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Abstract— Dynamic power management has become essential

for battery-driven embedded systems. This paper explores how

to efficiently and effectively reduce the energy consumption of a

device (system) for serving multiple event streams. Considering

two different preemptive scheduling, i.e., earliest deadline first

and fixed priority, we propose new method to adaptively control

the power mode of the device according to historical arrivals of

events. Our method can not only tackle arbitrary event arrivals

but also provide hard real-time guarantees with respect to both

timing and backlog constraints. Simulation results are presented

as well to demonstrate the effectiveness of our approach.

Keywords: Adaptive Power Management, Energy Mini-

mization, Real-Time Event Streams, Real-Time Calculus.

I. INTRODUCTION

Power management with energy efficiency considerations

has been an important design issue, especially for battery-

driven embedded devices to extend their battery life-time. Dy-

namic power consumption due to switching activities and static

power consumption due to the leakage current are two ma-

jor sources of power consumption of a CMOS circuit [9].

For micrometer-scale semiconductor technology, the dynamic

power dominates the power consumption of a processor. How-

ever, as the CMOS technology is scaling downward aggres-

sively to the deep sub-micron domain, the leakage power con-

sumption increases exponentially and is comparable to or even

more than the dynamic power dissipation.

This paper explores how to apply dynamic power manage-

ment (DPM) to reduce the energy consumption for hard real-

time embedded systems by changing the mode of a device. We

consider a device with active, standby, and sleep modes with

different power consumptions, and a controller decides when

to change the power mode of the device. Intuitively, the de-

vice can be switched to the sleep mode to reduce the power

consumption when it is idle. This switching operation, how-

ever, has two concerns. On one hand, the sleep period should

be long enough to recuperate the mode-switch overhead. On

the other hand, to cope with the burstiness of event arrivals, the

reserved time for serving the burst events must be sufficient to

prevent deadline violation of events and backlog overflow of

the system when activating the device again later on.

To cope with these two concerns, we propose online algo-

rithms in [7]. Trying to be optimistic for the controller, events

are handled only when they really arrive. Our algorithms adap-

tively predict the next moment for mode switch by considering

both historical and future event arrivals, and procrastinate the

buffered and future events as late as possible. In this paper, we

extend the basic algorithms in [7] for multiple event streams

with different characteristics. In particular, a more realistic

backlog model is adopted, i.e., distributed backlogs for each

event steam. We consider two different preemptive scheduling,

i.e., earliest deadline first (EDF) and fixed priority (FP), and

develop means to guarantee the timing and backlog constraints

for the given event streams.

The rest of this paper is organized as follows: We review

the related work in the next section. Section III and IV present

our system model and basics of our analysis, respectively. We

present our solutions in Section V. Simulations results are pre-

sented in Section VI. Section VII concludes the paper.

II. RELATED WORK

Dynamic power management (DPM) with clock gating or

voltage gating can be applied to change the device power mode,

e.g., to a sleep mode, to consume less (static/leakage) power.

For devices with the sleep mode, Baptiste [2] proposes an algo-

rithm based on dynamic programming to control when to turn

on/off a device for aperiodic real-time events with the same

execution time. For multiple low-power modes, Augustine et

al. [1] determine the mode that a processor should enter for

aperiodic real-time events and propose a competitive algorithm

for online use. Swaminathan et al. [12] explore dynamic power

management of real-time events in controlling shutting down

and waking up system devices for energy efficiency. To aggre-

gate the idle time for energy reduction, Shrivastava et al. [11]

propose a framework for code transformations. By considering

platforms with both DPM and dynamic voltage scaling (DVS),

Chen and Kuo [3] propose to execute tasks at a certain speed

(mostly at the critical speed) and to control the procrastination

of real-time events. By turning the device to the sleep mode,

the execution of the procrastinated real-time events is aggre-

gated in a busy interval to reduce energy consumption. Heo

[6] et al. explore how to integrate different power management

policies in a server farm.

Most of the above approaches require either precise infor-

mation of event arrivals, such as periodic real-time events [3],

or aperiodic real-time events with known arrival time [2, 1, 8].

However, in practice, the precise timing information of event

arrivals might not be known in advance since the arrival time

depends on many factors. When the precise timing of event ar-

rivals is unknown, to our best knowledge, the only known ap-

proaches are to apply the online algorithms proposed by Irani
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Fig. 1: The abstract system model of the studied problem.

et al. [8] and Augustine et al. [1] to control when to turn on the

device. However, since the online algorithms in [1, 8] greed-

ily stay in the sleep mode as long as possible without referring

to incoming events in the near future, the resulting schedule

might make an event miss its deadline. Such algorithms are not

applicable for hard real-time systems.

To model such irregular events, Maxiaguine et al. [10] ap-

ply Real-Time Calculus within the DVS context and compute

a safe frequency at periodical interval with predefined length

to prevent buffer overflow of a system. Recently, Chen et

al. [4] explore the schedulability for online DVS scheduling al-

gorithms when event arrivals are constrained by a given upper

arrival curve. In contrast to these closest approaches, we focus

on DPM and our adaptation points are dynamic and vary ac-

cording to the actual arrivals of events. Furthermore, we focus

on multiple event-stream scenarios where event streams with

different periods can be tackled with both earliest-deadline-first

and fixed-priority scheduling.

III. SYSTEM MODELS AND PROBLEM DEFINITION

SystemModel We consider a device controlled by a controller

which handles event arrivals and controls the power mode of

the device to serve the arrived events. The device has three

power modes, namely active, standby, and sleep modes. The

power consumption in the sleep mode is Pσ. To serve an event,

the device must be in the active mode with power consumption

Pa, in which Pa > Pσ . Once there is no event to serve, the

device can enter the sleep mode. However, switching from the

sleep mode to the active mode and back takes time, denoted by

tsw,on and tsw,sleep, and incurs energy overhead, denoted by

Esw,on and Esw,sleep, respectively. To prevent the device from

frequent mode switches, the device can also stay in the standby

mode. The power consumption Ps in the standby mode, by

definition, is no more than Pa and is more than Pσ . We assume

that switching between the standby mode and the active mode

has negligible overhead, the same assumption as in [17, 16].

Event streams with different properties arrive to the con-

troller. Suppose that there are N event streams in a given set S.

To buffer incoming events of each stream Si in set S, the con-

troller maintains a separate backlog of size Qi. Buffering more

than Qi events incurs a backlog overflow and causes a con-

troller failure. We assume that Qi is given. Deciding Qi for a

given global backlog constraint is not considered in this paper.

An abstract model of our system is shown in Fig. 1, where the

controller could be the operating system and the device could

be an I/O peripheral device, for instance. Parameters α,D, and

βG in Fig. 1 will be introduced next.

Event Model To model irregular arrival of events, we adopt

the arrival curves ᾱ(∆) = [ᾱu(∆), ᾱl(∆)] from Real-Time

Calculus [13], in which ᾱu
i (∆) and ᾱl

i(∆) are the upper and

lower bounds on the number of arrival events for a stream Si

in any time interval of length ∆, respectively. For instance,

for an event stream with period p, jitter j, and minimal in-

ter arrival distance d, the upper arrival curve is ᾱu(∆) =

min{
⌈

∆+j
p

⌉

,
⌈

∆
d

⌉

}. The concept of arrival curves unifies

many other timing models of event streams. Analogous to ar-

rival curves that provide an abstract event stream model, a tu-

ple β(∆) = [βu(∆), βl(∆)] defines an abstract resource model

which provides an upper and lower bounds on the available re-

sources in any time interval ∆. Please refer to [14] for details.

Note that an arrival curve ᾱi(∆) specifies the number of

events of stream Si whereas a service curve β(∆) specifies

the available amount of time for execution, for interval length

∆. Therefore, ᾱi(∆) has to be transformed to αi(∆) to indi-

cate the amount of computation time required for the arrived

events in intervals. Suppose that the execution time of any

event in stream Si is wi. The transformation can be done

by αu
i = wiᾱ

u
i , αl

i = wiᾱ
l
i and back by ᾱu

i = αu/wi,

ᾱl
i = αl/wi thereof. Moreover, to satisfy the real-time con-

straint, the response time of an event in event stream Si must

be no more than its specified relative deadline Di, where the

response time of an event is its finishing time minus the arrival

time of the event. On the arrival of an event of stream Si at

time t, the absolute deadline is t + Di.

Problem Definition This paper explores how to effectively

minimize the energy consumption to serve a set S of N event

streams by DPM. Intuitively, energy saving can be obtained

by a) turning the device to the sleep mode when no event to

process, and b) staying at the sleep mode as long as possible.

However, switching from/to the sleep mode incurs overhead.

As a result, there is a break-even time TBET defined as:

max
n

tsw, on + tsw, sleep,
Esw, on + Esw, sleep

Ps − Pδ

o

.

In the case of a sleeping interval is shorter than TBET , the

mode-switch overhead is more than the energy consumption

of staying in the standby mode. Turning the device to the sleep

mode, therefore, is not worthwhile. Prolonging the sleep mode,

on the other hand, might make current and future events violate

their timing constraints or incur backlog overflow.

We say that a scheduling decision is feasible if it is always

possible to meet the timing and backlog constraints for any

event traces constrained by an arrival curve. An algorithm is

feasible if it always generates feasible scheduling decisions.

Therefore, the problem studied in this paper is to decide a

feasible schedule for a) when to turn the device from the sleep

mode to the active mode to serve events, and b) when to turn

the device to the sleep mode to reduce the energy consumption.

IV. REAL-TIME CALCULUS BASICS

To compute a safe interval for putting the device to sleep, we

apply Real-Time Calculus [13] and Real-Time Interface [14].

Within this context, the device is said to provide guarantee out-

put service βG(∆). Correspondingly, a stream Si requests ser-

vice demand βA(∆). For instance, to satisfy the required re-

lated deadline Di, the service demand βA(∆) of stream Si is

βA(∆) = αu
i (∆ − Di). (1)

To obtain a feasible scheduling of stream Si on the device, the

condition βG(∆) ≥ βA(∆) has to be fulfilled.
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in which only part of the upper arrival curve αu
1 (∆) is presented

for simplicity.

Bounded Delay We construct βG(∆) by a bounded delay

function bdf(∆, τ) which is defined as no service provided for

at most τ units of time:

bdf(∆, τ) = max
˘

0, (∆ − τ)
¯

, ∀∆ ≥ 0. (2)

Moreover, the longest delay τ∗ for providing a service guaran-

tee for a given demand βA(∆) is defined as:

τ∗ = max
˘

τ : bdf(∆, τ) ≥ βA(∆), ∀∆ ≥ 0
¯

. (3)

To prevent a backlog of size Qi from overflow, this τ∗ needs

to be reduced by δ∗ which is defined as

δ∗ = max
˘

0, min{δ : αu
i (∆) − bdf(∆, τ∗ − δ) ≤ Qi · wi, ∀∆}

¯

. (4)

With the computed τ∗ and δ∗, if τ∗ − δ∗ is larger than the

break-even time TBET , we can safely turn the device to the

sleep mode while guaranteeing a feasible scheduling. Figure 2

depicts an example for the above analysis for one event stream.

Future Prediction with Historical Information As the

scheduling decision is made online and depends on the actual

arrivals of events, we keep the track of event arrivals in the past

as a history. If a burstiness has been observed recently, one

could predict that in the near future only sparse events will ar-

rival due to the constraint of the arrival curve. Suppose t is the

current time and Ri(t) is the accumulated number of events of

stream Si in interval [0, t). ∆h is the history window of the

controller, in which historical information for only ∆h time

units is retained. We define at time t the history curve as

Hi(∆, t) =

(

Ri(t) − Ri(t − ∆), if ∆ ≤ ∆h,

Ri(t) − Ri(t − ∆h), otherwise.
(5)

The maximal future event arrivals ᾱu
i (∆, t) in the near future

from time t to t + ∆ is thereby bounded by

ᾱu
i (∆, t) ≤ inf

λ≥0

˘

ᾱu
i (∆ + λ) − Hi(λ, t)

¯

. (6)

Analogously, we denote at time t the set of unfinished events

of Si in the backlog Qi as Ei(t). Suppose that those events in

Ei(t) are indexed as ei,1, ei,2, . . . , ei,|Ei(t)| from the earliest

to the latest deadline, where |Ei(t)| is the number of events in

the backlog and Di,j is the absolute deadline of event ei,j . We

can model the service demand for those events in the Ei(t) as

Bi(∆, t) = wi ·

(

(j − 1), Di, j − t < ∆ ≤ Di, j+1 − t,

|Ei(t)|, ∆ > Di, |Ei(t)|
− t,

(7)

in which Di,0 is defined as t for brevity.

V. ADAPTIVE DYNAMIC POWER MANAGEMENT

In this section, we present our online power management

scheme. Subsection V.A presents an overview of our scheme

and Subsection V.B sketches the solution for systems with one

event stream as illustration. In Subsection V.C, we present in

details our solution for multiple event streams with earliest-

deadline-first (EDF) and fixed-priority (FP) scheduling.

sleep . deactivation

activation active/standby

t⊥

yes
t⊤

yes

no

no

Fig. 3: The control flow of our approach.

A. Approach Overview

Our adaptive DPM scheme deals with deactivation schedul-

ing decisions and activation scheduling decisions to decide

mode switches safely and effectively. The control flow of our

approach is illustrated in Fig. 3. For deactivation scheduling

decisions, when the device is in the active mode and there is

no event in the backlog, we develop an algorithm to decide

whether the device has to change to the sleep mode instantly

or it should keep in the standby mode for a while for serving

incoming events in the near future. For the rest of the paper,

time instants for deactivation decisions are denoted by t⊤.

For activation scheduling decisions, when the device is in the

sleep mode and there is an event arriving or the sleep interval

set by the controller expires, we use two different algorithms

to decide whether the device has to change to the active mode

instantly to serve events, or it should remain in the sleep mode

for a while to aggregate more events to prevent from unnec-

essary mode switches. Time instances for activation decisions

are denoted as t⊥ for the rest of the paper.

B. Systems with One Event Stream

History-Aware Deactivation The History-Aware Deactivation

(HAD) algorithm analyzes whether the device should be turned

to the sleep mode from the active mode. The principle is to

deactivate the device only when energy saving is possible. In

the case of only one event stream S1, a safe sleep interval of a

feasible scheduling is obtained by τ∗−δ∗, applying ᾱu
1 (∆, t⊤)

defined in (6) to (3) and (4). If this interval is larger than TBET ,

the device is switched to the sleep mode at time t⊤.

Worst-Case-Greedy Activation The Worst-Case-Greedy

(WCG) algorithm decides the earliest time when the device

should change to the active mode for event processing. It

conservatively assumes worst-case event arrivals and decides

the earliest time to activate. If the worst case does not occur,

the device is kept in the sleep mode for a longer period and

an new activation moment is computed. The WCG algorithm

works in a time-driven manner. Each time the predicted

wakeup time t⊥ comes, the wakeup decision is reevaluated

based on the actually arrived events. We use the following

formulas to derive the new wakeup time:

βA(∆) = αu
1 (∆ − D1, t⊥) + B1(∆, t⊥), (8)

τ⊥ = max
˘

τ : bdf(∆, τ) ≥ βA(∆)
¯

, (9)

δ⊥ = max
˘

0, min{δ : αu
1 (∆, t⊥) − bdf(∆, τ⊥ − δ)

≤
`

Q1 − |E1(t⊥)|
´

· w1, ∀∆}
¯

. (10)

If τ⊥ − δ⊥ is larger than 0, the device can remain in the sleep

mode and the next wakeup prediction is set to t⊥ + τ⊥ − δ⊥.

Note that the first wakeup time is set to the arrival of the first

event after the device is turned to the sleep mode. In this case,

B1(∆, t) in (8) is 0 and E1(t) in (10) is ∅ by definition.

Event-Driven Activation The Event-Driven-Greedy (EDG)

algorithm computes the latest time that the device must be acti-



.

history-aware future arrival: αu
i

backlogged-aware and backlog-constrained demands: β♭
i , β

†
i

individual stream service demand β∗
i

total service demand βA
total

bounded delay τ from βA
total

Fig. 4: Computing flow for scenarios of multiple event streams.

vated to satisfy the timing constraint. It optimistically assumes

the least events and decides the latest turn-on time. The wakeup

decision is reevaluated upon each event arrival until the pre-

dicted wakeup time hits. If the predicted wakeup time hits, the

device has to be switched on immediately.

On the arrival of an event e1, j at time t⊥, we choose the lat-

est processing time t′ = t⊥ + D1 − w1 as the reference time

to compute the wakeup time. To precisely predict the bursti-

ness after time t′, the historical arrival and the backlog demand

at time t′ are redefined by appending the least event arrivals

within interval [t⊥, t′) constrained by αl
1(∆) to those at time

t⊥:

H′
1(∆, t′) =

8

>

<

>

:

ᾱl
1(ǫ) − ᾱl

1(ǫ − ∆), ∆ < ǫ,

H1(∆, t⊥) + ᾱl
1(ǫ), ǫ < ∆ < ∆h − T,

H1(∆h − ǫ, t⊥) + ᾱl
1(ǫ), otherwise,

(11)

B′
1(∆, t′) = w1 ·

(

(j − 1), D1,j − t′ < ∆ ≤ D1,j+1 − t′;

E, ∆ > D1,E − t′,
(12)

where ǫ = t′− t⊥ and E = |E1(t⊥)|+ ᾱl
1(ǫ). With the refined

historical information and backlog demand, we can again apply

(2) to compute a new wakeup alarm for event e1, j :

αu
1 (∆, t′) = w1 ·

“

inf
λ≥0

˘

ᾱu
1 (∆ + λ) − H1(λ, t)

¯

”

, (13)

βA(∆) = αu
1 (∆ − D1, t′) + B′

1(∆, t′), (14)

τ⊥ = max
˘

τ : bdf(∆, τ) ≥ βA(∆)
¯

, (15)

δ⊥ = max
˘

0, min{δ : αu
1 (∆, t′) − bdf(∆, τ⊥ − δ)

≤
`

Q1 − |E1(t⊥)| − ᾱl
1(ǫ)

´

· w1, ∀∆}
¯

. (16)

If t⊥ + τ⊥ − δ⊥ is earlier than the previous prediction, the

predicted wakeup time is set to t⊥ + τ⊥ − δ⊥. Otherwise, the

previous prediction remains.

With this approach, both DPM schemes, i.e., HAD-WCG

and HAD-EDG, provide feasible scheduling which guarantees

the deadline constraint of any event as well as the backlog con-

straint at any time for one event-stream system. The detailed

algorithms and the proofs are referred to [7].

C. Multiple Event Streams

To tackle multiple-stream scenarios, the key is to harness the

scheduling impact at every reevaluation of the mode-switch de-

cision. The basic approach is depicted in Fig. 4. Unlike sys-

tems with one event stream where the bounded delay is applied

directly to the service demand of a stream, we compute the in-

dividual service demand of every stream, denoted as β∗
i , then

derive the total service demand, denoted as βA
total, according to

a given scheduling policy thereof. With the computed βA
total,

the bounded delay is applied to calculate the feasible sleep in-

terval. This approach is affected for all HAD, WCG, and EDG

algorithms. Because of the similarity and limited space, we

present the solution for the EDG algorithm only. In this pa-

per, we provide solutions for earliest-deadline-first (EDF) and

FP EDF

(a) (b)

βA
total = β∗

1
βA

total = maxi∈N{β∗
i,total}

S1 S \ {Sj}

S2

. . .

SN Sj

β∗
1

β∗
j,totalα1

P

i6=j αi

α2

β∗
2

β∗
3

β∗
NαN

α∗
j

β∗
j

Fig. 5: Total service demand calculation for FP and EDF

scheduling.

fixed-priority (FP) scheduling. Note that the refinements of the

history curve and backlog demand in (11) and (12) can be ap-

plied to individual stream, denoted as H ′
i and B′

i for briefness.

FP Scheduling For fixed-priority scheduling, without loss of

generality, the event streams S1, S2, . . . , SN are ordered ac-

cording to their priorities, where the priority of stream Si is

higher than that of Sk when k > i. Streams can thereby be

modeled as an ordered chain according to their priorities and

a lower priority stream can only make use of the resource left

from a higher priority stream. To compute the service demand

of a higher priority stream, a backward approach is applied by

considering the service demand from the directly lower priority

stream, as shown in Fig. 5 (a). The service demand of stream

SN at time t′ = t⊥ + D1 − w1 is

β∗
N (∆, t′) = max{β♭

N (∆, t′), β
†
N (∆, t′)}, where (17)

β♭
N (∆, t′) = αu

N (∆ − DN , t′) + B′
N (∆, t′), (18)

β
†
N (∆, t′) = αu

N (∆, t′)

−
`

QN − |EN (t⊥)| − ᾱl
N (t′ − t⊥)

´

· wN , (19)

αu
N (∆, t′) = wN ·

“

inf
λ≥0

˘

ᾱu
N (∆ + λ) − HN (λ, t′)

¯

”

. (20)

To derive β∗
1 , we have to compute the service bounds

β∗
N−1, β

∗
N−2, . . . , β

∗
2 , sequentially. Suppose that β∗

k has been

derived, the resource constraint is that the remaining service

curve should be guaranteed to be no less than β∗
k , i.e.,

β
♯
k−1(∆) ≥ inf

˘

β : β∗
k(∆, t′) = sup

0≤λ≤∆
{β(λ) − αu

k−1(λ, t′)}
¯

(21)

By inverting (21), we can derive β♯
k−1 as:

β
♯
k−1(∆) = β∗

k(∆ − λ) + αu
k−1(∆ − λ, t′) (22)

where λ = sup
˘

τ : β∗
k(∆ − τ, t′) = β∗

k(∆, t′)
¯

.

To guarantee the timing constraint of event stream Sk−1, we

also know that β∗
k−1 must be no less than its own demand.

Therefore, we know that

β∗
k−1(∆) = max

˘

β
♯
k−1(∆), β♭

k−1(∆, t′), β
†
k−1(∆, t′)

¯

, where (23)

β♭
k−1(∆, t′) = αu

k−1(∆ − Dk−1, t′) + B′
k−1(∆, t′), (24)

β
†
k−1(∆, t′) = αu

k−1(∆, t′)

−
`

Qk−1 − |Ek−1(t⊥)| − ᾱl
k−1(t′ − t⊥)

´

· wk−1, (25)

αu
k−1(∆, t′) = wk−1 ·

“

inf
λ≥0

˘

ᾱu
k−1(∆ + λ) − Hk−1(λ, t′)

¯

”

. (26)

By applying (23) for k = N − 1, N − 2, . . . , 2, the service

demand β∗
1 of stream S1 is derived.

Based on this approach, the computed service demand for

the highest priority stream S1 can be also seen as the total ser-

vice demand βA
total for stream set S under the fixed-priority



scheduling. Therefore, the timing as well as backlog con-

straints for all streams in S can be guaranteed by the sleep

interval τ∗ with which bdf(∆, τ∗) bounds β∗
1 :

τ∗ = max
˘

τ : bdf(∆, τ) ≥ β∗
1 (∆), ∀∆ ≥ 0

¯

. (27)

This leads to the following theorem:

Theorem 1 The τ∗ obtained by (27) is a feasible sleep interval

at every reevaluation of the EDG algorithm and it guarantees

the backlog and timing constraints for all streams in S under

the fixed-priority scheduling, if the device provides again full

service after τ∗ time unit.

EDF Scheduling For earliest-deadline-first scheduling, the to-

tal service demand βA
total for all N streams can be bounded

by the sum of their service demands. The βA
total computed in

this manner, however, is not sufficient to guarantee the backlog

constraint of any stream in S. When an event of a stream Sj

is happened to have the latest deadline, events in any stream of

S \ {Sj} will be assigned a higher priority. Sj will suffer from

backlog overflow.

To compute a correct service demand to satisfy the back-

log constraint for stream Sj , Sj has to be considered as the

lowest priority. Similar back-forward approach is applied, as

shown in Fig. 5 (b). Instead of tracing back stepwise, the ser-

vice demand needed for higher-priority streams is the sum of

all streams from S \ {Sj}. Again, we present the revision of

the EDG algorithm as an example. The service β♯
j to guarantee

the lowest priority stream Sj should be more than the demand

β∗
j of Sj , i.e.,

β
♯
j(∆) ≥ inf

˘

β : β∗
j (∆, t′) = sup

0≤λ≤∆
{β(λ) −

N
X

i6=j

αu
i (λ, t′)}

¯

(28)

By inverting (28), we can derive β♯
j(∆) as:

β
♯
j(∆) = β∗

j (∆ − λ, t′) +

N
X

i6=j

αu
i (∆ − λ, t′) (29)

where λ = sup
˘

τ : β∗
j (∆ − τ, t′) = β∗

j (∆, t′)
¯

, and

β∗
j (∆, t′) = max{β♭

j(∆, t′), β
†
j (∆, t′)} (30)

where β♭
j and β†

j are from (24) and (26). To guarantee the tim-

ing constraint of all higher-priority streams, we also know that

β∗
j,total must be no less than the demand of S \ {Sj} as well.

Therefore, we know that at time t′ = t⊥ + Dj − wj ,

β∗
j,total(∆) = max

˘

β
♯
j(∆),

N
X

i6=j

β♭
i (∆, t′)

¯

, (31)

Applying (31) to each steam in S, the service demand for

each steam is computed. Because each stream could be the

lowest priority in the worst case, only the maximum of them

can be seen as the total service demand for stream set S. There-

fore, the timing and backlog constraints for S can be guaran-

teed by τ∗ with which bdf(∆, τ∗) bounds the maximum of

individual streams:

τ∗ = max
˘

τ : bdf(∆, τ) ≥ max
i∈N

{β∗
i,total(∆)}, ∀∆ ≥ 0

¯

. (32)

This leads to the following result:

Theorem 2 The τ∗ computed by (32) is a feasible sleep inter-

val at every reevaluation of the EDG algorithm and it guar-

antees the timing and backlog constrains for all streams in S
under EDF scheduling, if the device provides again full service

after τ∗ time unit.

TABLE I: Event stream setting according to [7].
S1 S2 S3 S4 S5 S6 S7 S8 S9 S10

period (msec) 198 102 283 354 239 194 148 114 313 119

jitter (msec) 387 70 269 387 222 260 91 13 302 187

delay (msec) 48 45 58 17 65 32 78 - 86 89

w (msec) 12 7 7 11 8 5 13 14 5 6

TABLE II: Power profiles for devices according to [5].
Device Name Pa (Watt) Ps (Watt) Pσ (Watt) tsw (sec) Esw (mJoule)

IBM Microdrive 1.3 0.5 0.1 0.012 9.6

VI. SIMULATION RESULTS

This section provides simulation results for the proposed

method. The simulation is implemented in MATLAB using

the RTC/RTS toolbox [15] and runs on a simulation host with

Intel 1.6 GHz processor and 1 GB memory.

Simulation Setup We take the stream set studied in [7] for

our case studies. The relative deadline Di of an event stream

Si is defined by a deadline factor χ, i.e., Di = χ ∗ pi. Ta-

ble I describes the parameters for generating the arrival curves

of this stream set, where w is the worst-case execution time.

We simulate scenarios of controlling an IBM Microdrive de-

vice, the power profiles of which is depicted in Table II. To

trigger our simulation, we apply two traces with a time span

of 10sec, denoted as Ru and Rl, imitating bursting and sparse

event-arriving cases. Both Ru and Rl are generated by the RTS

toolbox and compliant to arrival curve specifications.

We evaluate two schemes to control the device, i.e., the

HAD-EDG and the HAD-WCG, applying both the EDF and

the FP scheduling. Since all the schemes have the same en-

ergy consumption for event processing, we report the average

idle power consumption which computed as the quotient of the

sum of all the mode-switch overhead and the leakage energy

consumption for the whole trace period divided by the time

span of the trace. We also report the computation expense of

these two schemes subject to different scheduling and traces.

Due to the space limit, we plot the results for the EDF and FP

scheduling within the same figures for all cases.

Simulation Result Firstly, we show the impact of our schemes

according to different χ and backlog sizes. Due to the simi-

larity, we only present the HAD-WCG scheme for trace RU

and HAD-EDG scheme for trace Rl. As shown in Fig. 6, the

HAD-EDG and the HAD-WCG schemes reduce the average

idle power consumption as χ and backlog size increases for

both Ru and Rl cases. The reason is that we can procrastinate

later the arrived events and accumulate more to process for each

activation of the device with larger χ and backlog size. Both

schemes are effective for the EDF and FP scheduling. Note that

ideally the results of the two schemes should provide a same re-

sult for the same scheduling and trace. The deviation depicted

in Fig. 6 is caused by the bounded delay approximation.

Secondly, we show the impact of our algorithms to the con-

troller. Fig. 7 shows the number of reevaluation of activation

decision within the 10sec time span and Fig. 8 depicts the av-

erage computation time for each reevaluation. From Fig. 7, we

can notice that the activation of the EDG algorithm is varied ac-

cording to the traces while the WCG algorithm is affected heav-

enly by the deadline. Due to constraint of this stream set, the
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Fig. 6: Average idle power consumption for EDG-HAD and

WCG-HAD schemes subjected to EDF and FP scheduling,

where (a) and (b) apply traces Ru and Rl, respectively.
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Fig. 7: Number of activations according to the deadline factor

χ, where (a) and (b) apply traces Ru and Rl, respectively.

EDG algorithm cannot outperform the WCG algorithm. But in

other cases where events come sparsely, the EDG will perform

better than the WCG algorithm.

The average computation expensive of each reevaluation is

depicted in Fig. 8. From the figure, we can conclude that our

algorithms are efficient for both traces. The computation ex-

penses of each activation and deactivation pair for all cases

are within the range of millisecond and are acceptable to the

task set in Table I. In general, the EDG algorithm and EDF

scheduling are more expensive than the WCG algorithm and

FP scheduling, respectively, which are confirmed with the def-

inition in Section V. Another observation is that the computa-

tion expense is not neglectable for this stream set, which might

harm the computation for the feasible sleep period. There are

also means to tackle this problem, for instance, setting the com-

putation overhead as a safe margin for the computed sleep pe-

riod or putting the reevaluation itself as the highest priority

events of the system. We do not elaborate them here, since

they are not the focus of this paper.

VII. CONCLUSIONS

This paper explores how to apply dynamic power manage-

ment to reduce the leakage power consumption for hard real-

time embedded systems pertaining to both timing and backlog

constraints. We propose algorithms to adaptively control the

power mode of a device (system) based on the actual arrival

of events, tackling multiple event streams with irregular event

arrival patterns under both earliest deadline first and fixed prior-

ity preemptive scheduling. proof-of-concept simulation results

demonstrate the effectiveness of approaches.
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