
pcapIndex: An Index for Network Packet Traces
with Legacy Compatibility

Francesco Fusco Xenofontas Dimitropoulos Michail Vlachos Luca Deri
IBM Research, ETH Zurich ETH Zurich IBM Research ntop

ffu@zurich.ibm.com fontas@tik.ee.ethz.ch deri@ntop.org

ABSTRACT
Long-term historical analysis of captured network traffic is
a topic of great interest in network monitoring and network
security. A critical requirement is the support for fast dis-
covery of packets that satisfy certain criteria within large-
scale packet repositories. This work presents the first index-
ing scheme for network packet traces based on compressed
bitmap indexing principles. Our approach supports very
fast insertion rates and results in compact index sizes. The
proposed indexing methodology builds upon libpcap, the de-
facto reference library for accessing packet-trace reposito-
ries. Our solution is therefore backward compatible with
any solution that uses the original library. We experience
impressive speedups on packet-trace search operations: our
experiments suggest that the index-enabled libpcap may re-
duce the packet retrieval time by more than 1100 times.

Categories and Subject Descriptors
C.2.3 [Network Operations]: Network monitoring

General Terms
Algorithms, Measurement, Performance, Security

Keywords
packet indexing

1. INTRODUCTION
Diverse network management and network security pro-

cesses require efficient search and filtering operations over
large-scale network-trace repositories. For example, in
network-forensics operators need tools that can facilitate the
effective scanning of stored packet-traces for mapping intru-
sion activities, e.g., machines contacted by a compromised
node within a company’s infrastructure. Similar functionali-
ties are required for validating claims of Service Level Agree-
ment (SLA) violations, for troubleshooting failures, and in
general, for performing any traffic analysis task that cannot
be performed over a live network stream, but requires access
to a historical packet-trace repository.

Packet-trace analysis solutions use the same filtering
mechanism when filtering packets either from a network in-
terface (i.e., live capture) or from a packet-trace. The de-
facto reference packet filtering mechanism is the Berkeley
Packet Filter (BPF) [10]. BPF implementations are pro-
vided by the large majority of operating systems and packet
capture libraries, such as the widely-used libpcap [2], on top

of which the ubiquitous tcpdump is also built. BPF filters
packets from a packet trace using filtering expressions, which
are posed in the BPF language [10]. Filters are evaluated
against each packet. Packet filtering operations are costly
to perform because they require the complete (linear) scan
of the packet-trace repository with the subsequent filtering
of packets that satisfy the search criteria. Therefore, search
operations are plagued by long execution times. Surpris-
ingly, current packet-trace analysis solutions do not provide
support for indexing schemes.

This work presents an index-based packet filtering archi-
tecture that enables fast packet searching within packet-
trace repositories, e.g., queries like: find all packets from
subnet 192.168/16 with destination port 445/udp. The pro-
posed filtering architecture has been designed with legacy
compatibility in mind, and does not require existing packet-
trace repositories to be re-encoded in a new format. More
importantly, the architecture is modular and easily exten-
sible with packet indexing plugins. We augment the pop-
ular libpcap with our indexing architecture. In this man-
ner, we preserve backward compatibility with the rich pool
of packet-trace analysis software already built upon pcap.
However, our design of the extended libpcap can be gener-
alized for other packet formats, as well, like the ERF format
used by Endace[1]. This can be achieved with limited effort
because the majority of packet trace formats share many
common characteristics. The contributions of this work
are as follows:

- We highlight shortcomings of the BPF filters when used
for searching packet-traces. We propose the use of com-
pressed bitmap indexes, which are ideally suited for this
purpose, because they can effectively retrieve packets with-
out resorting to expensive linear scans.

- We design and implement pcapIndex, an indexing
scheme for packet-traces based on compressed bitmap in-
dexes. pcapIndex extends the widely-used libpcap without
modifying the existing API, so that libpcap-based applica-
tions can benefit without need for reimplementation. We
show that our scheme reduces the response time by up to 3
orders of magnitude. The disk consumption is on average
less than 7 MBytes per indexed field per GB of trace.

- We evaluate the performance of three state-of-the-art
bitmap index compression encodings: WAH, PLWAH, and
COMPAX. Our experiments on two large real-world packet
traces, suggests that COMPAX, the proposed encoding, ex-
hibits the best performance when indexing packet traces.



2. BACKGROUND
A bitmap index is a structure that accelerates search

queries. It maps a sequential set of values into positions
in a binary array with as many columns as the range of
encountered values. Figure 1 shows an example of sequen-
tial data, having a range of 0 to 3 (n = 4). Values can be
mapped into a bitmap index of 4 columns. For example, the
existence of the second data value (3) is indicated by setting
the bit to 1 in the last column of the second row. In net-
work applications, if one wishes to map m records of port
data (n = 65535), the required storage space would be a
bitmap of m×n bits. Such a representation gives rise to ef-
ficient search operations, implemented as bitwise operations
between different bitmap indexes. As an example, finding all
records that used a particular source- and destination-port
can be found by performing a bitwise operation between the
columns of two respective bitmap indexes.
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Figure 1: An example of a bitmap index (right) and
the corresponding compressed bitmap index using
Run-Length-Encoding(left).

A shortcoming of bitmap indexes is that they may require
large storage space. This has recently given rise to com-
pressed bitmap indexes. The idea is to compress bitmaps
column-wise using Run-Len-Encoding (RLE). As shown in
Figure 1, consecutive blocks of ones or zeros are replaced
with a one or zero and a count. In this manner, disk foot-
print is substantially reduced. At the same time boolean
operations can still be performed fast and efficiently in the
compressed space. Recent works suggest that compressed
bitmap indexes are expected to be more compact than typ-
ical B-Tree structures even for high-cardinality (large n) at-
tributes [11].

WAH [12] and PLWAH [4] are current state-of-the-art
compressed bitmap index encodings. In our previous work,
we introduced COMPAX [7], a new compressed bitmap in-
dex encoding, and we have shown its efficiency when used
to index Netflow archives. WAH, PLWAH, and COMPAX
use different codeword schemes for implementing the RLE
encoding. PLWAH and COMPAX use codeword schemes
optimized for sparse bitmaps, whereas WAH focuses on com-
pressing better homogeneous bitmaps. In the experimental
section, we show that COMPAX provides the best compres-
sion for packet-trace datasets.

Bitmap indexing on packet-traces: The concept of com-
pressed Bitmap Indexes (BI’s) is ideally suited for packet-
traces and particularly for speeding up packet filtering op-
erations. This is for the following reasons:

i) BI’s are tailored for read-only data. When dealing with

packet-trace data, information is only appended but never
modified.

ii) Compressed BI’s are very compact in size [11] and can
be memory efficient even for large packet-traces.

iii) BI’s are best suited for indexing numerical attributes
and the vast majority of network protocol fields are numer-
ical.

iv) BI’s do not require rebalancing (something that tree-
based indexes require) and can perform fast bitwise opera-
tions even in the compressed domain.

v) Both BI’s and compressed BI’s can be used to answer
existence (“Did IP W.X.Y.Z access my network?”) or cardi-
nality queries (“How many packets used port 445?”) without
access to the packet-trace [3], but using only the index struc-
ture. Cardinality queries enable one to seamlessly find and
plot frequency distributions of desired attributes.

vi) Finally, compressed BI’s support very fast insertion
rates, which is desirable for indexing packets from high-
speed links.

3. PCAPINDEX
In this section we describe the architecture of pcapIndex.

The pcap packet-trace format consists of a trace header fol-
lowed by chronologically-ordered tuples. Each tuple has a
pcap header and a packet. The pcap header contains the
timestamp when the packet was captured, the length of the
packet as seen on the wire, and the portion of the packet that
is stored, i.e., the capture length. Other trace formats, such
as the ERF format from Endace, have a similar structure.
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Figure 2: Packet indexing and retrieval overview.

pcapIndex is composed of two components: a packet in-
dexer and a query processor as shown in Figure 2. The
packet indexer receives a stream of packets from a packet-
trace stored on disk or from a live capture interface. Each
packet is given a sequential identifier pkt-id. When the end
of the input stream is reached or after a specified maximum
number of packets, the indexer encodes and flushes to the
disk two types of files: BI’s and an indirection array. The in-
direction array maps a pkt-id to the offset within the packet
trace that marks the beginning of the corresponding packet.
Given an input stream, the indexer constructs one file stor-
ing the indirection array and one index file for each indexed
attribute. In this way, we store indexes separately without
changing the pcap format. The indexing files are created
once and are re-used from our index-enhanced pcap library
for every query.

The query processor takes as input an index filter, a BPF
filter, and a trace as shown in the right side of Figure 2.
In particular, the index filter selects packets that match an



expression of the indexed attributes. The processor extracts
from the BI’s an ordered list of pkt-ids matching a query.
The indirection array is then used to map pkt-ids to the
corresponding packet offsets within a trace. In this way, we
skip reading undesired packets from a trace file. An index
filter can be chained with a BPF filter. Chaining an index
with a BPF filter enables us 1) to support more complex
expressions; and 2) to check less commonly queried packet
attributes, e.g., ICMP codes, without having to keep an ad-
ditional index for them. Packets that match the index filter
are passed to the BPF filter, which sequentially checks them
to produce the final result. In this way, our architecture
combines the efficiency of index filters with the flexibility of
BPF filters.

3.1 Packet Indexer
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Figure 3: The packet indexer is composed of a parser
and a set of indexing plugins. It decodes packets, in-
dexes attributes, and updates the indirection array.

Figure 3 shows the architecture of the packet indexer. The
packet indexer has been designed for modularity and exten-
sibility. It is composed of a packet parser and a number
of indexing plugins. Plugins index custom attributes, are
enabled on request, and provide seamless extensibility.

Packet parser. The packet parser decodes headers up to
the transport layer. It extracts source and destination IP
addresses, MAC addresses, the VLAN identifier, source and
destination ports, the layer-3 protocol and the offset from
the beginning of the transport layer. The extracted infor-
mation, the pcap header, and the packet payload are then
passed on to the indexing plugins. In this way, the pars-
ing up to transport layer is done exactly once even when
multiple indexing plugins are active. In addition, the parser
constructs the indirection array.

Indirection array. The indirection array is used to map
pkt-ids to offsets. The offset of a packet is equal to the
cumulative size of the trace header, the pcap headers, and
the packets. For example, the 3rd packet in Figure 3 has an
offset of 2,564. The size of the indirection array is very small,
in our experiments less than 1% of the size of the trace.
By encoding each offset in 64 bits we need, for example,
15.2 MBytes for the indirection array of 2 Million packets,
which correspond to a trace with size between 1.1 and 1.4
GBytes in our data. The size of the indirection array can be
further reduced by using more advanced encodings like gap

coding, which requires much less than 64 bits for storing the
difference between the offsets of two consecutive packets.

Indexing plugins. Indexing plugins receive from the
packet parser the decoded header fields, the pcap header,
and the packet payload. They optionally decode additional
fields, map decoded fields to derived metrics, and then per-
form indexing. An indexed attribute can be 1) a decoded
header field, e.g., a port number or a GTP tunnel identifier;
2) a decoded payload field for performing layer-7 packet fil-
tering, such as filtering all request for a VoIP call to a spe-
cific address; or even 3) a derived metric, such as the country
code of an IP address or the layer-7 application, e.g., HTTP.

Besides, a plugin may exploit the specifics of a field, e.g.,
the hierarchical nature of IP addresses, to support more
complex query expressions by splitting a field into multiple
indexed attributes or by synthesizing an indexed attribute
by combining multiple decoded fields. For example, in our
implementation we treat IP addresses in a specific way. Each
byte of an IP address is indexed separately resulting in four
BI’s of cardinality 256. In this way, the plugins for the source
and destination IP addresses allow us to provide wildcard
queries (e.g. 10.10.*.*).

3.2 Query Processor
In Figure 4 we show the query workflow. A query has two

optional arguments: 1) an expression, the index filter, of the
indexed attributes; and 2) a BPF filter. Introducing the in-
dex filter has two important implications. First, attributes
that an application is expected to query often should be
indexed, e.g., a network forensics application should index
IP addresses. This enables to substantially accelerate BPF-
based queries involving indexed attributes, since we avoid
reading unnecessary packets. Second, we can still exploit
the flexibility of BPF, which enables to perform more com-
plex queries even on fields without an index. For example,
the BPF filter in Figure 4 matches HTTP GET requests.
Chaining it with the index filter of Figure 4 allows the BPF
filter to be applied only against the packets with source IP
in the subnet 10.4/16 and destination port 80. The query
processor of pcapIndex evaluates the index filter. If a BPF
filter is defined, then only the matching packets are passed
to the BPF engine of libpcap.

An index filter consists of one or more plugin query ex-
pressions combined with the AND (:) or OR (;) boolean
operators. Parentheses can be used to enclose boolean op-
erations (”e1 AND (e2 OR e3)” is allowed). Each plugin
query expression has the form:

〈plugin id〉 = 〈plugin query string〉.

where 〈plugin id〉 is a unique plugin identifier that has been
registered with the query processor. This enables the query
processor to pass the query expression 〈plugin query string〉
to the right plugin. For example, the following string is an
index filter with two plugin expressions combined with the
AND operator:

”SrcPort=22:SrcIp=10.4.*.*”

The query processor will split the string into plugin query
expressions, will extract the query strings, and will pass
them to the 〈SrcPort〉 and 〈SrcIp〉 plugins.

Each plugin computes a compressed bitmap of the posi-
tions of matching packets. For example, the 〈SrcIp〉 plugin
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Figure 4: PcapIndex query workflow. The query processor parses the Index filter, retrieves the right BI’s,
joins BI’s, maps pkt-ids to packet offsets, reads matching packets, and finally applies the BPF filter.

will retrieve the compressed bitmaps for the address bytes
10 and 4, will perform an AND operation between them,
and will return a compressed bitmap encoding the result.
The compressed bitmaps returned by all plugins are finally
joined with the logical operators defined in the query to de-
rive the final list of matching pkt-ids.

3.3 PcapIndex Implementation
PcapIndex extends the pcap open offline function of libp-

cap, which is the standard function for opening a packet-
trace. A simple naming convention is used for specifying
the index filter. In particular, the index filter is appended
to the trace filename using the + character. For example,
the call:

pcap t = pcap open offline("test.pcap+SrcIp=10.10.10.10")

opens the pcap trace test.pcap and creates an array of pkt-
ids of the packets matching the filter SrcIp = 10.10.10.10.
In addition, the modified function memory maps the indi-
rection array file of the trace. The name of the indirection
array file is the name of the trace file appended with the
“.off” suffix (in this example test.pcap.off ). Once the array
of matching pkt-ids is created, e.g., the packet identifiers
200, 10010, and 10500 in Figure 4, the trace traversal process
can start. This is performed by calling pcap next ex, which
is the standard libpcap function for tranversing a trace:

pcap next ex(pcap t *, struct pcap pkthdr **, u char **)

We have not changed the API of this function. In the
standard libpcap implementation, the function reads all the
packets in a trace sequentially. With pcapIndex, the func-
tion uses the pkt-ids and the indirection array to skip reading
unnecessary packets. Therefore, integrating pcapIndex into
existing libpcap applications requires only two very simple
changes: 1) including the pcapIndex header file; and 2) aug-
menting the filename of a packet-trace with a desired query
using the + character.

In Algorithm 1 we show the pseudo-code of our imple-
mentation of the pcap next ex function. We use a counter,
which is initialized to zero when a trace is opened, as a cur-
sor in the pkt-id array. The counter points to the actual
packet to be delivered to the caller. The function uses the
indirection array file and the counter to seek, within a trace,
for the pcap header of the packet to be returned. The pcap
header and the packet are read from the trace. If a BPF
filter is configured, the BPF filter is evaluated on the read
packet. If the packet matches, it will be delivered to the
user, otherwise, the counter is incremented and the process
repeated.

Algorithm 1 pcap next ex(pcap h)

Require: an open pcap handle pcap h
1: while has results do
2: /* Seek to the packet */
3: pktId = pcap h.PacketID[pcap h.cursor];
4: pktOffset = pcap h.PacketOffsets[pktId];
5: seek(pcap h.tracefile, pktOffset);

/* Read the pcap header and the packet itself */
6: hdr = read pcap header(pcap h.tracefile);
7: pkt = read packet(pcap h.tracefile, hdr.caplen);
8: pcap h.cursor +=1;

/* Execute the BPF filter, if configured */
9: if (!has bpf(pcap h))

10: return (hdr,pkt);
11: else if (bpf exec(pkt,pcap h.bpf))
12: return (hdr,pkt);
13: end while
14: return NULL;

4. EVALUATION
In this section, we evaluate critical performance metrics of

the index-enhanced libpcap library. In particular, we eval-
uate 1) the disk space required to store compressed BI’s,
which are built using three state-of-the-art encodings (WAH,



PLWAH and COMPAX); 2) the processing overhead for con-
structing the indexes; and 3) the query response time for
filtering the same packets using BPF or pcapIndex.

In the evaluation, we use two pcap packet traces cap-
tured in two distinct locations. The trace trace1.pcap has
been captured at the border gateway of a university net-
work, whereas trace2.pcap at the border gateway of a small
ISP. The trace sizes are 1.1 Gb and 1.4 Gb, respectively.
Both traces contain 2 Million packets. The traces store the
entire traffic as transmitted over the network.

During the evaluation we use a commodity desktop ma-
chine with 2GB of DDR3 memory and a 2.66 GHz Intel
Core2 Quad processor (Q9400) running Linux. We store
traces on a 320GB desktop hard drive and also on an Intel
X-25M solid-state drive (SSD).

Index sizes. Our packet indexer can be configured for using
WAH, PLWAH or COMPAX. The plugins transparently use
the chosen encoding. For our experiments, we enable all
the plugins we have developed that capture the following
attributes: IP addresses, ports, layer-3 protocol, TCP flags,
packet length, packet capture length, and VLAN identifier.
Table 1 reports the total size of the indexes when using the
different encodings.

Table 1: Index size using WAH, PLWAH and COM-
PAX.

Dataset WAH PLWAH COMPAX
trace1 99 MBytes 65 MBytes 55 MBytes
trace2 89 MBytes 61 MBytes 51 MBytes

COMPAX indexes are the one providing the lowest disk
consumption. WAH indexes are almost twice as big, whereas
the PLWAH ones are up to 15% bigger than COMPAX. This
is expected as packet trace fields rarely have the same value
for long sequences of consecutive packets and COMPAX can
compress short sequences of repeated symbols better than
WAH and PLWAH. Indexing (with COMPAX) needs on av-
erage less than 7 MBytes per indexed field per GByte of trace.

Processing overhead. We compare the processing over-
head for building the indexes with the three encodings. We
measure the time it takes to: 1) solely read a trace and 2)
read and index a trace. Table 2 reports the measured time
using a desktop hard drive and a solid-state drive for storing
the packet traces and the corresponding indexes.

Table 2: Execution time (in milliseconds) for solely
reading a trace and for reading and indexing a trace.

Solid-State Drive (SSD)
Dataset read WAH PLWAH COMPAX
trace1 7141 13424 13331 10583
trace2 5708 11522 11534 8768

Hard drive
Dataset read WAH PLWAH COMPAX
trace1 21406 23796 23069 22380
trace2 17839 19648 19350 18761

For the regular hard drive the indexing time is almost the
same as the reading time: IO operations for reading packets
are the bottleneck of the indexing time. In fact, during our
experiments we noticed that the CPU utilization was low
and the IO wait percentage high. Even with the faster solid-
state drive, the IO is the main bottleneck. Based on this
observation, we highlight that because of the IO bottleneck,

indexing has a great potential to reduce query response time
as it circumvents reading unnecessary packets. In addition,
we find that COMPAX has the lowest processing overhead
for constructing an index. We attribute this to the lower disk
utilization of COMPAX. Based on this, we use COMPAX
as the default encoding for the rest of the experiments.

Query response time. We compare the query response
time of BPF and pcapIndex using queries of different selec-
tivity. We choose ports and IP addresses, which are the most
commonly-used attributes for searching packets, as query
attributes. To create queries of varying selectivity, we first
find all distinct source IP addresses and sort them by num-
ber of occurences. We query for the 200 most frequent (top
200) and 200 least frequent (bottom 200) IP addresses. In
this way, we capture the two ends of the query selectivity
spectrum. Using the same methodology, we create 400 ad-
ditional queries for the source port attribute. Both traces
have more than 50 thousand distinct IP addresses and more
than 40 thousand distinct ports.

The queries are executed with pcapidx-query, a dummy
libpcap application that reads the packets matching a BPF
or index filter and discard them without doing any further
processing. For each query, we measured the pcapidx-query
execution time. In addition to reading packets, the mea-
sured time includes the time to compile a BPF filter or the
time to retrieve the pkt-ids array from the index. Since
packet traces can be cached, we unmounted the filesystem
every time we ran pcapidx-query, which ensures that a trace
is not cached. To better understand the performance impli-
cations of the disk type, we repeated our experiments using
a desktop hard drive and a solid-state drive.

In Table 3 and 4 we report the average running time for
each block of 200 queries when traces are stored on the solid-
state drive and on the hard drive, respectively.

Table 3: Query response time (in milliseconds) with
pcapIndex and BPF on a solid-state drive. The grey
cells mark the speedup of pcapIndex.

Source ports
Top 200 Bottom 200

Dataset BPF index BPF index
trace1 7076 654 10.8× 7101 6 1183.5×
trace2 5714 983 5.8× 5746 47 122.3×

Source IP addresses
Top 200 Bottom 200

Dataset BPF index BPF index
trace1 7113 799 8.9× 7125 12 593.8×
trace2 5733 1148 4.9× 5724 8 715.5×

Table 4: Query response time (in milliseconds) with
pcapIndex and BPF on a regular hard drive. The
grey cells mark the speedup of pcapIndex.

Source ports
Top 200 Bottom 200

Dataset BPF index BPF index
trace1 21555 8925 2.4× 21532 28 769.0×
trace2 17886 9142 1.9× 17870 128 139.6×

Source IP addresses
Top 200 Bottom 200

Dataset BPF index BPF index
trace1 21590 11393 1.9× 21522 50 430.4×
trace2 17849 8764 2.0× 17843 53 336.7×

We first observe that the average execution time of BPF is
independent of the query selectivity. This is because without
an index a trace is fully scanned for each query. In fact, the



average execution time is very close to the time reported
in Table 2 for reading all packets. Disk IO is therefore the
main factor that determines the BPF response time.

For low selectivity queries (bottom 200), using an index
improves the response time by 2-3 orders of magnitude for
both types of drives. The impact of the disk type is larger for
high selectivity queries (top 200). Even for these queries, the
index reduces response time: the speedup is up to 10 times
on the solid-state drive and close to 2 on the standard hard
drive. This is because indexing profits from the low seek
time offered by solid-state drives. This highlights that in
newer disk technologies providing lower seek times the query
speedup offered by pcapIndex is larger, which indicates that
in the future pcapIndex has the potential to deliver even
higher speedups.

We repeat the same experiments without unmounting the
disk to prevent caching before running each query. We ob-
serve that traces are fully cached and that indexing always
provides better query response time than BPF even for high
selectivity queries. This is expected because when a trace
is cached seek operations are almost for free, whereas BPF
still needs to access and apply filters to every packet.

5. RELATED WORK
Long term historical analysis of massive volumes of net-

work management data is an emerging requirement for in-
creasing reliability, security and performance of modern net-
works [8]. The Time Machine [9] and Hyperion [6], which
are packet archival solutions designed for high-speed links,
have identified indexing as a mandatory feature for exploring
massive packet repositories. Both architectures save pack-
ets in large file segments. Indexes are used for performing
existence queries, i.e., for checking the presence of packets
satisfying certain conditions in a segment. Since the used in-
dexes do not provide the positions within the segment where
the desired packets are stored, the matching segments have
to be linearly scanned. In this work, we show that com-
pressed bitmap indexes allow the actual positions of packets
of interest within a segment to be retrieved, pose limited
disk requirements, can be created efficiently.

Special purpose columnar-databases with built-in support
for compressed bitmap indexes have been used for storing
and indexing NetFlow records [5, 7]. These solutions do not
have strict legacy compatibility requirements, whereas in our
case the goal is to provide indexed access to already existing
packet-trace repositories without requiring an impractical
re-encoding of entire packet repositories, and more impor-
tantly, without requiring the already existing commercial or
in-house packet analysis applications to be reimplemented.

Despite the growing interest in packet-trace indexing,
packet trace analysis libraries, such as libpcap, do not pro-
vide any indexing functionality. In particular, the BPF
packet filtering mechanism [10], which was originally de-
signed for filtering packets from streams, has been used for
searching packet-traces. In this work, we show that a widely-
used packet-trace analysis library can be extended to sup-
port index-based searching with legacy compatibility.

6. CONCLUSIONS
In this work we have built upon the popular libpcap

packet-capture and trace-analysis library and extended it
to support fast filtering using compressed bitmap indexes.

We have designed pcapIndex, the first indexing scheme for
packet-traces based on compressed bitmap indexes, and have
made it backward compatible with libpcap. Our work al-
lows the rich pool of trace analysis applications implemented
on top of libpcap to benefit from indexing, with no need
for reimplementation or for re-encoding existing pcap-based
repositories. Our evaluation suggests that indexing packet
traces imposes minimal disk overheads and provides impres-
sive speedups, particularly when few packets have to be re-
trieved from large packet-traces. We compare the perfor-
mance of three state-of-the-art compressed bitmap encod-
ings on packet-traces and show that COMPAX exhibits the
best performance. Finally, we demonstrate that our index-
based libpcap significantly benefits from modern solid-state
hard drive technologies, which highlights that in the future
pcapIndex has the potential to deliver even better perfor-
mance.
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