome, the fitness
function we use, the selection scheme, and the variation
operators (crossover and mutation).

A chromosome is a timetable subnetwork of length K. We
begin with an initial population composed of a random set
of chromosomes. In case of X- and R-checkpointing we only
consider chromosomes that fulfill the corresponding connec-
tivity constraints, i.e., we keep generating random subnetworks
until we have the desired number of feasible chromosomes.

The fitness of a timetable subnetwork represents the cov-
erage of the city Ω provided by the subnetwork. Precise



calculation of the coverage as defined by Eq. (1) involves
discretization of the region with Monte Carlo sampling and
computation of the level of coverage at each of the sampled
points. Since the algorithm requires computing coverage for
each chromosome in each iteration, we use a simpler coverage
metric. We discretize time at each vehicle stop. At each
discrete time point we compute a Voronoi diagram [3] in space
only by using vehicle positions as a set of sites. The maximum
distance between a generator and the points in its associated
Voronoi cell describes the coverage at the corresponding
discrete point in time. The time complexity of this computation
is O(K logK). The approach is similar to the idea of the
point distribution norm h as defined in [7]. Note that the point
distribution norm is insensitive to the density requirement ρ
and, therefore, can only be used for ρ ≡ 1. Finally, we sum up
the obtained distances over all initially defined discrete time
points. Good coverage corresponds to low values of the fitness
function computed this way. The simplified coverage metric
assumes only short term validity of measurements in time,
which is reasonable for the measurement of air pollutants. If
this assumption is not acceptable, the coverage norm in terms
of Eq. (1) should be used, which however involves higher
computational overhead.

A chromosome satisfies the X-checkpointing constraint if
the checkpoint graph G is connected. We use depth first
search to traverse the checkpoint graph until all nodes in G
are reached or until no new node can be found. To test a
chromosome for R-checkpointing, we extend the checkpoint
graph G with the set of reference stations R which are
connected among themselves and check the resulting graph for
connectivity. Recall that R-checkpointing requires that each
mobile vehicle is connected to a reference station, possibly
over multiple hops.

To variate the given set of chromosomes, we first ran-
domly assign the chromosomes to pairs. Then, a crossover
operator is applied to each pair with probability 0.7. We
use uniform crossover with a mixing rate of 0.5. Swapping
vehicles between two chromosomes is only valid if the vehicle
to be swapped is not yet present in the target chromosome.
Additionally, in case of X- and R-checkpointing we only con-
sider chromosomes that fulfill the corresponding connectivity
constraint.

Each chromosome is mutated by selecting one vehicle at
random, and replacing it by a randomly selected vehicle
which is not yet used in the current chromosome. We keep
generating offspring in this way for a maximum of five
iterations, until a chromosome that satisfies the constraints is
found. No offspring is generated if no feasible chromosome
can be constructed.

After calculating the fitness of the newly created offspring,
the algorithm uses the restricted tournament [8] selection
operator to decide which chromosomes of the parents and
offsprings are going to survive into the next iteration. In re-
stricted tournament, a variated chromosome can only substitute
its more similar parent, and only if its fitness value is better
than the parent’s fitness. The approach is elitist since the best
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(c) Coverage with R-CP

Fig. 2. Coverage optimization without checkpointing and with X- and R-
checkpointing (X-CP and R-CP) in a one dimensional city with K=4 trams
out of total 40 trams. The dashed lines denote reference stations.

solution is always kept. Also, the selection operator always
preserves checkpointing constraints.

In the next section we evaluate the proposed algorithm and
compare its output to random search. For low values of K
the optimal solution is computable and is used as a solution
quality benchmark.

IV. EVALUATION

Followed by the description of the evaluation setup, we first
test our algorithm on “one-dimensional” cities to visualize and
intuitively understand the solution. Later we run the algorithm
on route and timetable data of a real city. Throughout the
evaluation we meet the following three assumptions: (1) To
simplify understanding of the algorithm, we calculate fitness
values for the uniform constant density requirement ρ ≡ 1
using the previously introduced optimization. (2) Furthermore,
two trams make a checkpoint if they come closer than 0 m
and 200 m for the one-dimensional and two-dimensional cities,
respectively. This corresponds to non-zero measurement valid-
ity w in all points in space within radius α. The checkpoint
frequency in our calculations is fp ≡ 1. (3) Finally, since the
optimal solution is only computable for very small timetable
networks, we use random search and simulated annealing for
comparison if the optimal solution cannot be computed.

A. One-dimensional Cities
The projection of a city onto a one-dimensional space is

a one dimensional city. A timetable network is thus reduced
to a set of intervals and a vehicle movement forms a zigzag
line in the time-space (see Fig. 2) called a trace. The beauty
of one dimensional cities is the ease of visualizing them and
understanding the vehicle selection results. The intervals rep-
resenting vehicle tracks are depicted on top of Figs. 2(a)-(c).
A vehicle can start moving from any position within its track
in one of the two directions. For simplicity, we assume that all
vehicles move with a constant speed which might differ among
various mobile vehicles. Fig. 2(a) plots the algorithm output
for the case when the fitness function optimizes coverage with
no additional checkpointing constraints. Under these settings
the traces of individual vehicles almost never cross, since
crossing does not generally contribute to the coverage. Note
that crossing of the spatial tracks does not imply that the trams
following these tracks necessarily meet. In Fig. 2(b), we intro-
duce an additional X-checkpointing constraint, which results in
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Fig. 3. Comparison of our evolutionary algorithm (EA) to the optimal so-
lution, simulated annealing (SA), and random search (Random). We simulate
a one dimensional city and select K=4 trams out of total 40 trams.

a connected subnetwork. The corresponding checkpoint graph
G has a line topology by sequentially connecting the trams
1, 2, 3 and 4. Fig. 2(c) shows a solution to the coverage
problem with R-checkpointing. Dashed vertical lines represent
the locations of two static reference stations. In the computed
solution the trams 2 and 3 do not make a checkpoint, but
connect to the reference point over the trams 1 and 4, respec-
tively. It can be seen in Fig. 3(a) that the achieved coverage
is higher than with X-checkpointing. This is because the best
possible solution does not necessarily fulfill the constraints
introduced by X-checkpointing. Additional reference stations
with R-checkpointing relax the constraints and allow for better
solutions. The mutation hit rate exceeds 50% for the problem
statements with and without checkpointing constraints. For the
three discussed settings, we also compare in Fig. 3(b) the
quality of the algorithm output to simulated annealing [12]
and in Fig. 3(c) to random search. Our implementation of
simulated annealing starts with a random feasible solution and
uses the same mutation operator as the evolutionary algorithm
to generate the new candidate solution. The algorithm proba-
bilistically accepts the new solution depending on the current
temperature which falls towards zero with each iteration. The
optimum solution, which is computable for the given four tram
lines, shows that the proposed evolutionary algorithm always
finds a close to optimum solution. Note that the optimum can
be computed only for very small networks.

B. City of Zurich

Zurich is one of the target cities in the OpenSense project
about to deploy a network of mobile sensors on top of several
trams. We run the algorithm on up-to-date data of the Zurich
tram network. We obtained the track plan from OpenStreetMap
and the timetable from the ZVV information service3. The
Zurich tram network is depicted in Fig. 4. It serves 13 tram
lines (see Table I) with the involvement of maximum 260
individual trams. The algorithm was tested for the subnetwork
operating on a business day at 7 o’clock in the morning. We
selected a time slice of two hours in order to include the round
trip time of all operating trams. For simplicity we consider that
there is no difference between business days and weekends or
time of the day. The speed of a tram between two stations

3www.openstreetmap.org, www.zvv.ch

Fig. 4. Tram network of Zurich (source: wikipedia.org) with the positions of
OstLuft and NABEL stations. Two left most stations used in the experiments.
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Fig. 5. Comparison of our evolutionary algorithm (EA) to the optimal
solution, simulated annealing (SA), and random search (random). We use
the tram network of Zurich and select K=2 trams out of total 260 trams.

is linearly interpolated, although it might differ between two
station pairs depending on the timetable. The population size
is set to 60 chromosomes. For the area of interest Ω we picked
the Zurich city center, represented with a red square in Fig. 4.

We evaluate the quality of the algorithm output for three
cases: coverage-only fitness function, coverage with X- and
R-checkpointing constraints. The set of references R includes
locations of two stations of the cantonal network OstLuft. The
locations of the reference stations are visualized with large
red dots in Fig. 4. In Fig. 5 we show results for the case
when the selected subnetwork must contain K = 2 trams
for EA, SA, and random search. The optimum solution for
the coverage-only fitness corresponds to the setting with two
trams (line Nr. 9 and Nr. 3) which start on the opposite
corners of the city and never meet each other. X-checkpointing
with zero temporal measurement validity gives two trams
following the same line Nr. 9 from the opposite directions.
The optimum solution for an additional R-checkpointing is
composed of the lines Nr. 9 and Nr. 3, same as for the
coverage only solution. Despite that the two trams never meet
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Fig. 6. Comparison of our evolutionary algorithm (EA) to simulated
annealing (SA) and random search (random). We use the tram network of
Zurich and select K=10 trams out of total 260 trams.



R-checkpointing is satisfied due to the available reference
stations. The proposed EA finds a solution close to optimum
and considerably outperforms SA and random search. In Fig. 6
we compute a subnetwork of size K = 10, which corresponds
to the target number of stations we plan to place on top
of trams in Zurich as part of the OpenSense project. The
optimum solution is not computable in this case. However,
the solution found with the EA provides better coverage than
SA and random search. The mutation hit rate in EA exceeds
60%. Note that due to general connectivity of the public
transportation network of a city and short temporal validity of
a measurement, the values of coverage achieved do not change
significantly if X-checkpointing constraints are applied. The
execution of the proposed EA is limited to 20 iterations and
lasts less than 30s for the case of ten trams on a ThinkPad
T410 laptop, 2.6GHz.

V. RELATED WORK

The work related to our approach can be divided in three
groups: solutions to the area coverage problem with static
sensors, route selection and planning algorithms in the context
of area coverage, and route finding in timetable networks.

The problem of area coverage with sensors is often consid-
ered without sensor checkpointing in static settings. Related
work on the topic includes solutions to the coverage problem
as is [13], combined with event detection [5], and motion
planning of mobile agents to achieve area coverage [2], [9],
[15]. There is little work on checkpoint design in this context.

Towards checkpoint design, in [16] the authors present an
approach for saving energy in wireless sensor networks by
introducing a mobile base station and designing a set of ren-
dezvous points for data collection. Further related approaches
on the design of a movement pattern for the base station
can be found in [10], [14], [6]. The following two properties
distinguish our approach from the above solutions: (1) the
underlying timetable network provides a fixed backbone and
is a considerable limitation in terms of coverage; (2) all nodes
in the network are mobile and thus time-dependent.

Similarly to our scenario, timetable networks consist of
plenty of mobile nodes. Routing on timetable networks is
currently a hot topic in the respecting community. In particular,
the interesting problems are earliest arrival and minimum num-
ber of transfers when planing a route from A to B [11]. The
main difficulty here is the computational overhead due to lack
of hierarchical structure in timetable networks. Both problems
are concerned with an efficient design of checkpoints. This
closely reflects the problem we face when designing a con-
nected timetable subnetwork. In contrast to route planning, we
are rather interested in selecting a subnetwork with very short
transfer times, and name these interchange points checkpoints.

We are not aware of any approach solving the coverage
problem atop a timetable network with an additional check-
pointing requirement.

VI. CONCLUSION AND FUTURE WORK

In this paper we consider the problem of selecting a sub-
network of a public transport network to maximize coverage

of a city with an additional support for sensor checkpointing.
For example, when designing a network of K measurement
stations on top of a tram network in a city, it is essential to
have meeting points of different mobile vehicles to be able
to detect sensor malfunction or recalibration needs. Upon the
availability of a set of reference stations, the quality of the
selected subnetwork can be further improved by considering
the closeness to these reference stations. We solve both prob-
lems with an evolutionary algorithm since the computation of
the optimal solution is only possible for very small timetable
networks.

The results of this paper rely on the strong assumption that
each mobile vehicle is uniquely identified by its track and its
timetable. However, public transport vehicles can usually fol-
low different timetables on different days and are not bounded
to a specific route, but rather a specific depot which usually
serves a subnetwork of the public transportation network. We
plan to continue our work on the above problem statement
incorporating uncertainties concerning the timetables and the
routes taken. In this case, we have to reason about probabilistic
checkpoints, their expected frequencies, and qualities. The
results obtained in this paper will be used for comparison as
the best achievable solution.
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